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Abstract

We present an original approach for non parametric mo-
tion analysis in image sequences. It relies on the statistical
modeling of distributions of local motion-related measure-
ments computed over image sequences. Contrary to pre-
viously proposed methods, the use of temporal multiscale
Gibbs models allows us to handle in a unified statistical
framework both spatial and temporal aspects of motion con-
tent. The important feature of our probabilistic scheme is to
make the exact computation of conditional likelihood func-
tions feasible and simple. It enables us to straightforwardly
achieve model estimation according to the ML criterion and
to benefit from a statistical point of view for classification
issues. We have conducted motion recognition experiments
over a large set of real image sequences comprising vari-
ous motion types such as temporal texture samples, human
motion examples and rigid motion situations.

1 Introduction

The interpretation of motion cues is at the core of visual
perception [2]. In the field of computer vision, research de-
voted to motion analysis was initially dedicated to the com-
plete recovery of motion information from image sequences
and relied on the computation of dense optic flow fields,
which is known to be an ill-posed problem [1, 10]. How-
ever, as emphasized in [6], it is not necessary to recover
such complete information to further analyze the dynamic
content in image sequences. The key point for given applic-
ations, such as motion classification [12] or action recogni-
tion [4], is rather to determine appropriate representation of
motion information directly computed from images. In this
paper, we follow this point of view and we tackle the motion
recognition issue with noa priori knowledge on the content
of the observed dynamic scenes. Our goal is then to design
a general framework to provide a global characterization of
motion content in image sequences.

As far as general dynamic content classification is con-
cerned, the use of non parametric techniques as opposed
to 2D parametric motion models appears attractive. In that

context, Nelson and Polana [12] introduced the notion of
temporal textures. They considered techniques originally
developed for spatial texture analysis to characterize dis-
tributions of local motion-related measurements computed
over image sequences. The resulting description of dy-
namic scenes can be interpreted in terms of motion activity.
New developments in that direction have been proposed for
motion-based video indexing and retrieval [5, 14].

We further investigate such an approach and we intro-
duce new probabilistic motion models with a view to hand-
ling both spatial and temporal properties of image motion
content within a unified statistical framework. We rely on
temporal multiscale Gibbs models to represent distributions
of local motion-related measurements. These statistical non
parametric motion models are exploited for motion recog-
nition and we handle a wide range of motion types from
rigid motion situations to temporal texture samples. The
remainder of this paper is organized as follows. Section 2
outlines the general ideas underlying our work. Section 3
presents the local motion-related measurements we use for
non parametric motion modeling. In Section 4, the statist-
ical modeling of motion information and the estimation of
these models are addressed. Section 5 presents the applic-
ation to motion classification and, Section 6 contains con-
cluding remarks.

2 Problem statement

Proposed approaches for non parametric motion analysis
mainly rely on techniques originally developed for texture
analysis. For instance, motion-based features from spatial
cooccurrences of normal flow fields were exploited in [12]
to classify sequences either as simple motions (rotation,
translation, divergence) or as temporal textures. In [14],
different motion-based descriptors still computed from nor-
mal flow fields were considered using other techniques de-
veloped for texture analysis (Fourier spectrum, difference
statistics). In both cases, the extracted features only yield
a global characterization on the spatial distribution of mo-
tion information in a given image (i.e., at a given instant).
However, as far as the description of the dynamic content
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in image sequences is concerned, it is also crucial to handle
the temporal properties of image motion distribution. Thus,
it appears necessary to combine the characterizations of
both spatial and temporal aspects of motion information to
achieve motion recognition. This can for instance be per-
formed using spatio-temporal Gabor filters applied to image
intensities as explored in [17].

On the other hand, the introduction of probabilistic mod-
els, such as Gibbs random fields [7, 18], has led to import-
ant advances in texture analysis. In particular, statistical
techniques appear more suited to properly formalize learn-
ing and classification issues. Therefore, we have further
investigated the analogy between texture analysis and non
parametric motion analysis, and we introduce statistical non
parametric motion models. The use of probabilistic models
for temporal texture synthesis has been investigated in [16].
However, the considered auto-regressive models cannot be
applied to motion modeling and recognition.

