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1. INTRODUCTION

1.1 Motivation

Data analysis underlies many comput-
ing applications, either in a design
phase or as part of their on-line opera-
tions. Data analysis procedures can be
dichotomized as either exploratory or
confirmatory, based on the availability
of appropriate models for the data
source, but a key element in both types
of procedures (whether for hypothesis
formation or decision-making) is the
grouping, or classification of measure-
ments based on either (i) goodness-of-fit
to a postulated model, or (ii) natural
groupings (clustering) revealed through
analysis. Cluster analysis is the organi-
zation of a collection of patterns (usual-
ly represented as a vector of measure-
ments, or a point in a multidimensional
space) into clusters based on similarity.

Intuitively, patterns within a valid clus-
ter are more similar to each other than
they are to a pattern belonging to a
different cluster. An example of cluster-
ing is depicted in Figure 1. The input
patterns are shown in Figure 1(a), and
the desired clusters are shown in Figure
1(b). Here, points belonging to the same
cluster are given the same label. The
variety of techniques for representing
data, measuring proximity (similarity)
between data elements, and grouping
data elements has produced a rich and
often confusing assortment of clustering
methods.

It is important to understand the dif-
ference between clustering (unsuper-
vised classification) and discriminant
analysis (supervised classification). In
supervised classification, we are pro-
vided with a collection of labeled (pre-
classified) patterns; the problem is to
label a newly encountered, yet unla-
beled, pattern. Typically, the given la-
beled (training) patterns are used to
learn the descriptions of classes which
in turn are used to label a new pattern.
In the case of clustering, the problem is
to group a given collection of unlabeled
patterns into meaningful clusters. In a
sense, labels are associated with clus-
ters also, but these category labels are
data driven; that is, they are obtained
solely from the data.

Clustering is useful in several explor-
atory pattern-analysis, grouping, deci-
sion-making, and machine-learning sit-
uations, including data mining,
document retrieval, image segmenta-
tion, and pattern classification. How-
ever, in many such problems, there is
little prior information (e.g., statistical
models) available about the data, and
the decision-maker must make as few
assumptions about the data as possible.
It is under these restrictions that clus-
tering methodology is particularly ap-
propriate for the exploration of interre-
lationships among the data points to
make an assessment (perhaps prelimi-
nary) of their structure.

The term “clustering” is used in sev-
eral research communities to describe
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methods for grouping of unlabeled data.
These communities have different ter-
minologies and assumptions for the
components of the clustering process
and the contexts in which clustering is
used. Thus, we face a dilemma regard-
ing the scope of this survey. The produc-
tion of a truly comprehensive survey
would be a monumental task given the
sheer mass of literature in this area.
The accessibility of the survey might
also be questionable given the need to
reconcile very different vocabularies
and assumptions regarding clustering
in the various communities.

The goal of this paper is to survey the
core concepts and techniques in the
large subset of cluster analysis with its
roots in statistics and decision theory.
Where appropriate, references will be
made to key concepts and techniques
arising from clustering methodology in
the machine-learning and other commu-
nities.

The audience for this paper includes
practitioners in the pattern recognition
and image analysis communities (who
should view it as a summarization of
current practice), practitioners in the
machine-learning communities (who
should view it as a snapshot of a closely
related field with a rich history of well-
understood techniques), and the
broader audience of scientific profes-

sionals (who should view it as an acces-
sible introduction to a mature field that
is making important contributions to
computing application areas).

1.2 Components of a Clustering Task

Typical pattern clustering activity in-
volves the following steps [Jain and
Dubes 1988]:

(1) pattern representation (optionally
including feature extraction and/or
selection),

(2) definition of a pattern proximity
measure appropriate to the data do-
main,

(3) clustering or grouping,

(4) data abstraction (if needed), and

(5) assessment of output (if needed).

Figure 2 depicts a typical sequencing of
the first three of these steps, including
a feedback path where the grouping
process output could affect subsequent
feature extraction and similarity com-
putations.

Pattern representation refers to the
number of classes, the number of avail-
able patterns, and the number, type,
and scale of the features available to the
clustering algorithm. Some of this infor-
mation may not be controllable by the
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Figure 1. Data clustering.
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practitioner. Feature selection is the
process of identifying the most effective
subset of the original features to use in
clustering. Feature extraction is the use
of one or more transformations of the
input features to produce new salient
features. Either or both of these tech-
niques can be used to obtain an appro-
priate set of features to use in cluster-
ing.

Pattern proximity is usually measured
by a distance function defined on pairs
of patterns. A variety of distance mea-
sures are in use in the various commu-
nities [Anderberg 1973; Jain and Dubes
1988; Diday and Simon 1976]. A simple
distance measure like Euclidean dis-
tance can often be used to reflect dis-
similarity between two patterns,
whereas other similarity measures can
be used to characterize the conceptual
similarity between patterns [Michalski
and Stepp 1983]. Distance measures are
discussed in Section 4.

The grouping step can be performed
in a number of ways. The output clus-
tering (or clusterings) can be hard (a
partition of the data into groups) or
fuzzy (where each pattern has a vari-
able degree of membership in each of
the output clusters). Hierarchical clus-
tering algorithms produce a nested se-
ries of partitions based on a criterion for
merging or splitting clusters based on
similarity. Partitional clustering algo-
rithms identify the partition that opti-
mizes (usually locally) a clustering cri-
terion. Additional techniques for the
grouping operation include probabilistic
[Brailovski 1991] and graph-theoretic
[Zahn 1971] clustering methods. The
variety of techniques for cluster forma-
tion is described in Section 5.

Data abstraction is the process of ex-
tracting a simple and compact represen-
tation of a data set. Here, simplicity is
either from the perspective of automatic
analysis (so that a machine can perform
further processing efficiently) or it is
human-oriented (so that the representa-
tion obtained is easy to comprehend and
intuitively appealing). In the clustering
context, a typical data abstraction is a
compact description of each cluster,
usually in terms of cluster prototypes or
representative patterns such as the cen-
troid [Diday and Simon 1976].

How is the output of a clustering algo-
rithm evaluated? What characterizes a
‘good’ clustering result and a ‘poor’ one?
All clustering algorithms will, when
presented with data, produce clusters —
regardless of whether the data contain
clusters or not. If the data does contain
clusters, some clustering algorithms
may obtain ‘better’ clusters than others.
The assessment of a clustering proce-
dure’s output, then, has several facets.
One is actually an assessment of the
data domain rather than the clustering
algorithm itself— data which do not
contain clusters should not be processed
by a clustering algorithm. The study of
cluster tendency, wherein the input data
are examined to see if there is any merit
to a cluster analysis prior to one being
performed, is a relatively inactive re-
search area, and will not be considered
further in this survey. The interested
reader is referred to Dubes [1987] and
Cheng [1995] for information.

Cluster validity analysis, by contrast,
is the assessment of a clustering proce-
dure’s output. Often this analysis uses a
specific criterion of optimality; however,
these criteria are usually arrived at

Feature
Selection/
Extraction

Pattern
Grouping

ClustersInterpattern
Similarity

Representations

Patterns

feedback loop

Figure 2. Stages in clustering.
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subjectively. Hence, little in the way of
‘gold standards’ exist in clustering ex-
cept in well-prescribed subdomains. Va-
lidity assessments are objective [Dubes
1993] and are performed to determine
whether the output is meaningful. A
clustering structure is valid if it cannot
reasonably have occurred by chance or
as an artifact of a clustering algorithm.
When statistical approaches to cluster-
ing are used, validation is accomplished
by carefully applying statistical meth-
ods and testing hypotheses. There are
three types of validation studies. An
external assessment of validity com-
pares the recovered structure to an a
priori structure. An internal examina-
tion of validity tries to determine if the
structure is intrinsically appropriate for
the data. A relative test compares two
structures and measures their relative
merit. Indices used for this comparison
are discussed in detail in Jain and
Dubes [1988] and Dubes [1993], and are
not discussed further in this paper.

1.3 The User’s Dilemma and the Role of
Expertise

The availability of such a vast collection
of clustering algorithms in the litera-
ture can easily confound a user attempt-
ing to select an algorithm suitable for
the problem at hand. In Dubes and Jain
[1976], a set of admissibility criteria
defined by Fisher and Van Ness [1971]
are used to compare clustering algo-
rithms. These admissibility criteria are
based on: (1) the manner in which clus-
ters are formed, (2) the structure of the
data, and (3) sensitivity of the cluster-
ing technique to changes that do not
affect the structure of the data. How-
ever, there is no critical analysis of clus-
tering algorithms dealing with the im-
portant questions such as

—How should the data be normalized?

—Which similarity measure is appropri-
ate to use in a given situation?

—How should domain knowledge be uti-
lized in a particular clustering prob-
lem?

—How can a vary large data set (say, a
million patterns) be clustered effi-
ciently?

These issues have motivated this sur-
vey, and its aim is to provide a perspec-
tive on the state of the art in clustering
methodology and algorithms. With such
a perspective, an informed practitioner
should be able to confidently assess the
tradeoffs of different techniques, and
ultimately make a competent decision
on a technique or suite of techniques to
employ in a particular application.

There is no clustering technique that
is universally applicable in uncovering
the variety of structures present in mul-
tidimensional data sets. For example,
consider the two-dimensional data set
shown in Figure 1(a). Not all clustering
techniques can uncover all the clusters
present here with equal facility, because
clustering algorithms often contain im-
plicit assumptions about cluster shape
or multiple-cluster configurations based
on the similarity measures and group-
ing criteria used.

Humans perform competitively with
automatic clustering procedures in two
dimensions, but most real problems in-
volve clustering in higher dimensions. It
is difficult for humans to obtain an intu-
itive interpretation of data embedded in
a high-dimensional space. In addition,
data hardly follow the “ideal” structures
(e.g., hyperspherical, linear) shown in
Figure 1. This explains the large num-
ber of clustering algorithms which con-
tinue to appear in the literature; each
new clustering algorithm performs
slightly better than the existing ones on
a specific distribution of patterns.

It is essential for the user of a cluster-
ing algorithm to not only have a thor-
ough understanding of the particular
technique being utilized, but also to
know the details of the data gathering
process and to have some domain exper-
tise; the more information the user has
about the data at hand, the more likely
the user would be able to succeed in
assessing its true class structure [Jain
and Dubes 1988]. This domain informa-
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tion can also be used to improve the
quality of feature extraction, similarity
computation, grouping, and cluster rep-
resentation [Murty and Jain 1995].

Appropriate constraints on the data
source can be incorporated into a clus-
tering procedure. One example of this is
mixture resolving [Titterington et al.
1985], wherein it is assumed that the
data are drawn from a mixture of an
unknown number of densities (often as-
sumed to be multivariate Gaussian).
The clustering problem here is to iden-
tify the number of mixture components
and the parameters of each component.
The concept of density clustering and a
methodology for decomposition of fea-
ture spaces [Bajcsy 1997] have also
been incorporated into traditional clus-
tering methodology, yielding a tech-
nique for extracting overlapping clus-
ters.

1.4 History

Even though there is an increasing in-
terest in the use of clustering methods
in pattern recognition [Anderberg
1973], image processing [Jain and
Flynn 1996] and information retrieval
[Rasmussen 1992; Salton 1991], cluster-
ing has a rich history in other disci-
plines [Jain and Dubes 1988] such as
biology, psychiatry, psychology, archae-
ology, geology, geography, and market-
ing. Other terms more or less synony-
mous with clustering include
unsupervised learning [Jain and Dubes
1988], numerical taxonomy [Sneath and
Sokal 1973], vector quantization [Oehler
and Gray 1995], and learning by obser-
vation [Michalski and Stepp 1983]. The
field of spatial analysis of point pat-
terns [Ripley 1988] is also related to
cluster analysis. The importance and
interdisciplinary nature of clustering is
evident through its vast literature.

A number of books on clustering have
been published [Jain and Dubes 1988;
Anderberg 1973; Hartigan 1975; Spath
1980; Duran and Odell 1974; Everitt
1993; Backer 1995], in addition to some
useful and influential review papers. A

survey of the state of the art in cluster-
ing circa 1978 was reported in Dubes
and Jain [1980]. A comparison of vari-
ous clustering algorithms for construct-
ing the minimal spanning tree and the
short spanning path was given in Lee
[1981]. Cluster analysis was also sur-
veyed in Jain et al. [1986]. A review of
image segmentation by clustering was
reported in Jain and Flynn [1996]. Com-
parisons of various combinatorial opti-
mization schemes, based on experi-
ments, have been reported in Mishra
and Raghavan [1994] and Al-Sultan and
Khan [1996].

1.5 Outline

This paper is organized as follows. Sec-
tion 2 presents definitions of terms to be
used throughout the paper. Section 3
summarizes pattern representation,
feature extraction, and feature selec-
tion. Various approaches to the compu-
tation of proximity between patterns
are discussed in Section 4. Section 5
presents a taxonomy of clustering ap-
proaches, describes the major tech-
niques in use, and discusses emerging
techniques for clustering incorporating
non-numeric constraints and the clus-
tering of large sets of patterns. Section
6 discusses applications of clustering
methods to image analysis and data
mining problems. Finally, Section 7 pre-
sents some concluding remarks.

2. DEFINITIONS AND NOTATION

The following terms and notation are
used throughout this paper.

—A pattern (or feature vector, observa-
tion, or datum) x is a single data item
used by the clustering algorithm. It
typically consists of a vector of d mea-
surements: x 5 ~x1, . . . xd!.

—The individual scalar components xi

of a pattern x are called features (or
attributes).
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—d is the dimensionality of the pattern
or of the pattern space.

—A pattern set is denoted - 5
$x1, . . . xn%. The ith pattern in - is
denoted xi 5 ~xi,1, . . . xi,d!. In many
cases a pattern set to be clustered is
viewed as an n 3 d pattern matrix.

—A class, in the abstract, refers to a
state of nature that governs the pat-
tern generation process in some cases.
More concretely, a class can be viewed
as a source of patterns whose distri-
bution in feature space is governed by
a probability density specific to the
class. Clustering techniques attempt
to group patterns so that the classes
thereby obtained reflect the different
pattern generation processes repre-
sented in the pattern set.

—Hard clustering techniques assign a
class label li to each patterns xi, iden-
tifying its class. The set of all labels
for a pattern set - is + 5
$l1, . . . ln%, with li [ $1, · · ·, k%,
where k is the number of clusters.

—Fuzzy clustering procedures assign to
each input pattern xi a fractional de-
gree of membership fij in each output
cluster j.

—A distance measure (a specialization
of a proximity measure) is a metric
(or quasi-metric) on the feature space
used to quantify the similarity of pat-
terns.

3. PATTERN REPRESENTATION, FEATURE
SELECTION AND EXTRACTION

There are no theoretical guidelines that
suggest the appropriate patterns and
features to use in a specific situation.
Indeed, the pattern generation process
is often not directly controllable; the
user’s role in the pattern representation
process is to gather facts and conjec-
tures about the data, optionally perform
feature selection and extraction, and de-
sign the subsequent elements of the

clustering system. Because of the diffi-
culties surrounding pattern representa-
tion, it is conveniently assumed that the
pattern representation is available prior
to clustering. Nonetheless, a careful in-
vestigation of the available features and
any available transformations (even
simple ones) can yield significantly im-
proved clustering results. A good pat-
tern representation can often yield a
simple and easily understood clustering;
a poor pattern representation may yield
a complex clustering whose true struc-
ture is difficult or impossible to discern.
Figure 3 shows a simple example. The
points in this 2D feature space are ar-
ranged in a curvilinear cluster of ap-
proximately constant distance from the
origin. If one chooses Cartesian coordi-
nates to represent the patterns, many
clustering algorithms would be likely to
fragment the cluster into two or more
clusters, since it is not compact. If, how-
ever, one uses a polar coordinate repre-
sentation for the clusters, the radius
coordinate exhibits tight clustering and
a one-cluster solution is likely to be
easily obtained.

A pattern can measure either a phys-
ical object (e.g., a chair) or an abstract
notion (e.g., a style of writing). As noted
above, patterns are represented conven-
tionally as multidimensional vectors,
where each dimension is a single fea-
ture [Duda and Hart 1973]. These fea-
tures can be either quantitative or qual-
itative. For example, if weight and color
are the two features used, then
~20, black! is the representation of a
black object with 20 units of weight.
The features can be subdivided into the
following types [Gowda and Diday
1992]:

(1) Quantitative features: e.g.
(a) continuous values (e.g., weight);
(b) discrete values (e.g., the number

of computers);
(c) interval values (e.g., the dura-

tion of an event).

(2) Qualitative features:
(a) nominal or unordered (e.g., color);
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(b) ordinal (e.g., military rank or
qualitative evaluations of tem-
perature (“cool” or “hot”) or
sound intensity (“quiet” or
“loud”)).

Quantitative features can be measured
on a ratio scale (with a meaningful ref-
erence value, such as temperature), or
on nominal or ordinal scales.

