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A support vector machine classifies data as
+1 or -1

• A decision boundary with 
maximum margin looks 
like it should generalize 
well

Support Vector Machines
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• Minimize True Risk

• Miminize Guaranteed Risk instead

• VC dimension h = # of training points that 
can be shattered

– eg. h=3 for 2-D linear classifier

• To minimize J, minimize h
• To minimize h, maximize margin M

• Structural Risk Minimization: minimize 
Remp while maximizing margin

• A decision boundary with 
maximum margin looks 
like it should generalize 
well

Support Vector Machines Support Vector Machines

?

Support Vector Machines
• Maximize margin subject to classifying all points correctly
• .

• To classify:
The support vector machine
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Support Vector Machines

• Support Vectors: 

Support Vector Machines

• Dual Problem
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Support Vector Machines

• Dual Problem

• Nonseparable?

Support Vector Machines

• Dual Problem

• Nonseparable?

• Nonlinear?
Cover’s theorem on the separability of patterns: A pattern classification problem cast in 
a high-dimensional space is more likely to be linearly separable
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%To train..

for i=1:N

for j=1:N

H(i,j)=Y(i)*Y(j)*svm_kernel(ker,X(i,:),X(j,:));

end

end

alpha=qp(H,f,A,b,vlb,vub);

%X=QP(H,f,A,b) solves the quadratic programming problem:

%             min 0.5*x'Hx + f'x subject to:  Ax <= b

%              x

%X=QP(H,f,A,b,VLB,VUB) defines a set of lower and upper bounds on the 

%design variables, X, so the soln is always in the range VLB <= X <= VUB.

SVM Matlab Implementation

Another parameter
in the qp program
sets this constraint
to an equality

%To classify..

for i=1:M

for j=1:N

H(i,j)=Ytrn(j)*svm_kernel(ker,Xtst(i,:),Xtrn(j,:));

end

end

Ytst=sign(H*alpha+b0);

SVM Matlab Implementation

The bias term is 
found from the KKT 
conditions
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Support Vector Machines

• Summary
– Use Matlab’s qp( ) to perform optimization on 

training points and get parameters of 
hyperplane

– Use hyperplane to classify test points

Feature Selection for SVMs
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Here's some data

60 data points

Row 20 is a 11-D data point

Col 3 is the 3rd dimension

The data is classified as
+1 (black) or -1 (white)

Dimension 6 is pretty useless in classification
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We want to find the relative 
discriminative ability of each 

dimension, and throw away the 
least discriminative dimensions

Dimensionality Reduction

• Improve generalization error
• Need less training data (avoid curse of 

dimensionality)
• Speed, computational cost
• (qualitative) Find out which features matter
• For SVMs, irrelevant features hurt 

performance
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Formal problem

• Weight each feature by 0 or 1

• Which set of weights minimizes (average 
expected) loss?
– Specifically, if we want to keep m features out 

of n, which set of weights minimizes loss 
subject to the constraint that weight vector 
sums to m?

• We don't know P(x,y)

weights

input

loss functional
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Formal solution
(approximations)

• Weight each feature by 0 or 1
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• Weight each feature by 0 or 1
• Weight each feature by a real valued vector
• First approach suggests combinatorial 

search over all weights (intractable for large 
dimensionality)

• Second approach brings you closer to a 
gradient descent solution

~=

• There’s a weight vector that minimizes 
(average expected) loss

• There’s a weight vector that minimizes 
expected leave-one-out error probability for 
weighted inputs
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• There’s a weight vector that minimizes 
(average expected) loss

• There’s a weight vector that minimizes 
expected leave-one-out error probability for 
weighted inputs

• Let's pretend these are the same ("wrapper 
method")

~=

• Theorem

• Data in sphere of size R, separable with 
margin M (1/M2=W2)
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• Theorem

• Data in sphere of size R, separable with 
margin M (1/M2=W2)

• To minimize error probability, let’s 
minimize R2W2 instead

~=

• Someone gives us a contour map, telling us 
which direction to walk in weight vector 
space to get highest increase in R2W2

• We take a small step in the opposite 
direction

• Check map again
• Repeat above steps (until we stop moving)

This is gradient descent
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This is the contour map

another
optimization

problem

SVM training

Feature Selection for SVMs

• Choose kernel, find gradient, proceed with above 
algorithm to find weights

• Throw away lowest weighted dimension(s) after 
gradient descent finds minimum, repeat until you 
have specified number of dimensions left
– E.g. You have 123 dimensions (41 average X Y Z 

coordinates of person’s joints) for walking/running 
classification. You want to reduce to 6 (maybe these 
will be the X Y Z coordinates of both ankles)

– Throw away worst 2 dimensions after each run of 
algorithm until you have desired number left
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Feature Selection for SVMs

– Throw away worst q dimensions after each run of 
algorithm until you have desired number left

– As we increase q, fewer calls to qp algorithm and faster 
performance

For this data
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We get this weighting

Dimension 6 is the first to go

For this data

+1
data

points

-1
data

points

dimension  1

dimension 
112*92=

10304

(images unrolled into one long vector)
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We get this weighting

hairline is discriminatory

So is head 
position

And…

• Automatic dimensionality reduction? (user 
doesn’t have to specify number of 
dimensions)
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