We prefer to rely on Gibbs models since there is a
straightforward relationship between cooccurrence meas-
urements and Gibbs models [8, 18]. Nevertheless, the dir-
ect use of general Gibbs models for recognition and classi-
fication issues reveals impossible. Indeed, their associated
likelihood function cannot be exactly computed due to the
unknown partition function, and then, we cannot compare
the conditional likelihoods of given observations w.r.t. two
different models. To alleviate this problem, we consider
Gibbs models associated to a causal formulation. It allows
us to exactly and easily compute the corresponding likeli-
hood functions. We finally introduce temporal multiscale
Gibbs models specified over sequences of maps of motion-
related quantities. This multiscale approach enables us to
define causal models which handle within a single statist-
ical framework both spatial and temporal aspects of image
motion information.

3 Local motion-related quantities

3.1 Local motion-related measurement

Our approach for non parametric motion analysis relies on
the statistical modeling of distributions of local motion-
related measurements. As previously stressed, dense op-
tic flow field estimation remains a difficult issue, especially
for complex dynamic scenes such as temporal textures. As
a consequence, we resort to local motion-related quantit-
ies directly computed from the spatio-temporal derivatives
of the intensity function [12, 14]. The Optic Flow Con-
straint Equation (OFCE) relates these derivatives to the real
displacementw(p) at pointp by assuming brightness con-
stancy along trajectories [10]:

w(p) � rI(p) + It(p) = 0 (1)

whererI is the spatial gradient of the intensity functionI
andIt its temporal derivative.

From equation (1), we can deduce the expression of the
normal flow,vn(p) = �It(p)=krI(p)k which is exploited
in [12, 14]. However, this quantity is known to be very
sensitive to the noise attached to the computation of the in-
tensity gradientrI . To overcome this problem, we con-
sider a weighted average of normal flows within a local win-
dow. The weights are given by the spatial intensity gradient
norms, which are a relevant measure of normal flow reli-
ability as pointed in [13]. Thus, we compute the following
local motion-related measurement which is more reliable
than normal flow:

vobs(p) =

X
q2F(p)

krI(q)k � jIt(q)j

max

0@�2;
X

q2F(p)

krI(q)k2

1A (2)

whereF(p) is a3� 3 window centered onp, �2 a predeter-
mined constant related to the noise level (typically,� = 5).

Obviously, we have lost any direction information by
considering the measurevobs(p). For instance, we will not
be able to discriminate two translations with different dir-
ections. However, we are not interested in determining spe-
cific motion values, but we aim at supplying a global char-
acterization of the dynamic content within image sequences
with a view to evaluating similarity in terms of motion activ-
ity. On the other hand, contrary to [12, 14], we do not
exploit the direction information attached to normal flows.
These directions are rather descriptors of the spatial texture
present in the observed scene whereas we are concerned
with a general description of motion content independent
of spatial scene characteristics.

Another important advantage of this motion-related
quantity is the existence of confidence bounds to evaluate its
reliability. Given a detection level of motion magnitudeÆ,
there are two boundslÆ(p) andLÆ(p) verifying the follow-
ing properties. If the motion-related measurementvobs(p) is
smaller than tolÆ(p), the magnitude of the real (unknown)
displacementkw(p)k at pointp is lower thanÆ. On the con-
trary, if vobs(p) is higher thanLÆ(p), kw(p)k is greater than
Æ. The two boundslÆ(p) andLÆ(p) are straightforwardly
computed from the spatial first-order derivatives of the in-
tensity function at pointp. For details on the expression of
these bounds, we let the reader refer to [13].

The OFCE (1) is known to present several shortcomings.
First, it can only handle displacements of rather small mag-
nitudes. Second, it is no longer valid in occlusion regions
over motion discontinuities, and even on sharp intensity dis-
continuities. To cope with these limitations, we have settle
a multiscale scheme based on the statistical test designed in
[9] to evaluate the validity of the OFCE (1). We first build
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Gaussian pyramids for the pair of successive images to be
processed. Then, at each pointp, we select the finest scale
for which the OFCE (1) is valid, and we compute at that
scale the measurementvobs(p) and boundslÆ(p) andLÆ(p).
If the OFCE remains invalid at all scales, we do not com-
pute any motion measurement at pointp.

