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Research Problems in
-=--Video Indexing and Analysis

Object detection and recognition
(e.qg., face, text, vehicles)

Structure parsing
(e.g., breaking videos into shots, scenes, and stories)

Event detection
(e.g., sports events, human activities, meetings,
medical)

Search and retrieval
(e.g., interactive search with feedback)

Synthesis
(e.g., personal summaries, highlight generation)
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Object recognition and
“/=-structure parsing
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=~ Statistical Methods

= Emerging mature tools and promising
performance

= INncreasing computing resources
= More challenging, interesting problems

= Increasing benchmark data
(e.g., NIST TREC Video)

EE6882-Chang 4 dvmm



'=--Why this course?

= Learn insights of different tools and
models

s Understand match between tools and
problems in this field

= Get some experience on tools publicly
available and from DVMM Lab

= Related hard-core courses, see web site
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=--Papers to Study

= Problems
= Image/video classification
= Interactive image retrieval
= Video structure parsing
= Multimedia data mining

= Techniques
= Bayesian, factor graph, graphical model
= HMM and variations
= SVM
= Hierarchical Mixture
= others
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'=--SPR System Architecture
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Figure 1: Model for statistieal pattern recognition.

(From Jain, Duin, and Mao, SPR Review, 99)

EE6882-Chang . dvmm



Feature Representation
=~ -Extraction/Selection

(Jain et al 99)
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.-Issues to Consider

= [here are no universally optimal classifiers!

= Statistical structures of problems and models
(dependence, features, scale, etc)

Generation vs. discrimination

Feature representation and selection
Amount of training/test data
Performance estimation and comparison
Online vs. offline

= User supervision/feedback
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Curse of Dimensionality and
=+ -Overtraining
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Rule of thumb -- # of training patterns per class / # of features > 10
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= A few examples from paper list
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-Bayesian Image Classification

(Valaiya et al)

Othar Sunsat Mourtain, Forest
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.-Bayesian Image Classification

Feature independence |,

fx@|w) = fr@ o) =][ o@D ).

MAP Classification

& =§(z) = argmax {p(w | y)} = argmax {fy(y | w) p(w)}.
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’»--Concept (In)Dependence

(Naphade et al)
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«--Boosting (Tiew and Vioka)

Extract > 45K selective
efficient features by

multi-scale filtering input image | B

Classifier combination and sample re-weighting
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’=--Boosting retrieval interface

a2l User selected examples

~= — 20 retrieval results

Real-time evaluation of
20 features over millions of images

Negative images in the training
set close to decision boundary

' — Images in the testing set
close to the decision boundary
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7=--Maximum Entropy Fusing

= Objective: a boundary at time 7,? (Hsu and Chang)
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’=--Object-Word Correspondence

(Duygulu et al)
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Unsupervised Video Structure Discovery:

.=+ -Hierarchical Hidden Markov Model e et al)

= Learning Multi-Level Markovian Temporal Dependence

= High-level states represent distinct events
= Presence of each event produces observations modeled by low-level HMMs
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‘u--Course Format

= Reading seminar

= 2 papers reviewed and demonstrated each week
(class size will be limited)

= Each student assigned one paper
- assignments determined 2-3 weeks in advance

= Everyone writes comments before and after class
on personal web sites

= Term project at the end of course (12/10/03)
-- target at conference paper submission
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's--Paper review and demo

= Each paper allocated 60 mins total

= Discuss paper and plan demos with me
and TA before class

= Prepare copies of slide handouts before
class, or make them available online

= Computer demo of the reviewed
method using toy data set
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'=--Paper Review and Demo (2)

= Review
= Background review and examples
= Problem addressed and main ideas
= Insights about why it works
= Limitation, generality, and repeatability
= Alternatives and comparisons

= Demo
= Software and data available and repeatable?

= Reconstruct the method and try on toy data set?
(from some publicly available generic toolkit)

= Analysis of results (not just accuracy numbers, offer
explanations and verifiable theories about observations)

= Demo code archived on class site and shared with others
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.-Required background

= Familiarity with
= Image processing or computer vision
» Statistical pattern recognition or machine learning
= Computer programming (e.g., Matlab)

= Background assessment given in the first
class

= Vvideo representation, features, and statistical
concepts
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'=--Grading and Credit

= 25% paper review,
25% demo,
25% class participation, and
25% term project
= Auditing permitted only
« for non-students
= With active, continuous class participation
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'w--Class Resources

= How to read/present/write a research
paper? (see links on web site)

s Software links on web site to
HMM, Netlab, SVM, and Bayesian
Network

= Image/video data and features from
DVMM lab
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.-Schedule

= Available on the web site

= Next 2 lectures (need volunteers)

=« Image classification (9/10, work with me
and TA)

= Bayesian Methods (Vailaya, Jain, and Zhang)
= Factor Graph (Naphade and Huang)

= Boosting (9/24)
= Freund & Schapire, Tieu and Viola
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'w--Goals

= Everyone learns insights and experience
in this emerging field

= Accumulate tools and reports

9
Construct a self-contained reading and

experimentation learning set for
statistical video indexing/analysis
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