One can also use structured features
[Michalski and Stepp 1983] which are
represented as trees, where the parent
node represents a generalization of its
child nodes. For example, a parent node
“vehicle” may be a generalization of
children labeled “cars,” “buses,”
“trucks,” and “motorcycles.” Further,
the node “cars” could be a generaliza-
tion of cars of the type “Toyota,” “Ford,”
“Benz,” etc. A generalized representa-
tion of patterns, called symbolic objects
was proposed in Diday [1988]. Symbolic
objects are defined by a logical conjunc-
tion of events. These events link values
and features in which the features can
take one or more values and all the
objects need not be defined on the same
set of features.

It is often valuable to isolate only the
most descriptive and discriminatory fea-
tures in the input set, and utilize those
features exclusively in subsequent anal-
ysis. Feature selection techniques iden-

tify a subset of the existing features for
subsequent use, while feature extrac-
tion techniques compute new features
from the original set. In either case, the
goal is to improve classification perfor-
mance and/or computational efficiency.
Feature selection is a well-explored
topic in statistical pattern recognition
[Duda and Hart 1973]; however, in a
clustering context (i.e., lacking class la-
bels for patterns), the feature selection
process is of necessity ad hoc, and might
involve a trial-and-error process where
various subsets of features are selected,
the resulting patterns clustered, and
the output evaluated using a validity
index. In contrast, some of the popular
feature extraction processes (e.g., prin-
cipal components analysis [Fukunaga
1990]) do not depend on labeled data
and can be used directly. Reduction of
the number of features has an addi-
tional benefit, namely the ability to pro-
duce output that can be visually in-
spected by a human.

4. SIMILARITY MEASURES

Since similarity is fundamental to the
definition of a cluster, a measure of the
similarity between two patterns drawn
from the same feature space is essential
to most clustering procedures. Because
of the variety of feature types and
scales, the distance measure (or mea-
sures) must be chosen carefully. It is
most common to calculate the dissimi-
larity between two patterns using a dis-
tance measure defined on the feature
space. We will focus on the well-known
distance measures used for patterns
whose features are all continuous.

The most popular metric for continu-
ous features is the Euclidean distance

d2~xi, xj! 5 ~ O
k51

d

~xi, k 2 xj, k!
2!1/ 2

5 ixi 2 xji2,

which is a special case (p52) of the
Minkowski metric
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Figure 3. A curvilinear cluster whose points
are approximately equidistant from the origin.
Different pattern representations (coordinate
systems) would cause clustering algorithms to
yield different results for this data (see text).
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dp~xi, xj! 5 ~ O
k51

d

?xi, k 2 xj, k?
p!1/p

5 ixi 2 xjip.

The Euclidean distance has an intuitive
appeal as it is commonly used to evalu-
ate the proximity of objects in two or
three-dimensional space. It works well
when a data set has “compact” or “iso-
lated” clusters [Mao and Jain 1996].
The drawback to direct use of the
Minkowski metrics is the tendency of
the largest-scaled feature to dominate
the others. Solutions to this problem
include normalization of the continuous
features (to a common range or vari-
ance) or other weighting schemes. Lin-
ear correlation among features can also
distort distance measures; this distor-
tion can be alleviated by applying a
whitening transformation to the data or
by using the squared Mahalanobis dis-
tance

dM~xi, xj! 5 ~xi 2 xj!S
21~xi 2 xj!

T,

where the patterns xi and xj are as-
sumed to be row vectors, and S is the
sample covariance matrix of the pat-
terns or the known covariance matrix of
the pattern generation process; dM~ z , z!
assigns different weights to different
features based on their variances and
pairwise linear correlations. Here, it is
implicitly assumed that class condi-
tional densities are unimodal and char-
acterized by multidimensional spread,
i.e., that the densities are multivariate
Gaussian. The regularized Mahalanobis
distance was used in Mao and Jain
[1996] to extract hyperellipsoidal clus-
ters. Recently, several researchers
[Huttenlocher et al. 1993; Dubuisson
and Jain 1994] have used the Hausdorff
distance in a point set matching con-
text.

Some clustering algorithms work on a
matrix of proximity values instead of on
the original pattern set. It is useful in
such situations to precompute all the

n~n 2 1! / 2 pairwise distance values
for the n patterns and store them in a
(symmetric) matrix.

Computation of distances between
patterns with some or all features being
noncontinuous is problematic, since the
different types of features are not com-
parable and (as an extreme example)
the notion of proximity is effectively bi-
nary-valued for nominal-scaled fea-
tures. Nonetheless, practitioners (espe-
cially those in machine learning, where
mixed-type patterns are common) have
developed proximity measures for heter-
ogeneous type patterns. A recent exam-
ple is Wilson and Martinez [1997],
which proposes a combination of a mod-
ified Minkowski metric for continuous
features and a distance based on counts
(population) for nominal attributes. A
variety of other metrics have been re-
ported in Diday and Simon [1976] and
Ichino and Yaguchi [1994] for comput-
ing the similarity between patterns rep-
resented using quantitative as well as
qualitative features.

Patterns can also be represented us-
ing string or tree structures [Knuth
1973]. Strings are used in syntactic
clustering [Fu and Lu 1977]. Several
measures of similarity between strings
are described in Baeza-Yates [1992]. A
good summary of similarity measures
between trees is given by Zhang [1995].
A comparison of syntactic and statisti-
cal approaches for pattern recognition
using several criteria was presented in
Tanaka [1995] and the conclusion was
that syntactic methods are inferior in
every aspect. Therefore, we do not con-
sider syntactic methods further in this
paper.

There are some distance measures re-
ported in the literature [Gowda and
Krishna 1977; Jarvis and Patrick 1973]
that take into account the effect of sur-
rounding or neighboring points. These
surrounding points are called context in
Michalski and Stepp [1983]. The simi-
larity between two points xi and xj,
given this context, is given by
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s~xi, xj! 5 f~xi, xj, %!,

where % is the context (the set of sur-
rounding points). One metric defined
using context is the mutual neighbor
distance (MND), proposed in Gowda and
Krishna [1977], which is given by

MND~xi, xj! 5 NN~xi, xj! 1 NN~xj, xi!,

where NN~xi, xj! is the neighbor num-
ber of xj with respect to xi. Figures 4
and 5 give an example. In Figure 4, the
nearest neighbor of A is B, and B’s
nearest neighbor is A. So, NN~A, B! 5
NN~B, A! 5 1 and the MND between
A and B is 2. However, NN~B, C! 5 1
but NN~C, B! 5 2, and therefore
MND~B, C! 5 3. Figure 5 was ob-
tained from Figure 4 by adding three new
points D, E, and F. Now MND~B, C!
5 3 (as before), but MND~A, B! 5 5.
The MND between A and B has in-
creased by introducing additional
points, even though A and B have not
moved. The MND is not a metric (it does
not satisfy the triangle inequality
[Zhang 1995]). In spite of this, MND has
been successfully applied in several
clustering applications [Gowda and Di-
day 1992]. This observation supports
the viewpoint that the dissimilarity
does not need to be a metric.

Watanabe’s theorem of the ugly duck-
ling [Watanabe 1985] states:

“Insofar as we use a finite set of
predicates that are capable of dis-
tinguishing any two objects con-
sidered, the number of predicates
shared by any two such objects is
constant, independent of the
choice of objects.”

This implies that it is possible to
make any two arbitrary patterns
equally similar by encoding them with a
sufficiently large number of features. As
a consequence, any two arbitrary pat-
terns are equally similar, unless we use
some additional domain information.
For example, in the case of conceptual
clustering [Michalski and Stepp 1983],
the similarity between xi and xj is de-
fined as

s~xi, xj! 5 f~xi, xj, #, %!,

where # is a set of pre-defined concepts.
This notion is illustrated with the help
of Figure 6. Here, the Euclidean dis-
tance between points A and B is less
than that between B and C. However, B
and C can be viewed as “more similar”
than A and B because B and C belong to
the same concept (ellipse) and A belongs
to a different concept (rectangle). The
conceptual similarity measure is the
most general similarity measure. We

A

B

C

X

X

1

2

Figure 4. A and B are more similar than A
and C.

A

B

C

X

X

1

2

D
F E

Figure 5. After a change in context, B and C
are more similar than B and A.
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discuss several pragmatic issues associ-
ated with its use in Section 5.

5. CLUSTERING TECHNIQUES

Different approaches to clustering data
can be described with the help of the
hierarchy shown in Figure 7 (other tax-
onometric representations of clustering
methodology are possible; ours is based
on the discussion in Jain and Dubes
[1988]). At the top level, there is a dis-
tinction between hierarchical and parti-
tional approaches (hierarchical methods
produce a nested series of partitions,
while partitional methods produce only
one).

The taxonomy shown in Figure 7
must be supplemented by a discussion
of cross-cutting issues that may (in
principle) affect all of the different ap-
proaches regardless of their placement
in the taxonomy.

—Agglomerative vs. divisive: This as-
pect relates to algorithmic structure
and operation. An agglomerative ap-
proach begins with each pattern in a
distinct (singleton) cluster, and suc-
cessively merges clusters together un-
til a stopping criterion is satisfied. A
divisive method begins with all pat-
terns in a single cluster and performs
splitting until a stopping criterion is
met.

—Monothetic vs. polythetic: This aspect
relates to the sequential or simulta-
neous use of features in the clustering
process. Most algorithms are polythe-
tic; that is, all features enter into the
computation of distances between
patterns, and decisions are based on
those distances. A simple monothetic
algorithm reported in Anderberg
[1973] considers features sequentially
to divide the given collection of pat-
terns. This is illustrated in Figure 8.
Here, the collection is divided into
two groups using feature x1; the verti-
cal broken line V is the separating
line. Each of these clusters is further
divided independently using feature
x2, as depicted by the broken lines H1

and H2. The major problem with this
algorithm is that it generates 2d clus-
ters where d is the dimensionality of
the patterns. For large values of d
(d . 100 is typical in information re-
trieval applications [Salton 1991]),
the number of clusters generated by
this algorithm is so large that the
data set is divided into uninterest-
ingly small and fragmented clusters.

—Hard vs. fuzzy: A hard clustering al-
gorithm allocates each pattern to a
single cluster during its operation and
in its output. A fuzzy clustering
method assigns degrees of member-
ship in several clusters to each input
pattern. A fuzzy clustering can be
converted to a hard clustering by as-
signing each pattern to the cluster
with the largest measure of member-
ship.

—Deterministic vs. stochastic: This is-
sue is most relevant to partitional
approaches designed to optimize a
squared error function. This optimiza-
tion can be accomplished using tradi-
tional techniques or through a ran-
dom search of the state space
consisting of all possible labelings.

—Incremental vs. non-incremental:
This issue arises when the pattern set
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Figure 6. Conceptual similarity be-
tween points .
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to be clustered is large, and con-
straints on execution time or memory
space affect the architecture of the
algorithm. The early history of clus-
tering methodology does not contain
many examples of clustering algo-
rithms designed to work with large
data sets, but the advent of data min-
ing has fostered the development of
clustering algorithms that minimize
the number of scans through the pat-
tern set, reduce the number of pat-
terns examined during execution, or
reduce the size of data structures
used in the algorithm’s operations.

A cogent observation in Jain and
Dubes [1988] is that the specification of
an algorithm for clustering usually
leaves considerable flexibilty in imple-
mentation.

5.1 Hierarchical Clustering Algorithms

The operation of a hierarchical cluster-
ing algorithm is illustrated using the
two-dimensional data set in Figure 9.
This figure depicts seven patterns la-
beled A, B, C, D, E, F, and G in three
clusters. A hierarchical algorithm yields
a dendrogram representing the nested
grouping of patterns and similarity lev-
els at which groupings change. A den-
drogram corresponding to the seven

points in Figure 9 (obtained from the
single-link algorithm [Jain and Dubes
1988]) is shown in Figure 10. The den-
drogram can be broken at different lev-
els to yield different clusterings of the
data.

Most hierarchical clustering algo-
rithms are variants of the single-link
[Sneath and Sokal 1973], complete-link
[King 1967], and minimum-variance
[Ward 1963; Murtagh 1984] algorithms.
Of these, the single-link and complete-
link algorithms are most popular. These
two algorithms differ in the way they
characterize the similarity between a
pair of clusters. In the single-link
method, the distance between two clus-
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Square
Error

Graph
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Resolving
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Figure 7. A taxonomy of clustering approaches.
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ters is the minimum of the distances
between all pairs of patterns drawn
from the two clusters (one pattern from
the first cluster, the other from the sec-
ond). In the complete-link algorithm,
the distance between two clusters is the
maximum of all pairwise distances be-

tween patterns in the two clusters. In
either case, two clusters are merged to
form a larger cluster based on minimum
distance criteria. The complete-link al-
gorithm produces tightly bound or com-
pact clusters [Baeza-Yates 1992]. The
single-link algorithm, by contrast, suf-
fers from a chaining effect [Nagy 1968].
It has a tendency to produce clusters
that are straggly or elongated. There
are two clusters in Figures 12 and 13
separated by a “bridge” of noisy pat-
terns. The single-link algorithm pro-
duces the clusters shown in Figure 12,
whereas the complete-link algorithm ob-
tains the clustering shown in Figure 13.
The clusters obtained by the complete-
link algorithm are more compact than
those obtained by the single-link algo-
rithm; the cluster labeled 1 obtained
using the single-link algorithm is elon-
gated because of the noisy patterns la-
beled “*”. The single-link algorithm is
more versatile than the complete-link
algorithm, otherwise. For example, the
single-link algorithm can extract the
concentric clusters shown in Figure 11,
but the complete-link algorithm cannot.
However, from a pragmatic viewpoint, it
has been observed that the complete-
link algorithm produces more useful hi-
erarchies in many applications than the
single-link algorithm [Jain and Dubes
1988].

Agglomerative Single-Link Clus-
tering Algorithm

(1) Place each pattern in its own clus-
ter. Construct a list of interpattern
distances for all distinct unordered
pairs of patterns, and sort this list
in ascending order.

(2) Step through the sorted list of dis-
tances, forming for each distinct dis-
similarity value dk a graph on the
patterns where pairs of patterns
closer than dk are connected by a
graph edge. If all the patterns are
members of a connected graph, stop.
Otherwise, repeat this step.
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Figure 9. Points falling in three clusters.
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Figure 10. The dendrogram obtained using
the single-link algorithm.
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Figure 11. Two concentric clusters.
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(3) The output of the algorithm is a
nested hierarchy of graphs which
can be cut at a desired dissimilarity
level forming a partition (clustering)
identified by simply connected com-
ponents in the corresponding graph.

Agglomerative Complete-Link Clus-
tering Algorithm

(1) Place each pattern in its own clus-
ter. Construct a list of interpattern
distances for all distinct unordered
pairs of patterns, and sort this list
in ascending order.

(2) Step through the sorted list of dis-
tances, forming for each distinct dis-
similarity value dk a graph on the
patterns where pairs of patterns
closer than dk are connected by a
graph edge. If all the patterns are
members of a completely connected
graph, stop.

(3) The output of the algorithm is a
nested hierarchy of graphs which
can be cut at a desired dissimilarity
level forming a partition (clustering)
identified by completely connected
components in the corresponding
graph.

Hierarchical algorithms are more ver-
satile than partitional algorithms. For
example, the single-link clustering algo-
rithm works well on data sets contain-
ing non-isotropic clusters including

well-separated, chain-like, and concen-
tric clusters, whereas a typical parti-
tional algorithm such as the k-means
algorithm works well only on data sets
having isotropic clusters [Nagy 1968].
On the other hand, the time and space
complexities [Day 1992] of the parti-
tional algorithms are typically lower
than those of the hierarchical algo-
rithms. It is possible to develop hybrid
algorithms [Murty and Krishna 1980]
that exploit the good features of both
categories.

Hierarchical Agglomerative Clus-
tering Algorithm

(1) Compute the proximity matrix con-
taining the distance between each
pair of patterns. Treat each pattern
as a cluster.

(2) Find the most similar pair of clus-
ters using the proximity matrix.
Merge these two clusters into one
cluster. Update the proximity ma-
trix to reflect this merge operation.

(3) If all patterns are in one cluster,
stop. Otherwise, go to step 2.

Based on the way the proximity matrix
is updated in step 2, a variety of ag-
glomerative algorithms can be designed.
Hierarchical divisive algorithms start
with a single cluster of all the given
objects and keep splitting the clusters
based on some criterion to obtain a par-
tition of singleton clusters.
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Figure 12. A single-link clustering of a pattern
set containing two classes (1 and 2) connected by
a chain of noisy patterns (*).

1 1

11
1

1

1 1
1

11

11 11

2

22

2
2

2

2
2

2 2

2

X

1
1

11

1

1 2

2

2

2

2

2
2

* * * * * * * * *

1

X2

Figure 13. A complete-link clustering of a pat-
tern set containing two classes (1 and 2) con-
nected by a chain of noisy patterns (*).
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5.2 Partitional Algorithms

A partitional clustering algorithm ob-
tains a single partition of the data in-
stead of a clustering structure, such as
the dendrogram produced by a hierar-
chical technique. Partitional methods
have advantages in applications involv-
ing large data sets for which the con-
struction of a dendrogram is computa-
tionally prohibitive. A problem
accompanying the use of a partitional
algorithm is the choice of the number of
desired output clusters. A seminal pa-
per [Dubes 1987] provides guidance on
this key design decision. The partitional
techniques usually produce clusters by
optimizing a criterion function defined
either locally (on a subset of the pat-
terns) or globally (defined over all of the
patterns). Combinatorial search of the
set of possible labelings for an optimum
value of a criterion is clearly computa-
tionally prohibitive. In practice, there-
fore, the algorithm is typically run mul-
tiple times with different starting
states, and the best configuration ob-
tained from all of the runs is used as the
output clustering.