3.2 Robust Markovian quantization

Our approach can be viewed as an extension of texture
modeling for grey level images, where local motion-related
quantities play a role similar to grey levels for texture ana-
lysis. One of the main differences lies in the continuous
nature of the motion measurements. Different reasons lead
us to quantize them. First, even if we consider continuous
values in our modeling framework, we will need in prac-
tice to cope with discrete states for model estimation and
storage. Second, for motion recognition, the definition of
a quantization range common to all processed image se-
quences is required to evaluate similarities between image
sequences. Third, we can exploit the confidence bounds of
the local motion-related measurements to define an efficient
quantization scheme.

The motion quantization issue is stated as a Markovian
labeling problem. Compared to a simple linear quantization
of the motion-related measurements, it presents several in-
terests. First, the resulting quantized motion-related meas-
urements can be regarded as approximations of the mag-
nitude of the real (unknown) displacements. Let� denote
the set of values of quantized motion-related measurements.
Let us define� = f�0 = 0; �1; �2; : : : ; �j�jg with 0 < �1 <
: : : < �j�j. The Markovian quantization comes to determ-
ine the interval[�i�1; �i] within which the magnitude of the
real (unknown) displacement at pointp is the more likely to
be. This is evaluated through a data-driven term involving
the motion-related measurementvobs(p) and the associated
confidence boundsf(l�i(p); L�i(p))g described in subsec-
tion 3.1. In addition, the use of a contextual labeling tech-
nique enables us to cope with spurious local observations.
Besides, experiments carried out on simple known motions
(translation, rotation, divergence) have demonstrated that
such a Markovian quantization provides us with quantized
motion-related measurements closer to the magnitude of the
real displacements, compared to a simple linear quantiza-
tion. These comparisons were evaluated between the map
of quantized motion-related measurements and the map of
magnitudes of the real known displacements (ground-truth),
in terms of mean square error and in terms ofL1 distance
of the occurrence histograms.

Let R be the spatial image grid,e = (ep)p2R the la-
bel field where each label takes its value in the set�, and
o = (vobs(p))p2R the observation field formed by the local
motion-related measurements. To achieve the Markovian

quantization, we adopt the MAP criterion. It comes to the
minimization of a global energy functionU [7]:

be = arg min
e2�jRj

U(e; o)

= arg min
e2�jRj

[U1(e; o) + U2(e)]
(3)

where the energy functionU is split into a data-driven term
U1(e; o) and a regularization termU2(e). In addition,U1
andU2 are expressed as the sum of potentialsV1 andV2:8>><>>:

U1(e; o) =
X
p2R

V1(ep; vobs(p))

U2(e) =
X

(p;q)2C

� � �(ep � eq)
(4)

where C denotes the set of binary cliques of the 4-
connectivity neighborhood,� a positive coefficient setting
the influence of the regularization (in practice,� is set to
2:0) and� a hard-redescending M-estimator, here Tukey’s
biweight function. It allows us to preserve the discontinuit-
ies present in the actual velocity field.

The potential functionV1 expresses how relevant a la-
bel is to describe a given motion quantity. Let us consider
a quantization level�i with i 2 J1; j�jK, whereJ1; j�jK is
the interval of discrete values comprised between 1 andj�j.
The potentialV1(�i; vobs(p)) evaluates how likely the mag-
nitude of the real (unknown) displacement at pointp is to
be within the interval[�i�1; �i]. It is defined as follows:

V1(�i; vobs(p)) = SupL�i�1
(p) (vobs(p))

+ Infl�i (p) (vobs(p))
(5)

SupL is a continuous step function centered inL, andInfl
is the opposite of a step function centered inl and rescaled
to be in the interval[0; 1].

The minimization issue (3) is achieved using a modified
version of the ICM algorithm and the initialization is given
by considering only the data-driven term in the minimiza-
tion.

