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Abstract

This paper presents a novel statistical mixture model for natural language learning in infor-
mation retrieval. The described learning architecture is based on word occurrence statistics and
extracts hierarchical relations between groups of documents as well as an abstractive organization
of keywords. To train the model we derive a generalized, annealed version of the Expectation—
Maximization (EM) algorithm for maximum likelihood estimation. The benefits of the model for
interactive information retrieval and automated cluster summarization are experimentally investi-
gated.

1 Introduction

Intelligent processing of text and documents ultimately has to be considered as a problem of natural
language understanding. In this paper, I will present a statistical approach to learning of language
models for context—dependent word occurrences and discuss the applicability of this model for interactive
information retrieval. The proposed technique is purely data—driven and does not make use of domain—
dependent background information, nor does it rely on predefined document categories or a given list
of topics. The presented cluster—abstraction model (CAM) is a statistical mixture model [6, 5] which
organizes groups of documents in a hierarchy. Compared to most state-of-the-art techniques based
on agglomerative clustering (e.g., [4, 1, 9]) is has several advantages and additional features As a
generative model the most important advantages are: (i) a sound foundation on the likelihood principle
(likelihood as a global clustering criterion), (ii) the probabilistic inference mechanism, (iii) evaluation
of generalization performance for model complexity control, (iv) efficient model fitting by the EM
algorithm, (v) explicit representation of conditional independence relations. Additional advantages are
provided by the hierarchical nature of the model, namely: (vi) multiple resolution levels of document
clustering, (vii) discriminative topic descriptors for document groups, (viii) coarse-to-fine approach by
deterministic annealing.

2 Probabilistic Clustering of Documents

Let us emphasis the clustering aspect by first introducing a simplified, non—hierarchical version of the
CAM which performs ‘flat’ probabilistic clustering and is closely related to the model proposed in [7]
for word clustering. Let the symbols d; (1 < i< N) and w; (1 < j < M) denote documents and words
(word stems), respectively. Counts for word w; in document d; are denoted by n;; and n; = E]' ngj
is the total number of words in document d;. Following the standard mixture approach, it is assumed
that each document belongs to one out of K clusters C,. These hidden variables are represented
by indicator functions H;, € {0,1}, i.e., H;, = 1 if d; belongs to C,. Moreover, let us introduce



parameters pj|o = P(w;|Cy) for cluster-specific word probability distributions. Then we can specify a
joint probability model by?!,
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where 7, are parameters for the prior distribution of H;,. The factorial expression for the joint prob-
ability reflects conditional independence assumptions about word occurrences (bag-of-words model).
Starting from (1) the standard EM approach [2] yields the following coupled re-estimation equations
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These equations are very intuitive: The posteriors encode a probabilistic clustering of documents,
while the conditionals p,|o Tepresent average word distribution for documents belonging to group C,.
Of course, the simplified flat clustering model defined by (1) has several deficits. Most severe are
the lack of a multi-resolution structure and the inadequacy of the ‘prototypical” distributions p|o to
emphasis discriminative or characteristic words (they are in fact dominated by the most frequent word
occurrences). To cure this flaws is the task of the hierarchical extension presented in the next section.

3 Document Hierarchies and Abstraction

Most hierarchical document clustering techniques utilize agglomerative algorithms which generate a
cluster hierarchy or dendogram as a by-product of successive cluster merging. In the CAM we will
use an ezplicit abstraction model instead to represent hierarchical relations between document groups.
This is achieved by extending the ‘horizontal’ mixture model of the previous section with a ‘vertical’
component that captures the specificity of a particular word w; in the context of a document d;. It
is thus assumed that each word occurrence (d;, w;) was generated from an abstraction level A,, where
abstraction levels are identified with inner or terminal nodes of the cluster hierarchy (cf. Figure 1 (a)).

To formalize the sketched ideas, additional hidden variables V{; j), € {0, 1} are introduced for each
word occurrence with V{; jy, = 1 if (di,w;) was generated from A, . The hidden variables have to fulfill
the following sets of constraints: )" EA,,TCQ HioViijyw = 1, where A, T C, denotes the nodes A,
‘above’ Cy, i.€., nodes on the path to C,. A pictorial representation can be found in Figure 1 (b): if d; is
assigned to Cq the choices for abstraction levels of occurrences are restricted to the ‘active’ (highlighted)
vertical path.

Generalizing the non—hierarchical model, a probability distribution p,|, over words is attached to
each node (inner or terminal) of the hierarchy. The complete data model is given by

P((di,wj), Hio = 1, V(s jyo = 1p, ™, p) = Tapy|(i,a)Pj|v (4)

where the additional p parameters are prior probabilities for V' (p, (o) = 0 whenever A, ¥ C, in
the given tree). The prior probabilities p,|(; o) capture document—specific distribution over abstraction
levels (conditioned on the fact that d; belongs to C,). Marginalization over the hidden variables results

1For simplicity the number of words in a document is not treated as a random variable and assumed to be given a
priori.
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Figure 1: (a) Sketch of the cluster—abstraction structure, (b) the corresponding representation for
assigning occurrences to abstraction levels in terms of hidden variables.

in the following log-likelihood of the ‘double’ mixture model
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As for the simplified model before, we will derive an EM algorithm for model fitting. The E—step requires
to compute (joint) posterior probabilities of the form P(H;o V(i j), = L|p°td, 7o' p°'d) (abbreviated by

¥ in the sequel). After decomposing by the chain rule one obtains
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The M-step re-estimation equations are given by
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Finally, it may be worth taking a closer look at the predictive word probability distribution p;|; in
the CAM which is given by p;;; = >°, P(Hio = 1lp, ™))", puii,a)Pj|y- If we assume for simplicity
that P(H;o = 1l|p,7) = 1 for some @ = «y, then the word probability of d; is modeled as a mixture
of occurrences from different abstraction levels A,. This reflects the reasonable assumption that each
document contains a certain mixture of words ranging from general terms of ordinary language to highly
specific technical terms and specialty words.