5.2.1 Squared Error Algorithms.
The most intuitive and frequently used
criterion function in partitional cluster-
ing techniques is the squared error cri-
terion, which tends to work well with
isolated and compact clusters. The
squared error for a clustering + of a
pattern set - (containing K clusters) is

e2~-, +! 5 O
j51

K O
i51

nj

ixi
~ j! 2 cji2,

where xi
~ j! is the ith pattern belonging to

the jth cluster and cj is the centroid of
the jth cluster.

The k-means is the simplest and most
commonly used algorithm employing a
squared error criterion [McQueen 1967].
It starts with a random initial partition
and keeps reassigning the patterns to
clusters based on the similarity between
the pattern and the cluster centers until

a convergence criterion is met (e.g.,
there is no reassignment of any pattern
from one cluster to another, or the
squared error ceases to decrease signifi-
cantly after some number of iterations).
The k-means algorithm is popular be-
cause it is easy to implement, and its
time complexity is O~n!, where n is the
number of patterns. A major problem
with this algorithm is that it is sensitive
to the selection of the initial partition
and may converge to a local minimum of
the criterion function value if the initial
partition is not properly chosen. Figure
14 shows seven two-dimensional pat-
terns. If we start with patterns A, B,
and C as the initial means around
which the three clusters are built, then
we end up with the partition {{A}, {B,
C}, {D, E, F, G}} shown by ellipses. The
squared error criterion value is much
larger for this partition than for the
best partition {{A, B, C}, {D, E}, {F, G}}
shown by rectangles, which yields the
global minimum value of the squared
error criterion function for a clustering
containing three clusters. The correct
three-cluster solution is obtained by
choosing, for example, A, D, and F as
the initial cluster means.

Squared Error Clustering Method
(1) Select an initial partition of the pat-

terns with a fixed number of clus-
ters and cluster centers.

(2) Assign each pattern to its closest
cluster center and compute the new
cluster centers as the centroids of
the clusters. Repeat this step until
convergence is achieved, i.e., until
the cluster membership is stable.

(3) Merge and split clusters based on
some heuristic information, option-
ally repeating step 2.

k-Means Clustering Algorithm

(1) Choose k cluster centers to coincide
with k randomly-chosen patterns or
k randomly defined points inside
the hypervolume containing the pat-
tern set.
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(2) Assign each pattern to the closest
cluster center.

(3) Recompute the cluster centers using
the current cluster memberships.

(4) If a convergence criterion is not met,
go to step 2. Typical convergence
criteria are: no (or minimal) reas-
signment of patterns to new cluster
centers, or minimal decrease in
squared error.

Several variants [Anderberg 1973] of
the k-means algorithm have been re-
ported in the literature. Some of them
attempt to select a good initial partition
so that the algorithm is more likely to
find the global minimum value.

Another variation is to permit split-
ting and merging of the resulting clus-
ters. Typically, a cluster is split when
its variance is above a pre-specified
threshold, and two clusters are merged
when the distance between their cen-
troids is below another pre-specified
threshold. Using this variant, it is pos-
sible to obtain the optimal partition
starting from any arbitrary initial parti-
tion, provided proper threshold values
are specified. The well-known ISO-
DATA [Ball and Hall 1965] algorithm
employs this technique of merging and
splitting clusters. If ISODATA is given
the “ellipse” partitioning shown in Fig-
ure 14 as an initial partitioning, it will
produce the optimal three-cluster parti-

tioning. ISODATA will first merge the
clusters {A} and {B,C} into one cluster
because the distance between their cen-
troids is small and then split the cluster
{D,E,F,G}, which has a large variance,
into two clusters {D,E} and {F,G}.

Another variation of the k-means al-
gorithm involves selecting a different
criterion function altogether. The dy-
namic clustering algorithm (which per-
mits representations other than the
centroid for each cluster) was proposed
in Diday [1973], and Symon [1977] and
describes a dynamic clustering ap-
proach obtained by formulating the
clustering problem in the framework of
maximum-likelihood estimation. The
regularized Mahalanobis distance was
used in Mao and Jain [1996] to obtain
hyperellipsoidal clusters.

5.2.2 Graph-Theoretic Clustering.
The best-known graph-theoretic divisive
clustering algorithm is based on con-
struction of the minimal spanning tree
(MST) of the data [Zahn 1971], and then
deleting the MST edges with the largest
lengths to generate clusters. Figure 15
depicts the MST obtained from nine
two-dimensional points. By breaking
the link labeled CD with a length of 6
units (the edge with the maximum Eu-
clidean length), two clusters ({A, B, C}
and {D, E, F, G, H, I}) are obtained. The
second cluster can be further divided
into two clusters by breaking the edge
EF, which has a length of 4.5 units.

The hierarchical approaches are also
related to graph-theoretic clustering.
Single-link clusters are subgraphs of
the minimum spanning tree of the data
[Gower and Ross 1969] which are also
the connected components [Gotlieb and
Kumar 1968]. Complete-link clusters
are maximal complete subgraphs, and
are related to the node colorability of
graphs [Backer and Hubert 1976]. The
maximal complete subgraph was consid-
ered the strictest definition of a cluster
in Augustson and Minker [1970] and
Raghavan and Yu [1981]. A graph-ori-
ented approach for non-hierarchical
structures and overlapping clusters is

Figure 14. The k-means algorithm is sensitive
to the initial partition.
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presented in Ozawa [1985]. The Delau-
nay graph (DG) is obtained by connect-
ing all the pairs of points that are
Voronoi neighbors. The DG contains all
the neighborhood information contained
in the MST and the relative neighbor-
hood graph (RNG) [Toussaint 1980].

5.3 Mixture-Resolving and Mode-Seeking
Algorithms

The mixture resolving approach to clus-
ter analysis has been addressed in a
number of ways. The underlying as-
sumption is that the patterns to be clus-
tered are drawn from one of several
distributions, and the goal is to identify
the parameters of each and (perhaps)
their number. Most of the work in this
area has assumed that the individual
components of the mixture density are
Gaussian, and in this case the parame-
ters of the individual Gaussians are to
be estimated by the procedure. Tradi-
tional approaches to this problem in-
volve obtaining (iteratively) a maximum
likelihood estimate of the parameter
vectors of the component densities [Jain
and Dubes 1988].

More recently, the Expectation Maxi-
mization (EM) algorithm (a general-
purpose maximum likelihood algorithm
[Dempster et al. 1977] for missing-data
problems) has been applied to the prob-
lem of parameter estimation. A recent
book [Mitchell 1997] provides an acces-

sible description of the technique. In the
EM framework, the parameters of the
component densities are unknown, as
are the mixing parameters, and these
are estimated from the patterns. The
EM procedure begins with an initial
estimate of the parameter vector and
iteratively rescores the patterns against
the mixture density produced by the
parameter vector. The rescored patterns
are then used to update the parameter
estimates. In a clustering context, the
scores of the patterns (which essentially
measure their likelihood of being drawn
from particular components of the mix-
ture) can be viewed as hints at the class
of the pattern. Those patterns, placed
(by their scores) in a particular compo-
nent, would therefore be viewed as be-
longing to the same cluster.

Nonparametric techniques for densi-
ty-based clustering have also been de-
veloped [Jain and Dubes 1988]. Inspired
by the Parzen window approach to non-
parametric density estimation, the cor-
responding clustering procedure
searches for bins with large counts in a
multidimensional histogram of the in-
put pattern set. Other approaches in-
clude the application of another parti-
tional or hierarchical clustering
algorithm using a distance measure
based on a nonparametric density esti-
mate.

5.4 Nearest Neighbor Clustering

Since proximity plays a key role in our
intuitive notion of a cluster, nearest-
neighbor distances can serve as the ba-
sis of clustering procedures. An itera-
tive procedure was proposed in Lu and
Fu [1978]; it assigns each unlabeled
pattern to the cluster of its nearest la-
beled neighbor pattern, provided the
distance to that labeled neighbor is be-
low a threshold. The process continues
until all patterns are labeled or no addi-
tional labelings occur. The mutual
neighborhood value (described earlier in
the context of distance computation) can
also be used to grow clusters from near
neighbors.
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Figure 15. Using the minimal spanning tree to
form clusters.
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5.5 Fuzzy Clustering

Traditional clustering approaches gen-
erate partitions; in a partition, each
pattern belongs to one and only one
cluster. Hence, the clusters in a hard
clustering are disjoint. Fuzzy clustering
extends this notion to associate each
pattern with every cluster using a mem-
bership function [Zadeh 1965]. The out-
put of such algorithms is a clustering,
but not a partition. We give a high-level
partitional fuzzy clustering algorithm
below.

Fuzzy Clustering Algorithm

(1) Select an initial fuzzy partition of
the N objects into K clusters by
selecting the N 3 K membership
matrix U. An element uij of this
matrix represents the grade of mem-
bership of object xi in cluster cj.
Typically, uij [ @0,1#.

(2) Using U, find the value of a fuzzy
criterion function, e.g., a weighted
squared error criterion function, as-
sociated with the corresponding par-
tition. One possible fuzzy criterion
function is

E2~-, U! 5 O
i51

N O
k51

K

uijixi 2 cki2,

where ck 5 (
i51

N

uikxi is the kth fuzzy

cluster center.
Reassign patterns to clusters to re-
duce this criterion function value
and recompute U.

(3) Repeat step 2 until entries in U do
not change significantly.

In fuzzy clustering, each cluster is a
fuzzy set of all the patterns. Figure 16
illustrates the idea. The rectangles en-
close two “hard” clusters in the data:
H1 5 $1,2,3,4,5% and H2 5 $6,7,8,9%.
A fuzzy clustering algorithm might pro-
duce the two fuzzy clusters F1 and F2
depicted by ellipses. The patterns will

have membership values in [0,1] for
each cluster. For example, fuzzy cluster
F1 could be compactly described as

$~1,0.9!, ~2,0.8!, ~3,0.7!, ~4,0.6!, ~5,0.55!,

~6,0.2!, ~7,0.2!, ~8,0.0!, ~9,0.0!%

and F2 could be described as

$~1,0.0!, ~2,0.0!, ~3,0.0!, ~4,0.1!, ~5,0.15!,

~6,0.4!, ~7,0.35!, ~8,1.0!, ~9,0.9!%

The ordered pairs ~i, m i! in each cluster
represent the ith pattern and its mem-
bership value to the cluster m i. Larger
membership values indicate higher con-
fidence in the assignment of the pattern
to the cluster. A hard clustering can be
obtained from a fuzzy partition by
thresholding the membership value.

Fuzzy set theory was initially applied
to clustering in Ruspini [1969]. The
book by Bezdek [1981] is a good source
for material on fuzzy clustering. The
most popular fuzzy clustering algorithm
is the fuzzy c-means (FCM) algorithm.
Even though it is better than the hard
k-means algorithm at avoiding local
minima, FCM can still converge to local
minima of the squared error criterion.
The design of membership functions is
the most important problem in fuzzy
clustering; different choices include
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Figure 16. Fuzzy clusters.
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those based on similarity decomposition
and centroids of clusters. A generaliza-
tion of the FCM algorithm was proposed
by Bezdek [1981] through a family of
objective functions. A fuzzy c-shell algo-
rithm and an adaptive variant for de-
tecting circular and elliptical bound-
aries was presented in Dave [1992].

5.6 Representation of Clusters

In applications where the number of
classes or clusters in a data set must be
discovered, a partition of the data set is
the end product. Here, a partition gives
an idea about the separability of the
data points into clusters and whether it
is meaningful to employ a supervised
classifier that assumes a given number
of classes in the data set. However, in
many other applications that involve
decision making, the resulting clusters
have to be represented or described in a
compact form to achieve data abstrac-
tion. Even though the construction of a
cluster representation is an important
step in decision making, it has not been
examined closely by researchers. The
notion of cluster representation was in-
troduced in Duran and Odell [1974] and
was subsequently studied in Diday and
Simon [1976] and Michalski et al.
[1981]. They suggested the following
representation schemes:

(1) Represent a cluster of points by
their centroid or by a set of distant
points in the cluster. Figure 17 de-
picts these two ideas.

(2) Represent clusters using nodes in a
classification tree. This is illus-
trated in Figure 18.

(3) Represent clusters by using conjunc-
tive logical expressions. For example,
the expression @X1 . 3#@X2 , 2# in
Figure 18 stands for the logical state-
ment ‘X1 is greater than 3’ and ’X2 is
less than 2’.

Use of the centroid to represent a
cluster is the most popular scheme. It
works well when the clusters are com-
pact or isotropic. However, when the
clusters are elongated or non-isotropic,
then this scheme fails to represent them
properly. In such a case, the use of a
collection of boundary points in a clus-
ter captures its shape well. The number
of points used to represent a cluster
should increase as the complexity of its
shape increases. The two different rep-
resentations illustrated in Figure 18 are
equivalent. Every path in a classifica-
tion tree from the root node to a leaf
node corresponds to a conjunctive state-
ment. An important limitation of the
typical use of the simple conjunctive
concept representations is that they can
describe only rectangular or isotropic
clusters in the feature space.

Data abstraction is useful in decision
making because of the following:

(1) It gives a simple and intuitive de-
scription of clusters which is easy
for human comprehension. In both
conceptual clustering [Michalski

X X
By Three Distant PointsBy The Centroid
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Figure 17. Representation of a cluster by points.
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and Stepp 1983] and symbolic clus-
tering [Gowda and Diday 1992] this
representation is obtained without
using an additional step. These al-
gorithms generate the clusters as
well as their descriptions. A set of
fuzzy rules can be obtained from
fuzzy clusters of a data set. These
rules can be used to build fuzzy clas-
sifiers and fuzzy controllers.

(2) It helps in achieving data compres-
sion that can be exploited further by
a computer [Murty and Krishna
1980]. Figure 19(a) shows samples
belonging to two chain-like clusters
labeled 1 and 2. A partitional clus-
tering like the k-means algorithm
cannot separate these two struc-
tures properly. The single-link algo-
rithm works well on this data, but is
computationally expensive. So a hy-
brid approach may be used to ex-
ploit the desirable properties of both
these algorithms. We obtain 8 sub-
clusters of the data using the (com-
putationally efficient) k-means algo-
rithm. Each of these subclusters can
be represented by their centroids as
shown in Figure 19(a). Now the sin-
gle-link algorithm can be applied on
these centroids alone to cluster
them into 2 groups. The resulting
groups are shown in Figure 19(b).
Here, a data reduction is achieved

by representing the subclusters by
their centroids.

(3) It increases the efficiency of the de-
cision making task. In a cluster-
based document retrieval technique
[Salton 1991], a large collection of
documents is clustered and each of
the clusters is represented using its
centroid. In order to retrieve docu-
ments relevant to a query, the query
is matched with the cluster cen-
troids rather than with all the docu-
ments. This helps in retrieving rele-
vant documents efficiently. Also in
several applications involving large
data sets, clustering is used to per-
form indexing, which helps in effi-
cient decision making [Dorai and
Jain 1995].

5.7 Artificial Neural Networks for
Clustering

Artificial neural networks (ANNs)
[Hertz et al. 1991] are motivated by
biological neural networks. ANNs have
been used extensively over the past
three decades for both classification and
clustering [Sethi and Jain 1991; Jain
and Mao 1994]. Some of the features of
the ANNs that are important in pattern
clustering are:
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(1) ANNs process numerical vectors and
so require patterns to be represented
using quantitative features only.

(2) ANNs are inherently parallel and
distributed processing architec-
tures.

(3) ANNs may learn their interconnec-
tion weights adaptively [Jain and
Mao 1996; Oja 1982]. More specifi-
cally, they can act as pattern nor-
malizers and feature selectors by
appropriate selection of weights.

Competitive (or winner–take–all)
neural networks [Jain and Mao 1996]
are often used to cluster input data. In
competitive learning, similar patterns
are grouped by the network and repre-
sented by a single unit (neuron). This
grouping is done automatically based on
data correlations. Well-known examples
of ANNs used for clustering include Ko-
honen’s learning vector quantization
(LVQ) and self-organizing map (SOM)
[Kohonen 1984], and adaptive reso-
nance theory models [Carpenter and
Grossberg 1990]. The architectures of
these ANNs are simple: they are single-
layered. Patterns are presented at the
input and are associated with the out-
put nodes. The weights between the in-
put nodes and the output nodes are
iteratively changed (this is called learn-
ing) until a termination criterion is sat-
isfied. Competitive learning has been
found to exist in biological neural net-
works. However, the learning or weight
update procedures are quite similar to

those in some classical clustering ap-
proaches. For example, the relationship
between the k-means algorithm and
LVQ is addressed in Pal et al. [1993].
The learning algorithm in ART models
is similar to the leader clustering algo-
rithm [Moor 1988].