4 Statistical non parametric motion
modeling

4.1 Temporal multiscale Gibbs models

In order to handle both the spatial and temporal aspects
of the dynamic content of image sequences, we have de-
signed a multiscale statistical framework. Given a sequence
of maps of quantized motion-related measurements, we in-
troduce at each point a vector of measurements computed at
different scales instead of considering only one single value.
Gibbs models are then specified on a sequence of maps of
vectors of multiscale motion-related measurements. The
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proposed probabilistic models enable the exact and easy
computation of the likelihood function attached to a given
model. A direct model estimation scheme according to the
Maximum Likelihood (ML) criterion can also be adopted.

Let v = (v0; v1; : : : ; vK) be a sequence ofK+1maps of
quantized motion-related measurements issued from a se-
quence ofK + 2 frames. From this sequencev, we build
a new sequencex = (x0; x1; : : : ; xK). For given instant
k 2 J0;KK and pointp in the image supportR, xk(p) is
defined as a vector of measures(x0k(p); : : : ; x

L
k (p)) at scales

0 toL which are computed by applying Gaussian filters of
increasing variance to the mapvk at pointp.

Our statistical modeling approach relies on the assump-
tion that the sequencex is the realization of a first-order
Markov chainsX = (X0; : : : ; Xk) such that:

PM(x) = PM(x0)

KY
k=1

PM(xkjxk�1) (6)

M refers to the underlying motion model to be defined later.
PM(x0) is the a priori distribution for the first image of
the sequence. In practice, we will consider no specifica
priori , i.e.,PM(x0) is constant. Let1=Z denote this con-
stant. In order to design purely causal models, we assume
that random variables(Xk(p))p2R at timek are independ-
ent conditionally toXk�1. We further consider that, for
given pointp and instantk, Xk(p) is also independent from
(Xk�1(q))q2Rnfpg w.r.t. Xk�1(p). Thus,PM(xk jxk�1) is
given by:

PM(xkjxk�1) =
Y
p2R

PM (xk(p)jxk�1)

=
Y
p2R

PM (xk(p)jxk�1(p))
(7)

For (k; p) 2 J1;KK�R, applying Bayes rule, we obtain:

PM (xk(p)jxk�1(p)) =

PM
�
x0k(p)jx

L
k (p); x

L�1
k (p); : : : ; x1k(p); xk�1(p)

�
� : : :� PM

�
xL�1k (p)jxLk (p); xk�1(p)

�
�PM

�
xLk (p)jxk�1(p)

�
(8)

Since fx0k(p); : : : ; x
L
k (p)g are multiscale local motion-

related measurements, accurate information is provided by
quantities computed at the finest scales, whereas quant-
ities attached to the coarsest levels convey more global
and smooth information. In terms of conditional depend-
ency, it leads to argue that, for any pointp at instantk
and scalel 2 J0; L � 2K, X l

k(p) is independent from
X l+2

k (p); :::; XL
k (p) w.r.t. X l+1

k (p). Similarly, consider-
ing the conditional dependency ofX l

k(p) w.r.t. Xk�1(p) =

fX0
k�1; : : : ; X

L
k�1(p)g, the most accurate information is

supplied by the motion-related measurementx0k�1(p) at
scale0. Thus, we also assume thatX l

k(p) is conditionally
independent offX1

k�1(p); : : : ; X
L
k�1(p)g w.r.t. X0

k�1(p).
Based on these two assumptions, expression (8) can be sim-
plified as follows:

PM (xk(p)jxk�1(p)) =

PM
�
x0k(p)jx

1
k(p); x

0
k�1(p)

�
� : : :� PM

�
xL�1k (p)jxLk (p); x

0
k�1(p)

�
�PM

�
xLk (p)jx

0
k�1(p)

�
(9)

This statistical setting involves the evaluation of “tri-
occurrences”, which induces a high complexity to spe-
cify the modelM. Besides, we noticed in practice
that scale cooccurrence distributions computed on pairs
f(xl�1k (p); xlk(p))g at two successive scalesl � 1 and
l exhibit high values for the terms close to the diag-
onal, whereas temporal cooccurrence distributions com-
puted on pairsf(xlk(p); x

0
k�1(p))g are more widespread.

