
A Practical Guide to Support Vector Classification

Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin

Department of Computer Science and

Information Engineering

National Taiwan University

Taipei 106, Taiwan (cjlin@csie.ntu.edu.tw)

Abstract
Support vector machine (SVM) is a popular technique for classification.

However, beginners who are not familiar with SVM often get unsatisfactory
results since they miss some easy but significant steps. In this guide, we propose
a simple procedure which usually gives reasonable results.

1 Introduction

SVM (Support Vector Machine) is a new technique for data classification. Even

though people consider that it is easier to use than Neural Networks, however, users

who are not familiar with SVM often get unsatisfactory results at first. Here we

propose a “cookbook” approach which usually gives reasonable results.

Note that this guide is not for SVM researchers nor do we guarantee the best

accuracy. We also do not intend to solve challenging or difficult problems. Our

purpose is to give SVM novices a recipe to obtain acceptable results fast and easily.

Although users do not need to understand the underlying theory of SVM, nev-

ertheless, we briefly introduce SVM basics which are necessary for explaining our

procedure. A classification task usually involves with training and testing data which

consist of some data instances. Each instance in the training set contains one “target

value” (class labels) and several “attributes” (features). The goal of SVM is to pro-

duce a model which predicts target value of data instances in the testing set which

are given only the attributes.

Given a training set of instance-label pairs (xi, yi), i = 1, . . . , l where xi ∈ Rn and

y ∈ {1,−1}l, the support vector machines (SVM) (Boser, Guyon, and Vapnik 1992;

Cortes and Vapnik 1995) require the solution of the following optimization problem:

min
w,b,ξ

1

2
wT w + C

l∑
i=1

ξi

subject to yi(w
T φ(xi) + b) ≥ 1− ξi, (1)

ξi ≥ 0.

1

mailto:cjlin@csie.ntu.edu.tw

Table 1: Problem characteristics and performance comparisons.

Applications #training #testing #features #classes Accuracy Accuracy
data data by users by our

procedure
Astroparticle1 3,089 4,000 4 2 75.2% 96.9%
Bioinformatics2 391 04 20 3 36% 85.2%
Vehicle3 1,243 41 21 2 4.88% 87.8%

Here training vectors xi are mapped into a higher (maybe infinite) dimensional space

by the function φ. Then SVM finds a linear separating hyperplane with the maximal

margin in this higher dimensional space. C > 0 is the penalty parameter of the error

term. Furthermore, K(xi, xj) ≡ φ(xi)
T φ(xj) is called the kernel function. Though

new kernels are being proposed by researchers, beginners may find in SVM books the

following four basic kernels:

• linear: K(xi, xj) = xT
i xj.

• polynomial: K(xi, xj) = (γxi
T xj + r)d, γ > 0.

• radial basis function (RBF): K(xi, xj) = exp(−γ‖xi − xj‖2), γ > 0.

• sigmoid: K(xi, xj) = tanh(γxi
T xj + r).

Here, γ, r, and d are kernel parameters.

1.1 Real-World Examples

Table 1 presents some real-world examples. These data sets are reported from our

users who could not obtain reasonable accuracy in the beginning. Using the procedure

illustrated in this guide, we help them to achieve better performance. Details are in

Appendix A.

These data sets are at http://www.csie.ntu.edu.tw/~cjlin/papers/guide/

data/

1Courtesy of Jan Conrad from Uppsala University, Sweden.
2Courtesy of Cory Spencer from Simon Fraser University, Canada (Gardy et al. 2003).
3Courtesy of a user from Germany.
4As there are no testing data, cross-validation instead of testing accuracy is presented here.

Details of cross-validation are in Section 3.2.

2

http://www.csie.ntu.edu.tw/~cjlin/papers/guide/data/
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/data/

1.2 Proposed Procedure

Many beginners use the following procedure now:

• Transform data to the format of an SVM software

• Randomly try a few kernels and parameters

• Test

We propose that beginners try the following procedure first:

• Transform data to the format of an SVM software

• Conduct simple scaling on the data

• Consider the RBF kernel K(x, y) = e−γ‖x−y‖2

• Use cross-validation to find the best parameter C and γ

• Use the best parameter C and γ to train the whole training set5

• Test

We discuss this procedure in detail in the following sections.

2 Data Preprocessing

2.1 Categorical Feature

SVM requires that each data instance is represented as a vector of real numbers.