The SOM gives an intuitively appeal-
ing two-dimensional map of the multidi-
mensional data set, and it has been
successfully used for vector quantiza-
tion and speech recognition [Kohonen
1984]. However, like its sequential
counterpart, the SOM generates a sub-
optimal partition if the initial weights
are not chosen properly. Further, its
convergence is controlled by various pa-
rameters such as the learning rate and
a neighborhood of the winning node in
which learning takes place. It is possi-
ble that a particular input pattern can
fire different output units at different
iterations; this brings up the stability
issue of learning systems. The system is
said to be stable if no pattern in the
training data changes its category after
a finite number of learning iterations.
This problem is closely associated with
the problem of plasticity, which is the
ability of the algorithm to adapt to new
data. For stability, the learning rate
should be decreased to zero as iterations
progress and this affects the plasticity.
The ART models are supposed to be
stable and plastic [Carpenter and
Grossberg 1990]. However, ART nets
are order-dependent; that is, different
partitions are obtained for different or-
ders in which the data is presented to
the net. Also, the size and number of
clusters generated by an ART net de-
pend on the value chosen for the vigi-
lance threshold, which is used to decide
whether a pattern is to be assigned to
one of the existing clusters or start a
new cluster. Further, both SOM and
ART are suitable for detecting only hy-
perspherical clusters [Hertz et al. 1991].
A two-layer network that employs regu-
larized Mahalanobis distance to extract
hyperellipsoidal clusters was proposed
in Mao and Jain [1994]. All these ANNs
use a fixed number of output nodes
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which limit the number of clusters that
can be produced.

5.8 Evolutionary Approaches for
Clustering

Evolutionary approaches, motivated by
natural evolution, make use of evolu-
tionary operators and a population of
solutions to obtain the globally optimal
partition of the data. Candidate solu-
tions to the clustering problem are en-
coded as chromosomes. The most com-
monly used evolutionary operators are:
selection, recombination, and mutation.
Each transforms one or more input
chromosomes into one or more output
chromosomes. A fitness function evalu-
ated on a chromosome determines a
chromosome’s likelihood of surviving
into the next generation. We give below
a high-level description of an evolution-
ary algorithm applied to clustering.

An Evolutionary Algorithm for
Clustering

(1) Choose a random population of solu-
tions. Each solution here corre-
sponds to a valid k-partition of the
data. Associate a fitness value with
each solution. Typically, fitness is
inversely proportional to the
squared error value. A solution with
a small squared error will have a
larger fitness value.

(2) Use the evolutionary operators se-
lection, recombination and mutation
to generate the next population of
solutions. Evaluate the fitness val-
ues of these solutions.

(3) Repeat step 2 until some termina-
tion condition is satisfied.

The best-known evolutionary tech-
niques are genetic algorithms (GAs)
[Holland 1975; Goldberg 1989], evolu-
tion strategies (ESs) [Schwefel 1981],
and evolutionary programming (EP)
[Fogel et al. 1965]. Out of these three
approaches, GAs have been most fre-
quently used in clustering. Typically,
solutions are binary strings in GAs. In

GAs, a selection operator propagates so-
lutions from the current generation to
the next generation based on their fit-
ness. Selection employs a probabilistic
scheme so that solutions with higher
fitness have a higher probability of get-
ting reproduced.

There are a variety of recombination
operators in use; crossover is the most
popular. Crossover takes as input a pair
of chromosomes (called parents) and
outputs a new pair of chromosomes
(called children or offspring) as depicted
in Figure 20. In Figure 20, a single
point crossover operation is depicted. It
exchanges the segments of the parents
across a crossover point. For example,
in Figure 20, the parents are the binary
strings ‘10110101’ and ‘11001110’. The
segments in the two parents after the
crossover point (between the fourth and
fifth locations) are exchanged to pro-
duce the child chromosomes. Mutation
takes as input a chromosome and out-
puts a chromosome by complementing
the bit value at a randomly selected
location in the input chromosome. For
example, the string ‘11111110’ is gener-
ated by applying the mutation operator
to the second bit location in the string
‘10111110’ (starting at the left). Both
crossover and mutation are applied with
some prespecified probabilities which
depend on the fitness values.

GAs represent points in the search
space as binary strings, and rely on the

parent1

parent2

child1

child2

1      0       1      1      0       1     0       1

1       0       1      1      1      1       1      0

1       1      0       0      0      1      0     1

1       1       0      0      1       1      1      0

crossover point

Figure 20. Crossover operation.
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crossover operator to explore the search
space. Mutation is used in GAs for the
sake of completeness, that is, to make
sure that no part of the search space is
left unexplored. ESs and EP differ from
the GAs in solution representation and
type of the mutation operator used; EP
does not use a recombination operator,
but only selection and mutation. Each of
these three approaches have been used
to solve the clustering problem by view-
ing it as a minimization of the squared
error criterion. Some of the theoretical
issues such as the convergence of these
approaches were studied in Fogel and
Fogel [1994].

GAs perform a globalized search for
solutions whereas most other clustering
procedures perform a localized search.
In a localized search, the solution ob-
tained at the ‘next iteration’ of the pro-
cedure is in the vicinity of the current
solution. In this sense, the k-means al-
gorithm, fuzzy clustering algorithms,
ANNs used for clustering, various an-
nealing schemes (see below), and tabu
search are all localized search tech-
niques. In the case of GAs, the crossover
and mutation operators can produce
new solutions that are completely dif-
ferent from the current ones. We illus-
trate this fact in Figure 21. Let us as-
sume that the scalar X is coded using a
5-bit binary representation, and let S1

and S2 be two points in the one-dimen-
sional search space. The decimal values
of S1 and S2 are 8 and 31, respectively.
Their binary representations are S1 5
01000 and S2 5 11111. Let us apply
the single-point crossover to these
strings, with the crossover site falling
between the second and third most sig-
nificant bits as shown below.

01!000

11!111

This will produce a new pair of points or
chromosomes S3 and S4 as shown in
Figure 21. Here, S3 5 01111 and

S4 5 11000. The corresponding deci-
mal values are 15 and 24, respectively.
Similarly, by mutating the most signifi-
cant bit in the binary string 01111 (dec-
imal 15), the binary string 11111 (deci-
mal 31) is generated. These jumps, or
gaps between points in successive gen-
erations, are much larger than those
produced by other approaches.

Perhaps the earliest paper on the use
of GAs for clustering is by Raghavan
and Birchand [1979], where a GA was
used to minimize the squared error of a
clustering. Here, each point or chromo-
some represents a partition of N objects
into K clusters and is represented by a
K-ary string of length N. For example,
consider six patterns—A, B, C, D, E,
and F—and the string 101001. This six-
bit binary (K 5 2) string corresponds to
placing the six patterns into two clus-
ters. This string represents a two-parti-
tion, where one cluster has the first,
third, and sixth patterns and the second
cluster has the remaining patterns. In
other words, the two clusters are
{A,C,F} and {B,D,E} (the six-bit binary
string 010110 represents the same clus-
tering of the six patterns). When there
are K clusters, there are K! different
chromosomes corresponding to each
K-partition of the data. This increases
the effective search space size by a fac-
tor of K!. Further, if crossover is applied
on two good chromosomes, the resulting

f(X)

X
SS S S

1 23 4

X X
X

X

Figure 21. GAs perform globalized search.
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offspring may be inferior in this repre-
sentation. For example, let {A,B,C} and
{D,E,F} be the clusters in the optimal
2-partition of the six patterns consid-
ered above. The corresponding chromo-
somes are 111000 and 000111. By ap-
plying single-point crossover at the
location between the third and fourth
bit positions on these two strings, we
get 111111 and 000000 as offspring and
both correspond to an inferior partition.
These problems have motivated re-
searchers to design better representa-
tion schemes and crossover operators.

In Bhuyan et al. [1991], an improved
representation scheme is proposed
where an additional separator symbol is
used along with the pattern labels to
represent a partition. Let the separator
symbol be represented by *. Then the
chromosome ACF*BDE corresponds to a
2-partition {A,C,F} and {B,D,E}. Using
this representation permits them to
map the clustering problem into a per-
mutation problem such as the traveling
salesman problem, which can be solved
by using the permutation crossover op-
erators [Goldberg 1989]. This solution
also suffers from permutation redun-
dancy. There are 72 equivalent chromo-
somes (permutations) corresponding to
the same partition of the data into the
two clusters {A,C,F} and {B,D,E}.

More recently, Jones and Beltramo
[1991] investigated the use of edge-
based crossover [Whitley et al. 1989] to
solve the clustering problem. Here, all
patterns in a cluster are assumed to
form a complete graph by connecting
them with edges. Offspring are gener-
ated from the parents so that they in-
herit the edges from their parents. It is
observed that this crossover operator
takes O~K6 1 N! time for N patterns
and K clusters ruling out its applicabil-
ity on practical data sets having more
than 10 clusters. In a hybrid approach
proposed in Babu and Murty [1993], the
GA is used only to find good initial
cluster centers and the k-means algo-
rithm is applied to find the final parti-

tion. This hybrid approach performed
better than the GA.

A major problem with GAs is their
sensitivity to the selection of various
parameters such as population size,
crossover and mutation probabilities,
etc. Grefenstette [Grefenstette 1986]
has studied this problem and suggested
guidelines for selecting these control pa-
rameters. However, these guidelines
may not yield good results on specific
problems like pattern clustering. It was
reported in Jones and Beltramo [1991]
that hybrid genetic algorithms incorpo-
rating problem-specific heuristics are
good for clustering. A similar claim is
made in Davis [1991] about the applica-
bility of GAs to other practical prob-
lems. Another issue with GAs is the
selection of an appropriate representa-
tion which is low in order and short in
defining length.

It is possible to view the clustering
problem as an optimization problem
that locates the optimal centroids of the
clusters directly rather than finding an
optimal partition using a GA. This view
permits the use of ESs and EP, because
centroids can be coded easily in both
these approaches, as they support the
direct representation of a solution as a
real-valued vector. In Babu and Murty
[1994], ESs were used on both hard and
fuzzy clustering problems and EP has
been used to evolve fuzzy min-max clus-
ters [Fogel and Simpson 1993]. It has
been observed that they perform better
than their classical counterparts, the
k-means algorithm and the fuzzy
c-means algorithm. However, all of
these approaches suffer (as do GAs and
ANNs) from sensitivity to control pa-
rameter selection. For each specific
problem, one has to tune the parameter
values to suit the application.

5.9 Search-Based Approaches

Search techniques used to obtain the
optimum value of the criterion function
are divided into deterministic and sto-
chastic search techniques. Determinis-
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tic search techniques guarantee an opti-
mal partition by performing exhaustive
enumeration. On the other hand, the
stochastic search techniques generate a
near-optimal partition reasonably
quickly, and guarantee convergence to
optimal partition asymptotically.
Among the techniques considered so far,
evolutionary approaches are stochastic
and the remainder are deterministic.
Other deterministic approaches to clus-
tering include the branch-and-bound
technique adopted in Koontz et al.
[1975] and Cheng [1995] for generating
optimal partitions. This approach gen-
erates the optimal partition of the data
at the cost of excessive computational
requirements. In Rose et al. [1993], a
deterministic annealing approach was
proposed for clustering. This approach
employs an annealing technique in
which the error surface is smoothed, but
convergence to the global optimum is
not guaranteed. The use of determinis-
tic annealing in proximity-mode cluster-
ing (where the patterns are specified in
terms of pairwise proximities rather
than multidimensional points) was ex-
plored in Hofmann and Buhmann
[1997]; later work applied the determin-
istic annealing approach to texture seg-
mentation [Hofmann and Buhmann
1998].

The deterministic approaches are typ-
ically greedy descent approaches,
whereas the stochastic approaches per-
mit perturbations to the solutions in
non-locally optimal directions also with
nonzero probabilities. The stochastic
search techniques are either sequential
or parallel, while evolutionary ap-
proaches are inherently parallel. The
simulated annealing approach (SA)
[Kirkpatrick et al. 1983] is a sequential
stochastic search technique, whose ap-
plicability to clustering is discussed in
Klein and Dubes [1989]. Simulated an-
nealing procedures are designed to
avoid (or recover from) solutions which
correspond to local optima of the objec-
tive functions. This is accomplished by
accepting with some probability a new
solution for the next iteration of lower

quality (as measured by the criterion
function). The probability of acceptance
is governed by a critical parameter
called the temperature (by analogy with
annealing in metals), which is typically
specified in terms of a starting (first
iteration) and final temperature value.
Selim and Al-Sultan [1991] studied the
effects of control parameters on the per-
formance of the algorithm, and Baeza-
Yates [1992] used SA to obtain near-
optimal partition of the data. SA is
statistically guaranteed to find the glo-
bal optimal solution [Aarts and Korst
1989]. A high-level outline of a SA
based algorithm for clustering is given
below.

Clustering Based on Simulated
Annealing

(1) Randomly select an initial partition
and P0, and compute the squared
error value, EP0. Select values for
the control parameters, initial and
final temperatures T0 and Tf.

(2) Select a neighbor P1 of P0 and com-
pute its squared error value, EP1. If
EP1 is larger than EP0, then assign
P1 to P0 with a temperature-depen-
dent probability. Else assign P1 to
P0. Repeat this step for a fixed num-
ber of iterations.

(3) Reduce the value of T0, i.e. T0 5
cT0, where c is a predetermined
constant. If T0 is greater than Tf,
then go to step 2. Else stop.

The SA algorithm can be slow in
reaching the optimal solution, because
optimal results require the temperature
to be decreased very slowly from itera-
tion to iteration.

Tabu search [Glover 1986], like SA, is
a method designed to cross boundaries
of feasibility or local optimality and to
systematically impose and release con-
straints to permit exploration of other-
wise forbidden regions. Tabu search
was used to solve the clustering prob-
lem in Al-Sultan [1995].
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5.10 A Comparison of Techniques

In this section we have examined vari-
ous deterministic and stochastic search
techniques to approach the clustering
problem as an optimization problem. A
majority of these methods use the
squared error criterion function. Hence,
the partitions generated by these ap-
proaches are not as versatile as those
generated by hierarchical algorithms.
The clusters generated are typically hy-
perspherical in shape. Evolutionary ap-
proaches are globalized search tech-
niques, whereas the rest of the
approaches are localized search tech-
nique. ANNs and GAs are inherently
parallel, so they can be implemented
using parallel hardware to improve
their speed. Evolutionary approaches
are population-based; that is, they
search using more than one solution at
a time, and the rest are based on using
a single solution at a time. ANNs, GAs,
SA, and Tabu search (TS) are all sensi-
tive to the selection of various learning/
control parameters. In theory, all four of
these methods are weak methods [Rich
1983] in that they do not use explicit
domain knowledge. An important fea-
ture of the evolutionary approaches is
that they can find the optimal solution
even when the criterion function is dis-
continuous.

An empirical study of the perfor-
mance of the following heuristics for
clustering was presented in Mishra and
Raghavan [1994]; SA, GA, TS, random-
ized branch-and-bound (RBA) [Mishra
and Raghavan 1994], and hybrid search
(HS) strategies [Ismail and Kamel 1989]
were evaluated. The conclusion was
that GA performs well in the case of
one-dimensional data, while its perfor-
mance on high dimensional data sets is
not impressive. The performance of SA
is not attractive because it is very slow.
RBA and TS performed best. HS is good
for high dimensional data. However,
none of the methods was found to be
superior to others by a significant mar-
gin. An empirical study of k-means, SA,
TS, and GA was presented in Al-Sultan

and Khan [1996]. TS, GA and SA were
judged comparable in terms of solution
quality, and all were better than
k-means. However, the k-means method
is the most efficient in terms of execu-
tion time; other schemes took more time
(by a factor of 500 to 2500) to partition a
data set of size 60 into 5 clusters. Fur-
ther, GA encountered the best solution
faster than TS and SA; SA took more
time than TS to encounter the best solu-
tion. However, GA took the maximum
time for convergence, that is, to obtain a
population of only the best solutions,
followed by TS and SA. An important
observation is that in both Mishra and
Raghavan [1994] and Al-Sultan and
Khan [1996] the sizes of the data sets
considered are small; that is, fewer than
200 patterns.

A two-layer network was employed in
Mao and Jain [1996], with the first
layer including a number of principal
component analysis subnets, and the
second layer using a competitive net.
This network performs partitional clus-
tering using the regularized Mahalano-
bis distance. This net was trained using
a set of 1000 randomly selected pixels
from a large image and then used to
classify every pixel in the image. Babu
et al. [1997] proposed a stochastic con-
nectionist approach (SCA) and com-
pared its performance on standard data
sets with both the SA and k-means algo-
rithms. It was observed that SCA is
superior to both SA and k-means in
terms of solution quality. Evolutionary
approaches are good only when the data
size is less than 1000 and for low di-
mensional data.