As a consequence, temporal dependencies can be neg-
lected w.r.t scale dependencies. The conditional likelihood
PM (xk(p)jxk�1(p)) is finally written as:

PM (xk(p)jxk�1(p)) =

PM
�
x0k(p)jx

1
k(p)

�
� : : :� PM

�
xL�1k (p)jxLk (p)

�
�PM

�
xLk (p)jx

0
k�1(p)

� (10)

Thus, we only evaluate cooccurrences either computed at
successive scales or at two successive instants between
scales0 andL. Let us point out that cooccurrence statistics
computed between successive scales have proven interest-
ing properties for texture analysis and synthesis [3, 11, 15].

In order to deliver an exponential formulation of the like-
lihoodPM(x), we introduce the following notations:

PM
�
xLk (p)jx

0
k�1(p)

�
/ exp	L

M

�
xLk (p); x

0
k�1(p)

�
(11)

and8l 2 J0; L� 1K:

PM
�
xL�1k (p)jxLk (p)

�
/ exp	l

M

�
xlk(p); x

l+1
k (p)

�
(12)

where	M =
�
	l
M(�; �0)

	
(l;�;�0)2J0;LK��2

are the poten-
tials which explicitly specify modelM. To guarantee the
uniqueness of the potentials associated toPM, we impose
the following normalization constraint:

8(l; �0) 2 J0; LK� �;
X
�2�

exp	l
M(�; �0) = 1 (13)
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Using model potentials,PM(x) is given by:

PM(x) =
1

Z
exp

24 KX
k=1

X
p2R

	M(xk(p); xk�1(p))

35 (14)

where	M(xk(p); xk�1(p)) is the sum of temporal and
scale potentials:

	M(xk(p); xk�1(p)) = 	L
M(xLk (p); x

0
k�1(p))

+

L�1X
l=0

	l
M(xlk(p); x

l+1
k (p))

(15)

Specifying	M supplies the complete knowledge ofPM.
This provides us with a general statistical framework for
motion recognition. Besides, we can argue from expression
(14) that the introduced modelM is a Gibbs random field
for which the partition function is known and equalsZ. Let
us stress thatZ is independent of the considered model.

We can rewrite the expression (14) using temporal and
scale cooccurrences. We obtain a simple expression of
the likelihoodPM(x) involving the computation of a dot
product,	M � �(x), between the potentials associated
with the modelM and the set of temporal and scale cooc-
currence distributions�(x) computed for the sequence of
multiscale motion-related quantitiesx:

PM(x) =
1

Z
� exp

h
	M � �(x)

i

with 	M � �(x) =

l=LX
l=0

	l
M � �l(x)

(16)

where	l
M � �l(x) is the dot product between the temporal

(l = L) or scale (l 2 J0; L� 1K) cooccurrence distributions
and the potentials of modelM. The temporal cooccurrence
distribution�L(x) is defined as:8(�; �0) 2 �2,

�L(�; �0jx) =

KX
k=1

X
p2R

Æ(� � xLk (p))Æ(�
0 � x0k�1(p)) (17)

with Æ the Kronecker symbol. The scale cooccurrence dis-
tribution�l(x) for l 2 J0; L�1K is given by:8(�; �0) 2 �2,

�l(�; �0jx) =
KX
k=1

X
p2R

Æ(� � xlk(p))Æ(�
0 � xl+1k (p)) (18)

For l 2 J0; LK, the dot product	l
M ��l(x) is expressed as:

	l
M � �l(x) =

X
(�;�0)2�2

	l
M(�; �0) � �l(�; �0jx) (19)

The availability of an exponential formulation presents
several interests. First, it makes the computation of the con-
ditional likelihoodPM(x) for any sequencex and model

M feasible and simple. Then, the use of these probabil-
istic models for recognition or classification issues based on
ML or MAP criteria is straightforward. Second, all motion
information exploited by these models is contained in the
cooccurrence distributions. In particular, in order to eval-
uate the conditional likelihoodsfPMi

(x)g w.r.t. models
fMig for a given sequencex, it is not necessary to store the
entire sequencex. We only need to compute and store the
related temporal and scale cooccurrence distributions�(x).
The evaluation of the conditional likelihoodsfPMi

(x)g is
then simply achieved from the productsf	Mi

��(x)g using
expression (16).