Hence, if there are categorical attributes, we first have to convert them into numeric

data. We recommend using m numbers to represent an m-category attribute. Only

one of the m numbers is one, and others are zero. For example, a three-category

attribute such as {red, green, blue} can be represented as (0,0,1), (0,1,0), and (1,0,0).

Our experience indicates that if the number of values in an attribute is not too many,

this coding might be more stable than using a single number to represent a categorical

attribute.

5The best parameter might be affected by the size of data set but in practice the one obtained
from cross-validation is already sutable for the whole training set.

3

2.2 Scaling

Scaling them before applying SVM is very important. (Sarle 1997, Part 2 of Neural

Networks FAQ) explains why we scale data while using Neural Networks, and most

of considerations also apply to SVM.

The main advantage is to avoid attributes in greater numeric ranges dominate

those in smaller numeric ranges. Another advantage is to avoid numerical difficulties

during the calculation. Because kernel values usually depend on the inner products of

feature vectors, e.g. the linear kernel and the polynomial kernel, large attribute values

might cause numerical problems. We recommend linearly scaling each attribute to

the range [−1, +1] or [0, 1].

Of course we have to use the same method to scale testing data before testing.

For example, suppose that we scaled the first attribute of training data from [-10,

+10] to [-1, +1]. If the first attribute of testing data is lying in the range [-11, +8],

we must scale the testing data to [-1.1, +0.8].

3 Model Selection

Though there are only four common kernels mentioned in Section 1, we must decide

which one to try first. Then the penalty parameter C and kernel parameters are

chosen.

3.1 RBF Kernel

We suggest that in general RBF is a reasonable first choice. The RBF kernel non-

linearly maps samples into a higher dimensional space, so it, unlike the linear kernel,

can handle the case when the relation between class labels and attributes is nonlin-

ear. Furthermore, the linear kernel is a special case of RBF as (Keerthi and Lin 2003)

shows that the linear kernel with a penalty parameter C̃ has the same performance as

the RBF kernel with some parameters (C, γ). In addition, the sigmoid kernel behaves

like RBF for certain parameters (Lin and Lin 2003).

The second reason is the number of hyperparameters which influences the com-

plexity of model selection. The polynomial kernel has more hyperparameters than

the RBF kernel.

Finally, the RBF kernel has less numerical difficulties. One key point is 0 <

Kij ≤ 1 in contrast to polynomial kernels of which kernel values may go to infinity

(γxi
T xj +r > 1) or zero (γxi

T xj +r < 1) while the degree is large. Moreover, we must

4

ftp://ftp.sas.com/pub/neural/FAQ.html
ftp://ftp.sas.com/pub/neural/FAQ.html
ftp://ftp.sas.com/pub/neural/FAQ.html

note that the sigmoid kernel is not valid (i.e. not the inner product of two vectors)

under some parameters (Vapnik 1995).

3.2 Cross-validation and Grid-search

There are two parameters while using RBF kernels: C and γ. It is not known

beforehand which C and γ are the best for one problem; consequently some kind

of model selection (parameter search) must be done. The goal is to identify good

(C, γ) so that the classifier can accurately predict unknown data (i.e., testing data).

Note that it may not be useful to achieve high training accuracy (i.e., classifiers

accurately predict training data whose class labels are indeed known). Therefore,

a common way is to separate training data to two parts of which one is considered

unknown in training the classifier. Then the prediction accuracy on this set can more

precisely reflect the performance on classifying unknown data. An improved version

of this procedure is cross-validation.

In v-fold cross-validation, we first divide the training set into v subsets of equal

size. Sequentially one subset is tested using the classifier trained on the remaining

v − 1 subsets. Thus, each instance of the whole training set is predicted once so the

cross-validation accuracy is the percentage of data which are correctly classified.

The cross-validation procedure can prevent the overfitting problem. We use Figure

1 which is a binary classification problem (triangles and circles) to illustrate this issue.

Filled circles and triangles are the training data while hollow circles and triangles are

the testing data. The testing accuracy the classifier in Figures 3.2 and 3.2 is not good

since it overfits the training data. If we think training and testing data in Figure

3.2 and 3.2 as the training and validation sets in cross-validation, the accuracy is not

good. On the other hand, classifier in 3.2 and 3.2 without overfitting training data

gives better cross-validation as well as testing accuracy.