There are three important problems which need also to be addressed in a successful application
of the CAM: First, one has to avoid the problem of overfitting. Second, it is necessary to specify a
method to determine a meaningful tree topology including the maximum number of terminal nodes.
And third, one may also want to find ways to reduce the sensitivity of the EM procedure to local
maxima. An answer to all three questions is provided by a generalization called annealed EM [3].
Annealed EM is closely related to a technique known as deterministic annealing that has been applied
to many clustering problems (e.g. [8, 7]). Since a throughout discussion of annealed EM is beyond the
scope of this paper, I will skip the theoretical background and focus on a procedural description. The
key idea in deterministic annealing is the introduction of a temperature parameter 7' € IRT. Applying
the annealing principle to the horizontal hidden variables H the corresponding posterior calculation in
(6) is generalized by replacing n;; in the exponent by n;; /7. Downweighting the number of observations
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Figure 2: (a) Abstract from the generated LEARN document collection, (b) representation in terms of
word stems, (c) words with lowest perplexity under the CAM for words not occuring in the abstract
(differentiated according to the hierarchy level).
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Figure 3: Group descriptions for exemplary inner nodes by most frequent words and by the highest
probability words from the respective CAM node.

by taking the likelihood contribution to the 1/7—th power for T' > 1 emphasizes the prior and will in
general increase the entropy of the (annealed) posterior probabilities. In annealed EM, T is utilized as
a control parameter which is initialized at a high value and successively lowered until the performance
on a held-out set starts to decrease. Annealing is advantageous for model fitting, since it offers a simple
and inexpensive way to control the effective model complexity. This avoids overfitting and improves the
average solution quality of EM procedures. Moreover, it also offers a way to generate tree topologies,
since annealing leads through a sequence of so-called phase transitions. More details on this subject
can be found in [3].

4 Results

All documents utilized in the experiments have been preprocessed by word suffix stripping with a
word stemmer. A standard stop word list has been utilized to eliminate the most frequent words, in
addition very rarely occuring words have also been eliminated. An example abstract and its index term
representation is depicted in Figure 2 (a),(b). The experiments reported are some spotlights selected
from a much larger number of performance evaluations. They are based on two datasets which form the
core of our current prototype system: a collection of 3609 recent papers with ‘learning’ as a titleword,
including all abstracts of papers from Machine Learning Vol. 10-28 (LEARN), and a dataset of 1568
recent papers with ‘cluster’ in the title (CLUSTER).

The first problem we consider is to estimate the probability for a word occurrence in a text based
on the statistical model. Figure 2 (¢) shows the most probable words from different abstraction levels,
which did not occur in the original text of Figure 2 (a). The abstractive organization is very helpful to
distinguish layers from trivial suggestions of unspecific word occurrences up to highly specific technical
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Figure 4: Top 6 levels of the cluster hierarchy for the LEARN dataset. Nodes are represented by their
most probable words.

terms.

One of the most important benefits of the CAM is the resolution—specific extraction of characteristic
keywords. In Figure 4 we have visualized the top 6 levels for the dataset LEARN. The overall hierarchical
organization of the documents is very satisfying, the topological relations between clusters seems to
capture important aspects of the inter-document similarities. In contrast to most multi—resolution
approaches the distributions at inner nodes of the hierarchy are not obtained by a coarsening procedure
which typically performs some sort of averaging over the respective subtree of the hierarchy. The
abstraction mechanism in fact leads to a specialization of the inner nodes. This specialization effect
makes the probabilities p,|, suitable for cluster summarization. Notice, how the low—level nodes capture
the specific vocabulary of the documents associated with clusters in the subtree below. The specific
terms become automatically the most probable words in the component distribution, because higher
level nodes account for more general terms. To stress this point we have compared the abstraction result
with probability distributions obtained by averaging over the respective subtree. Figure 3 summarizes
some exemplary comparisons showing that averaging mostly results in high probabilities for rather
unspecific terms, while the CAM node descriptions are highly discriminative. The node—specific word
distribution thus offer a principled and very satisfying solution to the problem of finding resolution—

specific index terms for document groups as opposed to many circulating ad hoc heuristics to distinguish
between typical and topical terms.



An example run for an interactive coarse-to-fine re-
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Figure 5: Example run of an interactive tions over nodes, and the automatic selection of proto-
image retrieval for documents on ‘texture— typical documents are particularly beneficial to support
based image segmentation’ with one level an interactive retrieval process. Due to the abstraction
look-ahead in the CAM hierarchy. mechanism the cluster summaries are expected to be

more comprehensible than descriptions derived by sim-
ple averaging. The hierarchy offers a direct way to re-
fine queries and can even be utilized to actively ask the
user for additional specifications.

Conclusion: The cluster—abstraction model is a novel statistical approach to natural language learning
for information retrieval which has a sound foundation on the likelihood principle. The dual organization
of document cluster hierarchies and keyword abstractions makes it a particularly interesting model for
interactive retrieval. The experiments carried out on small/medium scale document collections have
emphasized some of the most important advantages. Since the model extracts hierarchical structures
and supports resolution dependent cluster summarizations, the application to large scale databases
seems promising.
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