In summary, only the k-means algo-
rithm and its ANN equivalent, the Ko-
honen net [Mao and Jain 1996] have
been applied on large data sets; other
approaches have been tested, typically,
on small data sets. This is because ob-
taining suitable learning/control param-
eters for ANNs, GAs, TS, and SA is
difficult and their execution times are
very high for large data sets. However,
it has been shown [Selim and Ismail
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1984] that the k-means method con-
verges to a locally optimal solution. This
behavior is linked with the initial seed
selection in the k-means algorithm. So
if a good initial partition can be ob-
tained quickly using any of the other
techniques, then k-means would work
well even on problems with large data
sets. Even though various methods dis-
cussed in this section are comparatively
weak, it was revealed through experi-
mental studies that combining domain
knowledge would improve their perfor-
mance. For example, ANNs work better
in classifying images represented using
extracted features than with raw im-
ages, and hybrid classifiers work better
than ANNs [Mohiuddin and Mao 1994].
Similarly, using domain knowledge to
hybridize a GA improves its perfor-
mance [Jones and Beltramo 1991]. So it
may be useful in general to use domain
knowledge along with approaches like
GA, SA, ANN, and TS. However, these
approaches (specifically, the criteria
functions used in them) have a tendency
to generate a partition of hyperspheri-
cal clusters, and this could be a limita-
tion. For example, in cluster-based doc-
ument retrieval, it was observed that
the hierarchical algorithms performed
better than the partitional algorithms
[Rasmussen 1992].

5.11 Incorporating Domain Constraints in
Clustering

As a task, clustering is subjective in
nature. The same data set may need to
be partitioned differently for different
purposes. For example, consider a
whale, an elephant, and a tuna fish
[Watanabe 1985]. Whales and elephants
form a cluster of mammals. However, if
the user is interested in partitioning
them based on the concept of living in
water, then whale and tuna fish are
clustered together. Typically, this sub-
jectivity is incorporated into the cluster-
ing criterion by incorporating domain
knowledge in one or more phases of
clustering.

Every clustering algorithm uses some
type of knowledge either implicitly or
explicitly. Implicit knowledge plays a
role in (1) selecting a pattern represen-
tation scheme (e.g., using one’s prior
experience to select and encode fea-
tures), (2) choosing a similarity measure
(e.g., using the Mahalanobis distance
instead of the Euclidean distance to ob-
tain hyperellipsoidal clusters), and (3)
selecting a grouping scheme (e.g., speci-
fying the k-means algorithm when it is
known that clusters are hyperspheri-
cal). Domain knowledge is used implic-
itly in ANNs, GAs, TS, and SA to select
the control/learning parameter values
that affect the performance of these al-
gorithms.

It is also possible to use explicitly
available domain knowledge to con-
strain or guide the clustering process.
Such specialized clustering algorithms
have been used in several applications.
Domain concepts can play several roles
in the clustering process, and a variety
of choices are available to the practitio-
ner. At one extreme, the available do-
main concepts might easily serve as an
additional feature (or several), and the
remainder of the procedure might be
otherwise unaffected. At the other ex-
treme, domain concepts might be used
to confirm or veto a decision arrived at
independently by a traditional cluster-
ing algorithm, or used to affect the com-
putation of distance in a clustering algo-
rithm employing proximity. The
incorporation of domain knowledge into
clustering consists mainly of ad hoc ap-
proaches with little in common; accord-
ingly, our discussion of the idea will
consist mainly of motivational material
and a brief survey of past work. Ma-
chine learning research and pattern rec-
ognition research intersect in this topi-
cal area, and the interested reader is
referred to the prominent journals in
machine learning (e.g., Machine Learn-
ing, J. of AI Research, or Artificial Intel-
ligence) for a fuller treatment of this
topic.
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As documented in Cheng and Fu
[1985], rules in an expert system may
be clustered to reduce the size of the
knowledge base. This modification of
clustering was also explored in the do-
mains of universities, congressional vot-
ing records, and terrorist events by Leb-
owitz [1987].

5.11.1 Similarity Computation. Con-
ceptual knowledge was used explicitly
in the similarity computation phase in
Michalski and Stepp [1983]. It was as-
sumed that the pattern representations
were available and the dynamic cluster-
ing algorithm [Diday 1973] was used to
group patterns. The clusters formed
were described using conjunctive state-
ments in predicate logic. It was stated
in Stepp and Michalski [1986] and
Michalski and Stepp [1983] that the
groupings obtained by the conceptual
clustering are superior to those ob-
tained by the numerical methods for
clustering. A critical analysis of that
work appears in Dale [1985], and it was
observed that monothetic divisive clus-
tering algorithms generate clusters that
can be described by conjunctive state-
ments. For example, consider Figure 8.
Four clusters in this figure, obtained
using a monothetic algorithm, can be
described by using conjunctive concepts
as shown below:

Cluster 1: @X # a# ∧ @Y # b#

Cluster 2: @X # a# ∧ @Y . b#

Cluster 3: @X . a# ∧ @Y . c#

Cluster 4: @X . a# ∧ @Y # c#

where ∧ is the Boolean conjunction
(‘and’) operator, and a, b, and c are
constants.

5.11.2 Pattern Representation. It was
shown in Srivastava and Murty [1990]
that by using knowledge in the pattern
representation phase, as is implicitly
done in numerical taxonomy ap-
proaches, it is possible to obtain the
same partitions as those generated by
conceptual clustering. In this sense,

conceptual clustering and numerical
taxonomy are not diametrically oppo-
site, but are equivalent. In the case of
conceptual clustering, domain knowl-
edge is explicitly used in interpattern
similarity computation, whereas in nu-
merical taxonomy it is implicitly as-
sumed that pattern representations are
obtained using the domain knowledge.

5.11.3 Cluster Descriptions. Typi-
cally, in knowledge-based clustering,
both the clusters and their descriptions
or characterizations are generated
[Fisher and Langley 1985]. There are
some exceptions, for instance,, Gowda
and Diday [1992], where only clustering
is performed and no descriptions are
generated explicitly. In conceptual clus-
tering, a cluster of objects is described
by a conjunctive logical expression
[Michalski and Stepp 1983]. Even
though a conjunctive statement is one of
the most common descriptive forms
used by humans, it is a limited form. In
Shekar et al. [1987], functional knowl-
edge of objects was used to generate
more intuitively appealing cluster de-
scriptions that employ the Boolean im-
plication operator. A system that repre-
sents clusters probabilistically was
described in Fisher [1987]; these de-
scriptions are more general than con-
junctive concepts, and are well-suited to
hierarchical classification domains (e.g.,
the animal species hierarchy). A concep-
tual clustering system in which cluster-
ing is done first is described in Fisher
and Langley [1985]. These clusters are
then described using probabilities. A
similar scheme was described in Murty
and Jain [1995], but the descriptions
are logical expressions that employ both
conjunction and disjunction.

An important characteristic of concep-
tual clustering is that it is possible to
group objects represented by both qual-
itative and quantitative features if the
clustering leads to a conjunctive con-
cept. For example, the concept cricket
ball might be represented as
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color 5 red ∧ ~shape 5 sphere!

∧ ~make 5 leather!

∧ ~radius 5 1.4 inches!,

where radius is a quantitative feature
and the rest are all qualitative features.
This description is used to describe a
cluster of cricket balls. In Stepp and
Michalski [1986], a graph (the goal de-
pendency network) was used to group
structured objects. In Shekar et al.
[1987] functional knowledge was used
to group man-made objects. Functional
knowledge was represented using
and/or trees [Rich 1983]. For example,
the function cooking shown in Figure 22
can be decomposed into functions like
holding and heating the material in a
liquid medium. Each man-made object
has a primary function for which it is
produced. Further, based on its fea-
tures, it may serve additional functions.
For example, a book is meant for read-
ing, but if it is heavy then it can also be
used as a paper weight. In Sutton et al.
[1993], object functions were used to
construct generic recognition systems.

5.11.4 Pragmatic Issues. Any imple-
mentation of a system that explicitly
incorporates domain concepts into a
clustering technique has to address the
following important pragmatic issues:

(1) Representation, availability and
completeness of domain concepts.

(2) Construction of inferences using the
knowledge.

(3) Accommodation of changing or dy-
namic knowledge.

In some domains, complete knowledge
is available explicitly. For example, the
ACM Computing Reviews classification
tree used in Murty and Jain [1995] is
complete and is explicitly available for
use. In several domains, knowledge is
incomplete and is not available explic-
itly. Typically, machine learning tech-
niques are used to automatically extract
knowledge, which is a difficult and chal-
lenging problem. The most prominently
used learning method is “learning from
examples” [Quinlan 1990]. This is an
inductive learning scheme used to ac-
quire knowledge from examples of each
of the classes in different domains. Even
if the knowledge is available explicitly,
it is difficult to find out whether it is
complete and sound. Further, it is ex-
tremely difficult to verify soundness
and completeness of knowledge ex-
tracted from practical data sets, be-
cause such knowledge cannot be repre-
sented in propositional logic. It is
possible that both the data and knowl-
edge keep changing with time. For ex-
ample, in a library, new books might get
added and some old books might be
deleted from the collection with time.
Also, the classification system (knowl-
edge) employed by the library is up-
dated periodically.

A major problem with knowledge-
based clustering is that it has not been
applied to large data sets or in domains
with large knowledge bases. Typically,
the number of objects grouped was less
than 1000, and number of rules used as
a part of the knowledge was less than
100. The most difficult problem is to use
a very large knowledge base for cluster-
ing objects in several practical problems
including data mining, image segmenta-
tion, and document retrieval.

5.12 Clustering Large Data Sets

There are several applications where it
is necessary to cluster a large collection
of patterns. The definition of ‘large’ has
varied (and will continue to do so) with
changes in technology (e.g., memory and
processing time). In the 1960s, ‘large’

cooking

heating liquid holding

electric        ...                             water ... metallic ... 

Figure 22. Functional knowledge.

292 • A. Jain et al.

ACM Computing Surveys, Vol. 31, No. 3, September 1999



meant several thousand patterns [Ross
1968]; now, there are applications
where millions of patterns of high di-
mensionality have to be clustered. For
example, to segment an image of size
500 3 500 pixels, the number of pixels
to be clustered is 250,000. In document
retrieval and information filtering, mil-
lions of patterns with a dimensionality
of more than 100 have to be clustered to
achieve data abstraction. A majority of
the approaches and algorithms pro-
posed in the literature cannot handle
such large data sets. Approaches based
on genetic algorithms, tabu search and
simulated annealing are optimization
techniques and are restricted to reason-
ably small data sets. Implementations
of conceptual clustering optimize some
criterion functions and are typically
computationally expensive.

The convergent k-means algorithm
and its ANN equivalent, the Kohonen
net, have been used to cluster large
data sets [Mao and Jain 1996]. The rea-
sons behind the popularity of the
k-means algorithm are:

(1) Its time complexity is O~nkl!,
where n is the number of patterns,
k is the number of clusters, and l is
the number of iterations taken by
the algorithm to converge. Typi-
cally, k and l are fixed in advance
and so the algorithm has linear time
complexity in the size of the data set
[Day 1992].

(2) Its space complexity is O~k 1 n!. It
requires additional space to store
the data matrix. It is possible to
store the data matrix in a secondary
memory and access each pattern
based on need. However, this
scheme requires a huge access time
because of the iterative nature of
the algorithm, and as a consequence
processing time increases enor-
mously.

(3) It is order-independent; for a given
initial seed set of cluster centers, it
generates the same partition of the

data irrespective of the order in
which the patterns are presented to
the algorithm.

However, the k-means algorithm is sen-
sitive to initial seed selection and even
in the best case, it can produce only
hyperspherical clusters.

Hierarchical algorithms are more ver-
satile. But they have the following dis-
advantages:

(1) The time complexity of hierarchical
agglomerative algorithms is O~n2

log n! [Kurita 1991]. It is possible
to obtain single-link clusters using
an MST of the data, which can be
constructed in O~n log2 n! time for
two-dimensional data [Choudhury
and Murty 1990].

(2) The space complexity of agglomera-
tive algorithms is O~n2!. This is be-
cause a similarity matrix of size
n 3 n has to be stored. To cluster
every pixel in a 100 3 100 image,
approximately 200 megabytes of
storage would be required (assuning
single-precision storage of similari-
ties). It is possible to compute the
entries of this matrix based on need
instead of storing them (this would
increase the algorithm’s time com-
plexity [Anderberg 1973]).

Table I lists the time and space com-
plexities of several well-known algo-
rithms. Here, n is the number of pat-
terns to be clustered, k is the number of
clusters, and l is the number of itera-
tions.

Table I. Complexity of Clustering Algorithms

Clustering Algorithm Time
Complexity

Space
Complexity

leader O~kn! O~k!
k-means O~nkl! O~k!
ISODATA O~nkl! O~k!
shortest spanning path O~n2! O~n!
single-line O~n2 log n! O~n2!
complete-line O~n2 log n! O~n2!
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A possible solution to the problem of
clustering large data sets while only
marginally sacrificing the versatility of
clusters is to implement more efficient
variants of clustering algorithms. A hy-
brid approach was used in Ross [1968],
where a set of reference points is chosen
as in the k-means algorithm, and each
of the remaining data points is assigned
to one or more reference points or clus-
ters. Minimal spanning trees (MST) are
obtained for each group of points sepa-
rately. These MSTs are merged to form
an approximate global MST. This ap-
proach computes similarities between
only a fraction of all possible pairs of
points. It was shown that the number of
similarities computed for 10,000 pat-
terns using this approach is the same as
the total number of pairs of points in a
collection of 2,000 points. Bentley and
Friedman [1978] contains an algorithm
that can compute an approximate MST
in O~n log n! time. A scheme to gener-
ate an approximate dendrogram incre-
mentally in O~n log n! time was pre-
sented in Zupan [1982], while
Venkateswarlu and Raju [1992] pro-
posed an algorithm to speed up the ISO-
DATA clustering algorithm. A study of
the approximate single-linkage cluster
analysis of large data sets was reported
in Eddy et al. [1994]. In that work, an
approximate MST was used to form sin-
gle-link clusters of a data set of size
40,000.

The emerging discipline of data min-
ing (discussed as an application in Sec-
tion 6) has spurred the development of
new algorithms for clustering large data
sets. Two algorithms of note are the
CLARANS algorithm developed by Ng
and Han [1994] and the BIRCH algo-
rithm proposed by Zhang et al. [1996].
CLARANS (Clustering Large Applica-
tions based on RANdom Search) identi-
fies candidate cluster centroids through
analysis of repeated random samples
from the original data. Because of the
use of random sampling, the time com-
plexity is O~n! for a pattern set of n
elements. The BIRCH algorithm (Bal-

anced Iterative Reducing and Cluster-
ing) stores summary information about
candidate clusters in a dynamic tree
data structure. This tree hierarchically
organizes the clusterings represented at
the leaf nodes. The tree can be rebuilt
when a threshold specifying cluster size
is updated manually, or when memory
constraints force a change in this
threshold. This algorithm, like CLAR-
ANS, has a time complexity linear in
the number of patterns.

The algorithms discussed above work
on large data sets, where it is possible
to accommodate the entire pattern set
in the main memory. However, there
are applications where the entire data
set cannot be stored in the main mem-
ory because of its size. There are cur-
rently three possible approaches to
solve this problem.

(1) The pattern set can be stored in a
secondary memory and subsets of
this data clustered independently,
followed by a merging step to yield a
clustering of the entire pattern set.
We call this approach the divide and
conquer approach.

(2) An incremental clustering algorithm
can be employed. Here, the entire
data matrix is stored in a secondary
memory and data items are trans-
ferred to the main memory one at a
time for clustering. Only the cluster
representations are stored in the
main memory to alleviate the space
limitations.

(3) A parallel implementation of a clus-
tering algorithm may be used. We
discuss these approaches in the next
three subsections.

5.12.1 Divide and Conquer Approach.
Here, we store the entire pattern matrix
of size n 3 d in a secondary storage
space (e.g., a disk file). We divide this
data into p blocks, where an optimum
value of p can be chosen based on the
clustering algorithm used [Murty and
Krishna 1980]. Let us assume that we
have n / p patterns in each of the blocks.
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We transfer each of these blocks to the
main memory and cluster it into k clus-
ters using a standard algorithm. One or
more representative samples from each
of these clusters are stored separately;
we have pk of these representative pat-
terns if we choose one representative
per cluster. These pk representatives
are further clustered into k clusters and
the cluster labels of these representa-
tive patterns are used to relabel the
original pattern matrix. We depict this
two-level algorithm in Figure 23. It is
possible to extend this algorithm to any
number of levels; more levels are re-
quired if the data set is very large and
the main memory size is very small
[Murty and Krishna 1980]. If the single-
link algorithm is used to obtain 5 clus-
ters, then there is a substantial savings
in the number of computations as
shown in Table II for optimally chosen p
when the number of clusters is fixed at
5. However, this algorithm works well
only when the points in each block are
reasonably homogeneous which is often
satisfied by image data.

A two-level strategy for clustering a
data set containing 2,000 patterns was
described in Stahl [1986]. In the first
level, the data set is loosely clustered
into a large number of clusters using
the leader algorithm. Representatives
from these clusters, one per cluster, are
the input to the second level clustering,
which is obtained using Ward’s hierar-
chical method.

5.12.2 Incremental Clustering. In-
cremental clustering is based on the
assumption that it is possible to con-
sider patterns one at a time and assign
them to existing clusters. Here, a new
data item is assigned to a cluster with-
out affecting the existing clusters signif-
icantly. A high level description of a
typical incremental clustering algo-
rithm is given below.