We recommend a “grid-search” on C and γ using cross-validation. Basically pairs

of (C, γ) are tried and the one with the best cross-validation accuracy is picked. We

found that trying exponentially growing sequences of C and γ is a practical method to

identify good parameters (for example, C = 2−5, 2−3, . . . , 215, γ = 2−15, 2−13, . . . , 23).

The grid-search is straightforward but seems stupid. In fact, there are several

advanced methods which can save computational cost by, for example, approximating

the cross-validation rate. However, there are two motivations why we prefer the simple

grid-search approach.

One is that psychologically we may not feel safe to use methods which avoid doing

5

(a) Training data and an overfitting classifier (b) Applying an overfitting classifier on test-
ing data

(c) Training data and a better classifier (d) Applying a better classifier on testing
data

Figure 1: An overfitting classifier and a better classifier (● and ▲: training data; ©
and 4: testing data).

6

an exhaustive parameter search by approximations or heuristics. The other reason is

that the computational time to find good parameters by grid-search is not much more

than that by advanced methods since there are only two parameters. Furthermore,

the grid-search can be easily parallelized because each (C, γ) is independent. Many

of advanced methods are iterative processes, e.g. walking along a path, which might

be difficult for parallelization.

Figure 2: Loose grid search on C = 2−5, 2−3, . . . , 215 and γ = 2−15, 2−13, . . . , 23.

Since doing a complete grid-search may still be time-consuming, we recommend

using a coarse grid first. After identifying a “better” region on the grid, a finer grid

search on that region can be conducted. To illustrate this, we do an experiment on the

problem german from the Statlog collection (Michie, Spiegelhalter, and Taylor 1994).

After scaling this set, we first use a coarse grid (Figure 2) and find that the best (C, γ)

is (23, 2−5) with the cross-validation rate 77.5%. Next we conduct a finer grid search

on the neighborhood of (23, 2−5) (Figure 3) and obtain a better cross-validation rate

77.6% at (23.25, 2−5.25). After the best (C, γ) is found, the whole training set is trained

again to generate the final classifier.

The above approach works well for problems with thousands or more data points.

For very large data sets, a feasible approach is to randomly choose a subset of the

7

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/binary/german.numer_scale
http://www.ncc.up.pt/liacc/ML/statlog/datasets.html

Figure 3: Fine grid-search on C = 21, 21.25, . . . , 25 and γ = 2−7, 2−6.75, . . . , 2−3.

data set, conduct grid-search on them, and then do a better-region-only grid-search

on the complete data set.

4 Discussion

In some situations, the proposed procedure is not good enough, so other techniques

such as feature selection may be needed. Such issues are beyond our consideration

here. Our experience indicates that the procedure works well for data which do not

have many features. If there are thousands of attributes, there may be a need to

choose a subset of them before giving the data to SVM.

Acknowledgement

We thank all users of our SVM software LIBSVM and BSVM , who help us to identify

possible difficulties encountered by beginners.

8

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/bsvm

A Examples of the Proposed Procedure

In this appendix, we compare accuracy by the proposed procedure with that by

general beginners. Experiments are on the three problems mentioned in Table 1 by

using the software LIBSVM (Chang and Lin 2001). For each problem, we first list

the accuracy by direct training and testing. Secondly, we show the difference in

accuracy with and without scaling. From what has been discussed in Section 2.2,

the range of training set attributes must be saved so that we are able to restore

them while scaling the testing set. Thirdly, the accuracy by the proposed procedure

(scaling and then model selection) is presented. Finally, we demonstrate the use

of a tool in LIBSVM which does the whole procedure automatically. Note that a

similar parameter selection tool like the grid.py presented below is availabe in the

R-LIBSVM interface (see the function tune).

• Astroparticle Physics

– Original sets with default parameters

$./svm-train train.1

$./svm-predict test.1 train.1.model test.1.predict

→ Accuracy = 66.925%

– Scaled sets with default parameters

$./svm-scale -l -1 -u 1 -s range1 train.1 > train.1.scale

$./svm-scale -r range1 test.1 > test.1.scale

$./svm-train train.1.scale

$./svm-predict test.1.scale train.1.scale.model test.1.predict

→ Accuracy = 96.15%

– Scaled sets with parameter selection

$python grid.py train.1.scale

· · ·
2.0 2.0 96.8922

(Best C=2.0, γ=2.0 with five-fold cross-validation rate=96.8922%)

$./svm-train -c 2 -g 2 train.1.scale

$./svm-predict test.1.scale train.1.scale.model test.1.predict

→ Accuracy = 96.875%

9

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

– Using an automatic script

$python easy.py train.1 test.1

Scaling training data...