An Incremental Clustering Algo-
rithm
(1) Assign the first data item to a clus-

ter.

(2) Consider the next data item. Either
assign this item to one of the exist-
ing clusters or assign it to a new
cluster. This assignment is done
based on some criterion, e.g. the dis-
tance between the new item and the
existing cluster centroids.

(3) Repeat step 2 till all the data items
are clustered.

The major advantage with the incre-
mental clustering algorithms is that it
is not necessary to store the entire pat-
tern matrix in the memory. So, the
space requirements of incremental algo-
rithms are very small. Typically, they
are noniterative. So their time require-
ments are also small. There are several
incremental clustering algorithms:

(1) The leader clustering algorithm
[Hartigan 1975] is the simplest in
terms of time complexity which is
O~nk!. It has gained popularity be-
cause of its neural network imple-
mentation, the ART network [Car-
penter and Grossberg 1990]. It is
very easy to implement as it re-
quires only O~k! space.
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Figure 23. Divide and conquer approach to
clustering.

Table II. Number of Distance Computations (n)
for the Single-Link Clustering Algorithm and a

Two-Level Divide and Conquer Algorithm

n Single-link p Two-level

100 4,950 1200
500 124,750 2 10,750
100 499,500 4 31,500
10,000 49,995,000 10 1,013,750

Data Clustering • 295

ACM Computing Surveys, Vol. 31, No. 3, September 1999



(2) The shortest spanning path (SSP)
algorithm [Slagle et al. 1975] was
originally proposed for data reorga-
nization and was successfully used
in automatic auditing of records
[Lee et al. 1978]. Here, SSP algo-
rithm was used to cluster 2000 pat-
terns using 18 features. These clus-
ters are used to estimate missing
feature values in data items and to
identify erroneous feature values.

(3) The cobweb system [Fisher 1987] is
an incremental conceptual cluster-
ing algorithm. It has been success-
fully used in engineering applica-
tions [Fisher et al. 1993].

(4) An incremental clustering algorithm
for dynamic information processing
was presented in Can [1993]. The
motivation behind this work is that,
in dynamic databases, items might
get added and deleted over time.
These changes should be reflected in
the partition generated without sig-
nificantly affecting the current clus-
ters. This algorithm was used to
cluster incrementally an INSPEC
database of 12,684 documents corre-
sponding to computer science and
electrical engineering.

Order-independence is an important
property of clustering algorithms. An
algorithm is order-independent if it gen-
erates the same partition for any order
in which the data is presented. Other-
wise, it is order-dependent. Most of the
incremental algorithms presented above
are order-dependent. We illustrate this
order-dependent property in Figure 24
where there are 6 two-dimensional ob-
jects labeled 1 to 6. If we present these
patterns to the leader algorithm in the
order 2,1,3,5,4,6 then the two clusters
obtained are shown by ellipses. If the
order is 1,2,6,4,5,3, then we get a two-
partition as shown by the triangles. The
SSP algorithm, cobweb, and the algo-
rithm in Can [1993] are all order-depen-
dent.

5.12.3 Parallel Implementation. Re-
cent work [Judd et al. 1996] demon-

strates that a combination of algorith-
mic enhancements to a clustering
algorithm and distribution of the com-
putations over a network of worksta-
tions can allow an entire 512 3 512
image to be clustered in a few minutes.
Depending on the clustering algorithm
in use, parallelization of the code and
replication of data for efficiency may
yield large benefits. However, a global
shared data structure, namely the clus-
ter membership table, remains and
must be managed centrally or replicated
and synchronized periodically. The
presence or absence of robust, efficient
parallel clustering techniques will de-
termine the success or failure of cluster
analysis in large-scale data mining ap-
plications in the future.

6. APPLICATIONS

Clustering algorithms have been used
in a large variety of applications [Jain
and Dubes 1988; Rasmussen 1992;
Oehler and Gray 1995; Fisher et al.
1993]. In this section, we describe sev-
eral applications where clustering has
been employed as an essential step.
These areas are: (1) image segmenta-
tion, (2) object and character recogni-
tion, (3) document retrieval, and (4)
data mining.

6.1 Image Segmentation Using Clustering

Image segmentation is a fundamental
component in many computer vision

Y

X

1

3 4

6

2 5

Figure 24. The leader algorithm is order
dependent.
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applications, and can be addressed as a
clustering problem [Rosenfeld and Kak
1982]. The segmentation of the image(s)
presented to an image analysis system
is critically dependent on the scene to
be sensed, the imaging geometry, con-
figuration, and sensor used to transduce
the scene into a digital image, and ulti-
mately the desired output (goal) of the
system.

The applicability of clustering meth-
odology to the image segmentation
problem was recognized over three de-
cades ago, and the paradigms underly-
ing the initial pioneering efforts are still
in use today. A recurring theme is to
define feature vectors at every image
location (pixel) composed of both func-
tions of image intensity and functions of
the pixel location itself. This basic idea,
depicted in Figure 25, has been success-
fully used for intensity images (with or
without texture), range (depth) images
and multispectral images.

6.1.1 Segmentation. An image seg-
mentation is typically defined as an ex-
haustive partitioning of an input image
into regions, each of which is considered
to be homogeneous with respect to some
image property of interest (e.g., inten-
sity, color, or texture) [Jain et al. 1995].
If

( 5 $xij, i 5 1. . . Nr, j 5 1. . . Nc%

is the input image with Nr rows and Nc

columns and measurement value xij at
pixel ~i, j!, then the segmentation can
be expressed as 6 5 $S1, . . . Sk%, with
the lth segment

Sl 5 $~il1, jl1!, . . . ~ilNl
, jlNl

!%

consisting of a connected subset of the
pixel coordinates. No two segments
share any pixel locations (Si ù Sj 5 À
@i Þ j), and the union of all segments
covers the entire image ~ø i51

k Si 5
$1. . . Nr% 3 $1. . . Nc%!. Jain and
Dubes [1988], after Fu and Mui [1981]
identified three techniques for produc-
ing segmentations from input imagery:
region-based, edge-based, or cluster-
based.

Consider the use of simple gray level
thresholding to segment a high-contrast
intensity image. Figure 26(a) shows a
grayscale image of a textbook’s bar code
scanned on a flatbed scanner. Part b
shows the results of a simple threshold-
ing operation designed to separate the
dark and light regions in the bar code
area. Binarization steps like this are
often performed in character recogni-
tion systems. Thresholding in effect
‘clusters’ the image pixels into two
groups based on the one-dimensional
intensity measurement [Rosenfeld 1969;

x

x

x

1

2

3

Figure 25. Feature representation for clustering. Image measurements and positions are transformed
to features. Clusters in feature space correspond to image segments.
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Dunn et al. 1974]. A postprocessing step
separates the classes into connected re-
gions. While simple gray level thresh-
olding is adequate in some carefully
controlled image acquisition environ-
ments and much research has been de-
voted to appropriate methods for
thresholding [Weszka 1978; Trier and
Jain 1995], complex images require
more elaborate segmentation tech-
niques.

Many segmenters use measurements
which are both spectral (e.g., the multi-
spectral scanner used in remote sens-
ing) and spatial (based on the pixel’s
location in the image plane). The mea-
surement at each pixel hence corre-
sponds directly to our concept of a pat-
tern.

6.1.2 Image Segmentation Via Clus-
tering. The application of local feature
clustering to segment gray–scale images
was documented in Schachter et al.
[1979]. This paper emphasized the ap-
propriate selection of features at each
pixel rather than the clustering method-
ology, and proposed the use of image
plane coordinates (spatial information)
as additional features to be employed in
clustering-based segmentation. The goal
of clustering was to obtain a sequence of
hyperellipsoidal clusters starting with
cluster centers positioned at maximum
density locations in the pattern space,
and growing clusters about these cen-
ters until a x2 test for goodness of fit
was violated. A variety of features were

0 50 100 150 200 250 300

’x.dat’

(c)

(a) (b)

Figure 26. Binarization via thresholding. (a): Original grayscale image. (b): Gray-level histogram. (c):
Results of thresholding.
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discussed and applied to both grayscale
and color imagery.

An agglomerative clustering algo-
rithm was applied in Silverman and
Cooper [1988] to the problem of unsu-
pervised learning of clusters of coeffi-
cient vectors for two image models that
correspond to image segments. The first
image model is polynomial for the ob-
served image measurements; the as-
sumption here is that the image is a
collection of several adjoining graph
surfaces, each a polynomial function of
the image plane coordinates, which are
sampled on the raster grid to produce
the observed image. The algorithm pro-
ceeds by obtaining vectors of coefficients
of least-squares fits to the data in M
disjoint image windows. An agglomera-
tive clustering algorithm merges (at
each step) the two clusters that have a
minimum global between-cluster Ma-
halanobis distance. The same frame-
work was applied to segmentation of
textured images, but for such images
the polynomial model was inappropri-
ate, and a parameterized Markov Ran-
dom Field model was assumed instead.

Wu and Leahy [1993] describe the
application of the principles of network
flow to unsupervised classification,
yielding a novel hierarchical algorithm
for clustering. In essence, the technique
views the unlabeled patterns as nodes
in a graph, where the weight of an edge
(i.e., its capacity) is a measure of simi-
larity between the corresponding nodes.
Clusters are identified by removing
edges from the graph to produce con-
nected disjoint subgraphs. In image seg-
mentation, pixels which are 4-neighbors
or 8-neighbors in the image plane share
edges in the constructed adjacency
graph, and the weight of a graph edge is
based on the strength of a hypothesized
image edge between the pixels involved
(this strength is calculated using simple
derivative masks). Hence, this seg-
menter works by finding closed contours
in the image, and is best labeled edge-
based rather than region-based.

In Vinod et al. [1994], two neural
networks are designed to perform pat-
tern clustering when combined. A two-
layer network operates on a multidi-
mensional histogram of the data to
identify ‘prototypes’ which are used to
classify the input patterns into clusters.
These prototypes are fed to the classifi-
cation network, another two-layer net-
work operating on the histogram of the
input data, but are trained to have dif-
fering weights from the prototype selec-
tion network. In both networks, the his-
togram of the image is used to weight
the contributions of patterns neighbor-
ing the one under consideration to the
location of prototypes or the ultimate
classification; as such, it is likely to be
more robust when compared to tech-
niques which assume an underlying
parametric density function for the pat-
tern classes. This architecture was
tested on gray-scale and color segmen-
tation problems.

Jolion et al. [1991] describe a process
for extracting clusters sequentially from
the input pattern set by identifying hy-
perellipsoidal regions (bounded by loci
of constant Mahalanobis distance)
which contain a specified fraction of the
unclassified points in the set. The ex-
tracted regions are compared against
the best-fitting multivariate Gaussian
density through a Kolmogorov-Smirnov
test, and the fit quality is used as a
figure of merit for selecting the ‘best’
region at each iteration. The process
continues until a stopping criterion is
satisfied. This procedure was applied to
the problems of threshold selection for
multithreshold segmentation of inten-
sity imagery and segmentation of range
imagery.

Clustering techniques have also been
successfully used for the segmentation
of range images, which are a popular
source of input data for three-dimen-
sional object recognition systems [Jain
and Flynn 1993]. Range sensors typi-
cally return raster images with the
measured value at each pixel being the
coordinates of a 3D location in space.
These 3D positions can be understood
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as the locations where rays emerging
from the image plane locations in a bun-
dle intersect the objects in front of the
sensor.

The local feature clustering concept is
particularly attractive for range image
segmentation since (unlike intensity
measurements) the measurements at
each pixel have the same units (length);
this would make ad hoc transformations
or normalizations of the image features
unnecessary if their goal is to impose
equal scaling on those features. How-
ever, range image segmenters often add
additional measurements to the feature
space, removing this advantage.

A range image segmentation system
described in Hoffman and Jain [1987]
employs squared error clustering in a
six-dimensional feature space as a
source of an “initial” segmentation
which is refined (typically by merging
segments) into the output segmenta-
tion. The technique was enhanced in
Flynn and Jain [1991] and used in a
recent systematic comparison of range
image segmenters [Hoover et al. 1996];
as such, it is probably one of the long-
est-lived range segmenters which has
performed well on a large variety of
range images.

This segmenter works as follows. At
each pixel ~i, j! in the input range im-
age, the corresponding 3D measurement
is denoted ~xij, yij, zij!, where typically
xij is a linear function of j (the column
number) and yij is a linear function of i
(the row number). A k 3 k neighbor-
hood of ~i, j! is used to estimate the 3D
surface normal nij 5 ~nij

x , nij
y , nij

z ! at
~i, j!, typically by finding the least-
squares planar fit to the 3D points in
the neighborhood. The feature vector for
the pixel at ~i, j! is the six-dimensional
measurement ~xij, yij, zij, nij

x , nij
y , nij

z !,
and a candidate segmentation is found
by clustering these feature vectors. For
practical reasons, not every pixel’s fea-
ture vector is used in the clustering
procedure; typically 1000 feature vec-
tors are chosen by subsampling.

The CLUSTER algorithm [Jain and
Dubes 1988] was used to obtain seg-
ment labels for each pixel. CLUSTER is
an enhancement of the k-means algo-
rithm; it has the ability to identify sev-
eral clusterings of a data set, each with
a different number of clusters. Hoffman
and Jain [1987] also experimented with
other clustering techniques (e.g., com-
plete-link, single-link, graph-theoretic,
and other squared error algorithms) and
found CLUSTER to provide the best
combination of performance and accu-
racy. An additional advantage of CLUS-
TER is that it produces a sequence of
output clusterings (i.e., a 2-cluster solu-
tion up through a Kmax-cluster solution
where Kmax is specified by the user and
is typically 20 or so); each clustering in
this sequence yields a clustering statis-
tic which combines between-cluster sep-
aration and within-cluster scatter. The
clustering that optimizes this statistic
is chosen as the best one. Each pixel in
the range image is assigned the seg-
ment label of the nearest cluster center.
This minimum distance classification
step is not guaranteed to produce seg-
ments which are connected in the image
plane; therefore, a connected compo-
nents labeling algorithm allocates new
labels for disjoint regions that were
placed in the same cluster. Subsequent
operations include surface type tests,
merging of adjacent patches using a test
for the presence of crease or jump edges
between adjacent segments, and surface
parameter estimation.

Figure 27 shows this processing ap-
plied to a range image. Part a of the
figure shows the input range image;
part b shows the distribution of surface
normals. In part c, the initial segmenta-
tion returned by CLUSTER and modi-
fied to guarantee connected segments is
shown. Part d shows the final segmen-
tation produced by merging adjacent
patches which do not have a significant
crease edge between them. The final
clusters reasonably represent distinct
surfaces present in this complex object.
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The analysis of textured images has
been of interest to researchers for sev-
eral years. Texture segmentation tech-
niques have been developed using a va-
riety of texture models and image
operations. In Nguyen and Cohen
[1993], texture image segmentation was
addressed by modeling the image as a
hierarchy of two Markov Random
Fields, obtaining some simple statistics
from each image block to form a feature
vector, and clustering these blocks us-
ing a fuzzy K-means clustering method.
The clustering procedure here is modi-
fied to jointly estimate the number of

clusters as well as the fuzzy member-
ship of each feature vector to the vari-
ous clusters.

A system for segmenting texture im-
ages was described in Jain and Far-
rokhnia [1991]; there, Gabor filters
were used to obtain a set of 28 orienta-
tion- and scale-selective features that
characterize the texture in the neigh-
borhood of each pixel. These 28 features
are reduced to a smaller number
through a feature selection procedure,
and the resulting features are prepro-
cessed and then clustered using the
CLUSTER program. An index statistic

(a) (b)

(c) (d)

Figure 27. Range image segmentation using clustering. (a): Input range image. (b): Surface normals
for selected image pixels. (c): Initial segmentation (19 cluster solution) returned by CLUSTER using
1000 six-dimensional samples from the image as a pattern set. (d): Final segmentation (8 segments)
produced by postprocessing.
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[Dubes 1987] is used to select the best
clustering. Minimum distance classifi-
cation is used to label each of the origi-
nal image pixels. This technique was
tested on several texture mosaics in-
cluding the natural Brodatz textures
and synthetic images. Figure 28(a)
shows an input texture mosaic consist-
ing of four of the popular Brodatz tex-
tures [Brodatz 1966]. Part b shows the
segmentation produced when the Gabor
filter features are augmented to contain
spatial information (pixel coordinates).
This Gabor filter based technique has
proven very powerful and has been ex-
tended to the automatic segmentation of
text in documents [Jain and Bhatta-
charjee 1992] and segmentation of ob-
jects in complex backgrounds [Jain et
al. 1997].

Clustering can be used as a prepro-
cessing stage to identify pattern classes
for subsequent supervised classifica-
tion. Taxt and Lundervold [1994] and
Lundervold et al. [1996] describe a par-
titional clustering algorithm and a man-
ual labeling technique to identify mate-
rial classes (e.g., cerebrospinal fluid,
white matter, striated muscle, tumor) in
registered images of a human head ob-
tained at five different magnetic reso-

nance imaging channels (yielding a five-
dimensional feature vector at each
pixel). A number of clusterings were
obtained and combined with domain
knowledge (human expertise) to identify
the different classes. Decision rules for
supervised classification were based on
these obtained classes. Figure 29(a)
shows one channel of an input multi-
spectral image; part b shows the 9-clus-
ter result.

The k-means algorithm was applied
to the segmentation of LANDSAT imag-
ery in Solberg et al. [1996]. Initial clus-
ter centers were chosen interactively by
a trained operator, and correspond to
land-use classes such as urban areas,
soil (vegetation-free) areas, forest,
grassland, and water. Figure 30(a)
shows the input image rendered as
grayscale; part b shows the result of the
clustering procedure.

6.1.3 Summary. In this section, the
application of clustering methodology to
image segmentation problems has been
motivated and surveyed. The historical
record shows that clustering is a power-
ful tool for obtaining classifications of
image pixels. Key issues in the design of
any clustering-based segmenter are the

(a) (b)

Figure 28. Texture image segmentation results. (a): Four-class texture mosaic. (b): Four-cluster
solution produced by CLUSTER with pixel coordinates included in the feature set.
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choice of pixel measurements (features)
and dimensionality of the feature vector
(i.e., should the feature vector contain
intensities, pixel positions, model pa-
rameters, filter outputs?), a measure of
similarity which is appropriate for the
selected features and the application do-
main, the identification of a clustering
algorithm, the development of strate-
gies for feature and data reduction (to
avoid the “curse of dimensionality” and
the computational burden of classifying

large numbers of patterns and/or fea-
tures), and the identification of neces-
sary pre- and post-processing tech-
niques (e.g., image smoothing and
minimum distance classification). The
use of clustering for segmentation dates
back to the 1960s, and new variations
continue to emerge in the literature.
Challenges to the more successful use of
clustering include the high computa-
tional complexity of many clustering al-
gorithms and their incorporation of

(a) (b)

Figure 29. Multispectral medical image segmentation. (a): A single channel of the input image. (b):
9-cluster segmentation.

(a) (b)

Figure 30. LANDSAT image segmentation. (a): Original image (ESA/EURIMAGE/Sattelitbild). (b):
Clustered scene.
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strong assumptions (often multivariate
Gaussian) about the multidimensional
shape of clusters to be obtained. The
ability of new clustering procedures to
handle concepts and semantics in classi-
fication (in addition to numerical mea-
surements) will be important for certain
applications [Michalski and Stepp 1983;
Murty and Jain 1995].

6.2 Object and Character Recognition

6.2.1 Object Recognition. The use of
clustering to group views of 3D objects
for the purposes of object recognition in
range data was described in Dorai and
Jain [1995]. The term view refers to a
range image of an unoccluded object
obtained from any arbitrary viewpoint.
The system under consideration em-
ployed a viewpoint dependent (or view-
centered) approach to the object recog-
nition problem; each object to be
recognized was represented in terms of
a library of range images of that object.

There are many possible views of a 3D
object and one goal of that work was to
avoid matching an unknown input view
against each image of each object. A
common theme in the object recognition
literature is indexing, wherein the un-
known view is used to select a subset of
views of a subset of the objects in the
database for further comparison, and
rejects all other views of objects. One of
the approaches to indexing employs the
notion of view classes; a view class is the
set of qualitatively similar views of an
object. In that work, the view classes
were identified by clustering; the rest of
this subsection outlines the technique.

Object views were grouped into
classes based on the similarity of shape
spectral features. Each input image of
an object viewed in isolation yields a
feature vector which characterizes that
view. The feature vector contains the
first ten central moments of a normal-

ized shape spectral distribution, H# ~h!,
of an object view. The shape spectrum of
an object view is obtained from its range
data by constructing a histogram of

shape index values (which are related to
surface curvature values) and accumu-
lating all the object pixels that fall into
each bin. By normalizing the spectrum
with respect to the total object area, the
scale (size) differences that may exist
between different objects are removed.
The first moment m1 is computed as the
weighted mean of H# ~h!:

m1 5 O
h

~h!H# ~h!. (1)

The other central moments, mp, 2 # p
# 10 are defined as:

mp 5 O
h

~h 2 m1!
pH# ~h!. (2)

Then, the feature vector is denoted as
R 5 ~m1, m2, · · ·, m10!, with the
range of each of these moments being
@21,1#.

Let 2 5 $O1, O2, · · ·, On% be a col-
lection of n 3D objects whose views are
present in the model database, }D. The
ith view of the jth object, Oj

i in the
database is represented by ^Lj

i, Rj
i&,

where Lj
i is the object label and Rj

i is the
feature vector. Given a set of object
representations 5 i 5 $^L1

i , R1
i &, · · ·,

^Lm
i , Rm

i &% that describes m views of the
ith object, the goal is to derive a par-
tition of the views, 3 i 5 $C1

i ,
C2

i , · · ·, Cki

i %. Each cluster in 3 i con-
tains those views of the ith object that
have been adjudged similar based on
the dissimilarity between the corre-
sponding moment features of the shape
spectra of the views. The measure of
dissimilarity, between Rj

i and Rk
i , is de-

fined as:

$~Rj
i, Rk

i ! 5 O
l51

10

~Rjl
i 2 Rkl

i !2. (3)

6.2.2 Clustering Views. A database
containing 3,200 range images of 10 dif-
ferent sculpted objects with 320 views
per object is used [Dorai and Jain 1995].
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The range images from 320 possible
viewpoints (determined by the tessella-
tion of the view-sphere using the icosa-
hedron) of the objects were synthesized.
Figure 31 shows a subset of the collec-
tion of views of Cobra used in the exper-
iment.

The shape spectrum of each view is
computed and then its feature vector is
determined. The views of each object
are clustered, based on the dissimilarity
measure $ between their moment vec-
tors using the complete-link hierarchi-
cal clustering scheme [Jain and Dubes
1988]. The hierarchical grouping ob-
tained with 320 views of the Cobra ob-

ject is shown in Figure 32. The view
grouping hierarchies of the other nine
objects are similar to the dendrogram in
Figure 32. This dendrogram is cut at a
dissimilarity level of 0.1 or less to ob-
tain compact and well-separated clus-
ters. The clusterings obtained in this
manner demonstrate that the views of
each object fall into several distinguish-
able clusters. The centroid of each of
these clusters was determined by com-
puting the mean of the moment vectors
of the views falling into the cluster.

Dorai and Jain [1995] demonstrated
that this clustering-based view grouping
procedure facilitates object matching

Figure 31. A subset of views of Cobra chosen from a set of 320 views.
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in terms of classification accuracy and
the number of matches necessary for
correct classification of test views. Ob-
ject views are grouped into compact and
homogeneous view clusters, thus dem-
onstrating the power of the cluster-
based scheme for view organization and
efficient object matching.

6.2.3 Character Recognition. Clus-
tering was employed in Connell and
Jain [1998] to identify lexemes in hand-
written text for the purposes of writer-
independent handwriting recognition.
The success of a handwriting recogni-
tion system is vitally dependent on its
acceptance by potential users. Writer-
dependent systems provide a higher
level of recognition accuracy than writ-
er-independent systems, but require a
large amount of training data. A writer-

independent system, on the other hand,
must be able to recognize a wide variety
of writing styles in order to satisfy an
individual user. As the variability of the
writing styles that must be captured by
a system increases, it becomes more and
more difficult to discriminate between
different classes due to the amount of
overlap in the feature space. One solu-
tion to this problem is to separate the
data from these disparate writing styles
for each class into different subclasses,
known as lexemes. These lexemes repre-
sent portions of the data which are more
easily separated from the data of classes
other than that to which the lexeme
belongs.

In this system, handwriting is cap-
tured by digitizing the ~x, y! position of
the pen and the state of the pen point

0.
0
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15
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Figure 32. Hierarchical grouping of 320 views of a cobra sculpture.
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(up or down) at a constant sampling
rate. Following some resampling, nor-
malization, and smoothing, each stroke
of the pen is represented as a variable-
length string of points. A metric based
on elastic template matching and dy-
namic programming is defined to allow
the distance between two strokes to be
calculated.

Using the distances calculated in this
manner, a proximity matrix is con-
structed for each class of digits (i.e., 0
through 9). Each matrix measures the
intraclass distances for a particular
digit class. Digits in a particular class
are clustered in an attempt to find a
small number of prototypes. Clustering
is done using the CLUSTER program
described above [Jain and Dubes 1988],
in which the feature vector for a digit is
its N proximities to the digits of the
same class. CLUSTER attempts to pro-
duce the best clustering for each value
of K over some range, where K is the
number of clusters into which the data
is to be partitioned. As expected, the
mean squared error (MSE) decreases
monotonically as a function of K. The
“optimal” value of K is chosen by identi-
fying a “knee” in the plot of MSE vs. K.

When representing a cluster of digits
by a single prototype, the best on-line
recognition results were obtained by us-
ing the digit that is closest to that clus-
ter’s center. Using this scheme, a cor-
rect recognition rate of 99.33% was
obtained.

6.3 Information Retrieval

Information retrieval (IR) is concerned
with automatic storage and retrieval of
documents [Rasmussen 1992]. Many
university libraries use IR systems to
provide access to books, journals, and
other documents. Libraries use the Li-
brary of Congress Classification (LCC)
scheme for efficient storage and re-
trieval of books. The LCC scheme con-
sists of classes labeled A to Z [LC Clas-
sification Outline 1990] which are used
to characterize books belonging to dif-

ferent subjects. For example, label Q
corresponds to books in the area of sci-
ence, and the subclass QA is assigned to
mathematics. Labels QA76 to QA76.8
are used for classifying books related to
computers and other areas of computer
science.

There are several problems associated
with the classification of books using
the LCC scheme. Some of these are
listed below:

(1) When a user is searching for books
in a library which deal with a topic
of interest to him, the LCC number
alone may not be able to retrieve all
the relevant books. This is because
the classification number assigned
to the books or the subject catego-
ries that are typically entered in the
database do not contain sufficient
information regarding all the topics
covered in a book. To illustrate this
point, let us consider the book Algo-
rithms for Clustering Data by Jain
and Dubes [1988]. Its LCC number
is ‘QA 278.J35’. In this LCC num-
ber, QA 278 corresponds to the topic
‘cluster analysis’, J corresponds to
the first author’s name and 35 is the
serial number assigned by the Li-
brary of Congress. The subject cate-
gories for this book provided by the
publisher (which are typically en-
tered in a database to facilitate
search) are cluster analysis, data
processing and algorithms. There is
a chapter in this book [Jain and
Dubes 1988] that deals with com-
puter vision, image processing, and
image segmentation. So a user look-
ing for literature on computer vision
and, in particular, image segmenta-
tion will not be able to access this
book by searching the database with
the help of either the LCC number
or the subject categories provided in
the database. The LCC number for
computer vision books is TA 1632
[LC Classification 1990] which is
very different from the number QA
278.J35 assigned to this book.
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(2) There is an inherent problem in as-
signing LCC numbers to books in a
rapidly developing area. For exam-
ple, let us consider the area of neu-
ral networks. Initially, category ‘QP’
in LCC scheme was used to label
books and conference proceedings in
this area. For example, Proceedings
of the International Joint Conference
on Neural Networks [IJCNN’91] was
assigned the number ‘QP 363.3’. But
most of the recent books on neural
networks are given a number using
the category label ‘QA’; Proceedings
of the IJCNN’92 [IJCNN’92] is as-
signed the number ‘QA 76.87’. Mul-
tiple labels for books dealing with
the same topic will force them to be
placed on different stacks in a li-
brary. Hence, there is a need to up-
date the classification labels from
time to time in an emerging disci-
pline.

(3) Assigning a number to a new book is
a difficult problem. A book may deal
with topics corresponding to two or
more LCC numbers, and therefore,
assigning a unique number to such
a book is difficult.

Murty and Jain [1995] describe a
knowledge-based clustering scheme to
group representations of books, which
are obtained using the ACM CR (Associ-
ation for Computing Machinery Com-
puting Reviews) classification tree
[ACM CR Classifications 1994]. This
tree is used by the authors contributing
to various ACM publications to provide
keywords in the form of ACM CR cate-
gory labels. This tree consists of 11
nodes at the first level. These nodes are
labeled A to K. Each node in this tree
has a label that is a string of one or
more symbols. These symbols are alpha-
numeric characters. For example, I515
is the label of a fourth-level node in the
tree.

6.3.1 Pattern Representation. Each
book is represented as a generalized list
[Sangal 1991] of these strings using the
ACM CR classification tree. For the

sake of brevity in representation, the
fourth-level nodes in the ACM CR clas-
sification tree are labeled using numer-
als 1 to 9 and characters A to Z. For
example, the children nodes of I.5.1
(models) are labeled I.5.1.1 to I.5.1.6.
Here, I.5.1.1 corresponds to the node
labeled deterministic, and I.5.1.6 stands
for the node labeled structural. In a
similar fashion, all the fourth-level
nodes in the tree can be labeled as nec-
essary. From now on, the dots in be-
tween successive symbols will be omit-
ted to simplify the representation. For
example, I.5.1.1 will be denoted as I511.

We illustrate this process of represen-
tation with the help of the book by Jain
and Dubes [1988]. There are five chap-
ters in this book. For simplicity of pro-
cessing, we consider only the informa-
tion in the chapter contents. There is a
single entry in the table of contents for
chapter 1, ‘Introduction,’ and so we do
not extract any keywords from this.
Chapter 2, labeled ‘Data Representa-
tion,’ has section titles that correspond
to the labels of the nodes in the ACM
CR classification tree [ACM CR Classifi-
cations 1994] which are given below:

(1a) I522 (feature evaluation and selec-
tion),

(2b) I532 (similarity measures), and

(3c) I515 (statistical).
Based on the above analysis, Chapter 2 of
Jain and Dubes [1988] can be character-
ized by the weighted disjunction
((I522 ∨ I532 ∨ I515)(1,4)). The weights
(1,4) denote that it is one of the four chap-
ters which plays a role in the representa-
tion of the book. Based on the table of
contents, we can use one or more of the
strings I522, I532, and I515 to represent
Chapter 2. In a similar manner, we can
represent other chapters in this book as
weighted disjunctions based on the table of
contents and the ACM CR classification
tree. The representation of the entire book,
the conjunction of all these chapter repre-
sentations, is given by ~~~I522 ∨ I532 ∨
I515!~1,4! ∧ ~~I515 ∨ I531!~2,4!! ∧
~~I541 ∨ I46 ∨ I434!~1,4!!!.
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Currently, these representations are
generated manually by scanning the ta-
ble of contents of books in computer
science area as ACM CR classification
tree provides knowledge of computer
science books only. The details of the
collection of books used in this study are
available in Murty and Jain [1995].

6.3.2 Similarity Measure. The simi-
larity between two books is based on the
similarity between the corresponding
strings. Two of the well-known distance
functions between a pair of strings are
[Baeza-Yates 1992] the Hamming dis-
tance and the edit distance. Neither of
these two distance functions can be
meaningfully used in this application.
The following example illustrates the
point. Consider three strings I242, I233,
and H242. These strings are labels
(predicate logic for knowledge represen-
tation, logic programming, and distrib-
uted database systems) of three fourth-
level nodes in the ACM CR
classification tree. Nodes I242 and I233
are the grandchildren of the node la-
beled I2 (artificial intelligence) and
H242 is a grandchild of the node labeled
H2 (database management). So, the dis-
tance between I242 and I233 should be
smaller than that between I242 and
H242. However, Hamming distance and
edit distance [Baeza-Yates 1992] both
have a value 2 between I242 and I233
and a value of 1 between I242 and
H242. This limitation motivates the def-
inition of a new similarity measure that
correctly captures the similarity be-
tween the above strings. The similarity
between two strings is defined as the
ratio of the length of the largest com-
mon prefix [Murty and Jain 1995] be-
tween the two strings to the length of
the first string. For example, the simi-
larity between strings I522 and I51 is
0.5. The proposed similarity measure is
not symmetric because the similarity
between I51 and I522 is 0.67. The mini-
mum and maximum values of this simi-
larity measure are 0.0 and 1.0, respec-
tively. The knowledge of the
relationship between nodes in the ACM

CR classification tree is captured by the
representation in the form of strings.
For example, node labeled pattern rec-
ognition is represented by the string I5,
whereas the string I53 corresponds to
the node labeled clustering. The similar-
ity between these two nodes (I5 and I53)
is 1.0. A symmetric measure of similar-
ity [Murty and Jain 1995] is used to
construct a similarity matrix of size 100
x 100 corresponding to 100 books used
in experiments.

6.3.3 An Algorithm for Clustering
Books. The clustering problem can be
stated as follows. Given a collection @
of books, we need to obtain a set # of
clusters. A proximity dendrogram [Jain
and Dubes 1988], using the complete-
link agglomerative clustering algorithm
for the collection of 100 books is shown
in Figure 33. Seven clusters are ob-
tained by choosing a threshold (t) value
of 0.12. It is well known that different
values for t might give different cluster-
ings. This threshold value is chosen be-
cause the “gap” in the dendrogram be-
tween the levels at which six and seven
clusters are formed is the largest. An
examination of the subject areas of the
books [Murty and Jain 1995] in these
clusters revealed that the clusters ob-
tained are indeed meaningful. Each of
these clusters are represented using a
list of string s and frequency sf pairs,
where sf is the number of books in the
cluster in which s is present. For exam-
ple, cluster c1 contains 43 books belong-
ing to pattern recognition, neural net-
works, artificial intelligence, and
computer vision; a part of its represen-
tation 5~C1! is given below.