Cross validation...

Best c=2.0, g=2.0

Training...

Scaling testing data...

Testing...

Accuracy = 96.875% (3875/4000) (classification)

• Bioinformatics

– Original sets with default parameters

$./svm-train -v 5 train.2

→ Cross Validation Accuracy = 56.5217%

– Scaled sets with default parameters

$./svm-scale -l 1 -u -1 train.2 > train.2.scale

$./svm-train -v 5 train.2.scale

→ Cross Validation Accuracy = 78.5166%

– Scaled sets with parameter selection

$python grid.py train.2.scale

· · ·
2.0 0.5 85.1662

→ Cross Validation Accuracy = 85.1662%

(Best C=2.0, γ=0.5 with five fold cross-validation rate=85.1662%)

– Using an automatic script

$python easy.py train.2

Scaling training data...

Cross validation...

Best c=2.0, g=0.5

Training...

• Vehicle

10

– Original sets with default parameters

$./svm-train train.3

$./svm-predict test.3 train.3.model test.3.predict

→ Accuracy = 2.43902%

– Scaled sets with default parameters

$./svm-scale -l 1 -u -1 -s range3 train.3 > train.3.scale

$./svm-scale -r range3 test.3 > test.3.scale

$./svm-train train.3.scale

$./svm-predict test.3.scale train.3.scale.model test.3.predict

→ Accuracy = 12.1951%

– Scaled sets with parameter selection

$python grid.py train.3.scale

· · ·
128.0 0.125 84.8753

(Best C=128.0, γ=0.125 with five-fold cross-validation rate=84.8753%)

$./svm-train -c 128 -g 0.125 train.3.scale

$./svm-predict test.3.scale train.3.scale.model test.3.predict

→ Accuracy = 87.8049%

– Using an automatic script

$python easy.py train.3 test.3

Scaling training data...

Cross validation...

Best c=128.0, g=0.125

Training...

Scaling testing data...

Testing...

Accuracy = 87.8049% (36/41) (classification)

References

Boser, B., I. Guyon, and V. Vapnik (1992). A training algorithm for optimal mar-

gin classifiers. In Proceedings of the Fifth Annual Workshop on Computational

Learning Theory.

11

Chang, C.-C. and C.-J. Lin (2001). LIBSVM: a library for support vector machines.

Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Cortes, C. and V. Vapnik (1995). Support-vector network. Machine Learning 20,

273–297.

Gardy, J. L., C. Spencer, K. Wang, M. Ester, G. E. Tusnady, I. Simon, S. Hua,

K. deFays, C. Lambert, K. Nakai, and F. S. Brinkman (2003). PSORT-B: im-

proving protein subcellular localization prediction for gram-negative bacteria.

Nucleic Acids Research 31 (13), 3613–3617.

Keerthi, S. S. and C.-J. Lin (2003). Asymptotic behaviors of support vector ma-

chines with Gaussian kernel. Neural Computation 15 (7), 1667–1689.

Lin, H.-T. and C.-J. Lin (2003). A study on sigmoid kernels for SVM and the train-

ing of non-PSD kernels by SMO-type methods. Technical report, Department

of Computer Science and Information Engineering, National Taiwan University.

Available at http://www.csie.ntu.edu.tw/~cjlin/papers/tanh.pdf.

Michie, D., D. J. Spiegelhalter, and C. C. Taylor (1994). Machine Learning, Neu-

ral and Statistical Classification. Englewood Cliffs, N.J.: Prentice Hall. Data

available at http://www.ncc.up.pt/liacc/ML/statlog/datasets.html.

Sarle, W. S. (1997). Neural Network FAQ. Periodic posting to the Usenet news-

group comp.ai.neural-nets.

Vapnik, V. (1995). The Nature of Statistical Learning Theory. New York, NY:

Springer-Verlag.

12

	Introduction
	Real-World Examples
	Proposed Procedure

	Data Preprocessing
	Categorical Feature
	Scaling

	Model Selection
	RBF Kernel
	Cross-validation and Grid-search

	Discussion
	Examples of the Proposed Procedure