5~C1! 5 ~~B718,1!, ~C12,1!, ~D0,2!,

~D311,1!, ~D312,2!, ~D321,1!,

~D322,1!, ~D329,1!, . . . ~I46,3!,

~I461,2!, ~I462,1!, ~I463, 3!,

. . . ~J26,1!, ~J6,1!,

~J61,7!, ~J71,1!)
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These clusters of books and the corre-
sponding cluster descriptions can be
used as follows: If a user is searching
for books, say, on image segmentation
(I46), then we select cluster C1 because
its representation alone contains the
string I46. Books B2 (Neurocomputing)
and B18 (Sensory Neural Networks: Lat-
eral Inhibition) are both members of clus-
ter C1 even though their LCC numbers
are quite different (B2 is QA76.5.H4442,
B18 is QP363.3.N33).

Four additional books labeled B101,
B102, B103, and B104 have been used to
study the problem of assigning classifi-
cation numbers to new books. The LCC
numbers of these books are: (B101)
Q335.T39, (B102) QA76.73.P356C57,
(B103) QA76.5.B76C.2, and (B104)
QA76.9D5W44. These books are as-
signed to clusters based on nearest
neighbor classification. The nearest
neighbor of B101, a book on artificial
intelligence, is B23 and so B101 is as-
signed to cluster C1. It is observed that
the assignment of these four books to
the respective clusters is meaningful,
demonstrating that knowledge-based
clustering is useful in solving problems
associated with document retrieval.

6.4 Data Mining

In recent years we have seen ever in-
creasing volumes of collected data of all
sorts. With so much data available, it is
necessary to develop algorithms which
can extract meaningful information
from the vast stores. Searching for use-
ful nuggets of information among huge
amounts of data has become known as
the field of data mining.

Data mining can be applied to rela-
tional, transaction, and spatial data-
bases, as well as large stores of unstruc-
tured data such as the World Wide Web.
There are many data mining systems in
use today, and applications include the
U.S. Treasury detecting money launder-
ing, National Basketball Association

coaches detecting trends and patterns of
play for individual players and teams,
and categorizing patterns of children in
the foster care system [Hedberg 1996].
Several journals have had recent special
issues on data mining [Cohen 1996,
Cross 1996, Wah 1996].

6.4.1 Data Mining Approaches.
Data mining, like clustering, is an ex-
ploratory activity, so clustering methods
are well suited for data mining. Cluster-
ing is often an important initial step of
several in the data mining process
[Fayyad 1996]. Some of the data mining
approaches which use clustering are da-
tabase segmentation, predictive model-
ing, and visualization of large data-
bases.

Segmentation. Clustering methods
are used in data mining to segment
databases into homogeneous groups.
This can serve purposes of data com-
pression (working with the clusters
rather than individual items), or to
identify characteristics of subpopula-
tions which can be targeted for specific
purposes (e.g., marketing aimed at se-
nior citizens).

A continuous k-means clustering algo-
rithm [Faber 1994] has been used to
cluster pixels in Landsat images [Faber
et al. 1994]. Each pixel originally has 7
values from different satellite bands,
including infra-red. These 7 values are
difficult for humans to assimilate and
analyze without assistance. Pixels with
the 7 feature values are clustered into
256 groups, then each pixel is assigned
the value of the cluster centroid. The
image can then be displayed with the
spatial information intact. Human view-
ers can look at a single picture and
identify a region of interest (e.g., high-
way or forest) and label it as a concept.
The system then identifies other pixels
in the same cluster as an instance of
that concept.

Predictive Modeling. Statistical meth-
ods of data analysis usually involve hy-
pothesis testing of a model the analyst
already has in mind. Data mining can
aid the user in discovering potential

310 • A. Jain et al.

ACM Computing Surveys, Vol. 31, No. 3, September 1999



hypotheses prior to using statistical
tools. Predictive modeling uses cluster-
ing to group items, then infers rules to
characterize the groups and suggest
models. For example, magazine sub-
scribers can be clustered based on a
number of factors (age, sex, income,
etc.), then the resulting groups charac-
terized in an attempt to find a model

which will distinguish those subscribers
that will renew their subscriptions from
those that will not [Simoudis 1996].

Visualization. Clusters in large data-
bases can be used for visualization, in
order to aid human analysts in identify-
ing groups and subgroups that have
similar characteristics. WinViz [Lee and
Ong 1996] is a data mining visualization
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Figure 33. A dendrogram corresponding to 100 books.
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tool in which derived clusters can be
exported as new attributes which can
then be characterized by the system.
For example, breakfast cereals are clus-
tered according to calories, protein, fat,
sodium, fiber, carbohydrate, sugar, po-
tassium, and vitamin content per serv-
ing. Upon seeing the resulting clusters,
the user can export the clusters to Win-
Viz as attributes. The system shows
that one of the clusters is characterized
by high potassium content, and the hu-
man analyst recognizes the individuals
in the cluster as belonging to the “bran”
cereal family, leading to a generaliza-
tion that “bran cereals are high in po-
tassium.”

6.4.2 Mining Large Unstructured Da-
tabases. Data mining has often been
performed on transaction and relational
databases which have well-defined
fields which can be used as features, but
there has been recent research on large
unstructured databases such as the
World Wide Web [Etzioni 1996].

Examples of recent attempts to clas-
sify Web documents using words or
functions of words as features include
Maarek and Shaul [1996] and Chekuri
et al. [1999]. However, relatively small
sets of labeled training samples and
very large dimensionality limit the ulti-
mate success of automatic Web docu-

ment categorization based on words as
features.

Rather than grouping documents in a
word feature space, Wulfekuhler and
Punch [1997] cluster the words from a
small collection of World Wide Web doc-
uments in the document space. The
sample data set consisted of 85 docu-
ments from the manufacturing domain
in 4 different user-defined categories
(labor, legal, government, and design).
These 85 documents contained 5190 dis-
tinct word stems after common words
(the, and, of) were removed. Since the
words are certainly not uncorrelated,
they should fall into clusters where
words used in a consistent way across
the document set have similar values of
frequency in each document.

K-means clustering was used to group
the 5190 words into 10 groups. One
surprising result was that an average of
92% of the words fell into a single clus-
ter, which could then be discarded for
data mining purposes. The smallest
clusters contained terms which to a hu-
man seem semantically related. The 7
smallest clusters from a typical run are
shown in Figure 34.

Terms which are used in ordinary
contexts, or unique terms which do not
occur often across the training docu-
ment set will tend to cluster into the

Figure 34. The seven smallest clusters found in the document set. These are stemmed words.
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large 4000 member group. This takes
care of spelling errors, proper names
which are infrequent, and terms which
are used in the same manner through-
out the entire document set. Terms used
in specific contexts (such as file in the
context of filing a patent, rather than a
computer file) will appear in the docu-
ments consistently with other terms ap-
propriate to that context (patent, invent)
and thus will tend to cluster together.
Among the groups of words, unique con-
texts stand out from the crowd.

After discarding the largest cluster,
the smaller set of features can be used
to construct queries for seeking out
other relevant documents on the Web
using standard Web searching tools
(e.g., Lycos, Alta Vista, Open Text).

Searching the Web with terms taken
from the word clusters allows discovery
of finer grained topics (e.g., family med-
ical leave) within the broadly defined
categories (e.g., labor).

6.4.3 Data Mining in Geological Da-
tabases. Database mining is a critical
resource in oil exploration and produc-
tion. It is common knowledge in the oil
industry that the typical cost of drilling
a new offshore well is in the range of
$30-40 million, but the chance of that
site being an economic success is 1 in
10. More informed and systematic drill-
ing decisions can significantly reduce
overall production costs.

Advances in drilling technology and
data collection methods have led to oil
companies and their ancillaries collect-
ing large amounts of geophysical/geolog-
ical data from production wells and ex-
ploration sites, and then organizing
them into large databases. Data mining
techniques has recently been used to
derive precise analytic relations be-
tween observed phenomena and param-
eters. These relations can then be used
to quantify oil and gas reserves.

In qualitative terms, good recoverable
reserves have high hydrocarbon satura-
tion that are trapped by highly porous
sediments (reservoir porosity) and sur-
rounded by hard bulk rocks that pre-

vent the hydrocarbon from leaking
away. A large volume of porous sedi-
ments is crucial to finding good recover-
able reserves, therefore developing reli-
able and accurate methods for
estimation of sediment porosities from
the collected data is key to estimating
hydrocarbon potential.

The general rule of thumb experts use
for porosity computation is that it is a
quasiexponential function of depth:

Porosity 5 K z e2F~x1, x2, ..., xm!zDepth. (4)

A number of factors such as rock types,
structure, and cementation as parame-
ters of function F confound this rela-
tionship. This necessitates the defini-
tion of proper contexts, in which to
attempt discovery of porosity formulas.
Geological contexts are expressed in
terms of geological phenomena, such as
geometry, lithology, compaction, and
subsidence, associated with a region. It
is well known that geological context
changes from basin to basin (different
geographical areas in the world) and
also from region to region within a ba-
sin [Allen and Allen 1990; Biswas 1995].
Furthermore, the underlying features of
contexts may vary greatly. Simple
model matching techniques, which work
in engineering domains where behavior
is constrained by man-made systems
and well-established laws of physics,
may not apply in the hydrocarbon explo-
ration domain. To address this, data
clustering was used to identify the rele-
vant contexts, and then equation discov-
ery was carried out within each context.
The goal was to derive the subset x1,
x2, ..., xm from a larger set of geological
features, and the functional relation-
ship F that best defined the porosity
function in a region.

The overall methodology illustrated
in Figure 35, consists of two primary
steps: (i) Context definition using unsu-
pervised clustering techniques, and (ii)
Equation discovery by regression analy-
sis [Li and Biswas 1995]. Real explora-
tion data collected from a region in the
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Alaska basin was analyzed using the
methodology developed. The data ob-
jects (patterns) are described in terms of
37 geological features, such as porosity,
permeability, grain size, density, and
sorting, amount of different mineral
fragments (e.g., quartz, chert, feldspar)
present, nature of the rock fragments,
pore characteristics, and cementation.
All these feature values are numeric
measurements made on samples ob-
tained from well-logs during exploratory
drilling processes.

The k-means clustering algorithm
was used to identify a set of homoge-
neous primitive geological structures
~g1, g2, ..., gm!. These primitives were
then mapped onto the unit code versus
stratigraphic unit map. Figure 36 de-
picts a partial mapping for a set of wells
and four primitive structures. The next
step in the discovery process identified
sections of wells regions that were made
up of the same sequence of geological
primitives. Every sequence defined a
context Ci. From the partial mapping of
Figure 36, the context C1 5 g2 + g1 +

g2 + g3 was identified in two well re-
gions (the 300 and 600 series). After the
contexts were defined, data points be-
longing to each context were grouped
together for equation derivation. The
derivation procedure employed multiple
regression analysis [Sen and Srivastava
1990].

This method was applied to a data set
of about 2600 objects corresponding to

sample measurements collected from
wells is the Alaskan Basin. The
k-means clustered this data set into
seven groups. As an illustration, we se-
lected a set of 138 objects representing a
context for further analysis. The fea-
tures that best defined this cluster were
selected, and experts surmised that the
context represented a low porosity re-
gion, which was modeled using the re-
gression procedure.

7. SUMMARY

There are several applications where
decision making and exploratory pat-
tern analysis have to be performed on
large data sets. For example, in docu-
ment retrieval, a set of relevant docu-
ments has to be found among several
millions of documents of dimensionality
of more than 1000. It is possible to
handle these problems if some useful
abstraction of the data is obtained and
is used in decision making, rather than
directly using the entire data set. By
data abstraction, we mean a simple and
compact representation of the data.
This simplicity helps the machine in
efficient processing or a human in com-
prehending the structure in data easily.
Clustering algorithms are ideally suited
for achieving data abstraction.

In this paper, we have examined var-
ious steps in clustering: (1) pattern rep-
resentation, (2) similarity computation,
(3) grouping process, and (4) cluster rep-
resentation. Also, we have discussed

Figure 35. Description of the knowledge-based scientific discovery process.
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statistical, fuzzy, neural, evolutionary,
and knowledge-based approaches to
clustering. We have described four ap-
plications of clustering: (1) image seg-
mentation, (2) object recognition, (3)
document retrieval, and (4) data min-
ing.

Clustering is a process of grouping
data items based on a measure of simi-
larity. Clustering is a subjective pro-
cess; the same set of data items often
needs to be partitioned differently for
different applications. This subjectivity
makes the process of clustering difficult.
This is because a single algorithm or
approach is not adequate to solve every
clustering problem. A possible solution
lies in reflecting this subjectivity in the
form of knowledge. This knowledge is
used either implicitly or explicitly in
one or more phases of clustering.
Knowledge-based clustering algorithms
use domain knowledge explicitly.

The most challenging step in cluster-
ing is feature extraction or pattern rep-
resentation. Pattern recognition re-
searchers conveniently avoid this step
by assuming that the pattern represen-

tations are available as input to the
clustering algorithm. In small size data
sets, pattern representations can be ob-
tained based on previous experience of
the user with the problem. However, in
the case of large data sets, it is difficult
for the user to keep track of the impor-
tance of each feature in clustering. A
solution is to make as many measure-
ments on the patterns as possible and
use them in pattern representation. But
it is not possible to use a large collection
of measurements directly in clustering
because of computational costs. So sev-
eral feature extraction/selection ap-
proaches have been designed to obtain
linear or nonlinear combinations of
these measurements which can be used
to represent patterns. Most of the
schemes proposed for feature extrac-
tion/selection are typically iterative in
nature and cannot be used on large data
sets due to prohibitive computational
costs.

The second step in clustering is simi-
larity computation. A variety of
schemes have been used to compute
similarity between two patterns. They
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Data Clustering • 315

ACM Computing Surveys, Vol. 31, No. 3, September 1999



use knowledge either implicitly or ex-
plicitly. Most of the knowledge-based
clustering algorithms use explicit
knowledge in similarity computation.
However, if patterns are not repre-
sented using proper features, then it is
not possible to get a meaningful parti-
tion irrespective of the quality and
quantity of knowledge used in similar-
ity computation. There is no universally
acceptable scheme for computing simi-
larity between patterns represented us-
ing a mixture of both qualitative and
quantitative features. Dissimilarity be-
tween a pair of patterns is represented
using a distance measure that may or
may not be a metric.

The next step in clustering is the
grouping step. There are broadly two
grouping schemes: hierarchical and par-
titional schemes. The hierarchical
schemes are more versatile, and the
partitional schemes are less expensive.
The partitional algorithms aim at maxi-
mizing the squared error criterion func-
tion. Motivated by the failure of the
squared error partitional clustering al-
gorithms in finding the optimal solution
to this problem, a large collection of
approaches have been proposed and
used to obtain the global optimal solu-
tion to this problem. However, these
schemes are computationally prohibi-
tive on large data sets. ANN-based clus-
tering schemes are neural implementa-
tions of the clustering algorithms, and
they share the undesired properties of
these algorithms. However, ANNs have
the capability to automatically normal-
ize the data and extract features. An
important observation is that even if a
scheme can find the optimal solution to
the squared error partitioning problem,
it may still fall short of the require-
ments because of the possible non-iso-
tropic nature of the clusters.

In some applications, for example in
document retrieval, it may be useful to
have a clustering that is not a partition.
This means clusters are overlapping.
Fuzzy clustering and functional cluster-
ing are ideally suited for this purpose.
Also, fuzzy clustering algorithms can

handle mixed data types. However, a
major problem with fuzzy clustering is
that it is difficult to obtain the member-
ship values. A general approach may
not work because of the subjective na-
ture of clustering. It is required to rep-
resent clusters obtained in a suitable
form to help the decision maker. Knowl-
edge-based clustering schemes generate
intuitively appealing descriptions of
clusters. They can be used even when
the patterns are represented using a
combination of qualitative and quanti-
tative features, provided that knowl-
edge linking a concept and the mixed
features are available. However, imple-
mentations of the conceptual clustering
schemes are computationally expensive
and are not suitable for grouping large
data sets.

The k-means algorithm and its neural
implementation, the Kohonen net, are
most successfully used on large data
sets. This is because k-means algorithm
is simple to implement and computa-
tionally attractive because of its linear
time complexity. However, it is not fea-
sible to use even this linear time algo-
rithm on large data sets. Incremental
algorithms like leader and its neural
implementation, the ART network, can
be used to cluster large data sets. But
they tend to be order-dependent. Divide
and conquer is a heuristic that has been
rightly exploited by computer algorithm
designers to reduce computational costs.
However, it should be judiciously used
in clustering to achieve meaningful re-
sults.

In summary, clustering is an interest-
ing, useful, and challenging problem. It
has great potential in applications like
object recognition, image segmentation,
and information filtering and retrieval.
However, it is possible to exploit this
potential only after making several de-
sign choices carefully.
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