4.2 Maximum likelihood estimation

We now describe how we estimate the non parametric mo-
tion modelM attached to a given image sequence. Given a
sequence of multiscale motion-related measurementsx, we
estimate the potentialsf	lbM(�; �0)g(l;�;�0)2J0;LK��2 of the

model cM which best fitsx. We resort to the ML criterion,
which leads to solve for the following issue:

cM = argmax
M

PM(x) (20)

Since the considered statistical formulation involves
products of conditional likelihoods as given by relation
(10), the ML model estimation only requires to compute
them. The potentials of the ML model estimatecM are given
by: 8(l; �; �0) 2 J0; LK� �2,

	lbM(�; �0) = log

0@�l(�; �0jx)=
X
�002�

�l(�00; �0jx)

1A (21)

Thus, the ML estimation of the model associated with a
sequencex is straightforward and directly results from the
computation of the set of temporal and scale cooccurrence
distributions�(x). In addition, we can achieve model com-
plexity reduction in order to supply an informative repres-
entation of the motion content while remaining parsimoni-
ous. After the ML estimation step, we select the relevant
potentials by evaluating likelihood ratios as described in [5].

5 Application to motion-based image
sequence classification

In order to demonstrate the ability of our non parametric
statistical motion modeling framework to characterize and
discriminate various motion types, we have carried out clas-
sification experiments over a set of image sequences in-
volving a variety of motion contents (rigid motion, pedes-
trian walking, temporal textures).
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A B C D E F G H

Figure 1: Experimental video set: for each of the eight motion classes (A) to (H), one image is displayed for each sequence
of the motion class. These classes correspond to various dynamic contents: (A) wind blown grass, (B) gentle sea waves, (C)
rough turbulent water, (D) wind blown trees, (E) anchor person, (F) moving escalator, (G) traffic, and (H) pedestrian walking.

5.1 Experimental set of image sequences

Our motion recognition experiments deal with eight mo-
tion classes. The set of video sequences comprises different
temporal textures, rigid motion situations and human mo-
tion samples. More precisely, it contains four kinds of tem-
poral textures: wind blown grass (A), gentle sea waves (B),
rough water turbulence (C), and wind blown trees (D). In
addition, a class of anchor shots (E) of low motion activity,
and two classes of rather rigid motion situations, moving
escalator shots (F) and traffic sequences (G), are included.
The last class (H) refers to sequences of pedestrian walking
either from left to right or from right to left.

Each motion class, except class (H), is represented by
three sequences of one hundred frames. Class (H) includes
ten sequences of thirty images (five shots involving a pedes-
trian moving from left to right and five ones for a pedestrian
walking from right to left). Fig.1 contains one image rep-
resentative of each sequence of each class (for class (I), we
have selected three sequences).

5.2 Motion learning and recognition stages

Based on the eight motion classes, we first achieve a super-
vised learning stage using a training set of image sequences.
Then, we carry out motion recognition experiments over a
test set. These two sets are defined as follows.

Each image sequence of the set described above is di-
vided into “micro-sequences” of six images. We obtain 57
samples in each motion class, which means that we consider
a set of 456 micro-sequences. The first ten micro-sequences
of the first sequence of each class (A) to (G) are used as the

training data. For class (H), since the sequences contain
only 30 frames, we consider the first five subsequences of
the first two sequences of this class. Finally, we obtain a
training set comprising 80 micro-sequences, and a test set
including 376 micro-sequences. LetC denote the set of
eight motion classes,Ac the training set for a given class
c 2 C, andT the set of test image sequences.

Given a classc 2 C, the learning stage consists in es-
timating the associated statistical motion modelMc. For
each elementa 2 Ac, we compute the sequence of maps of
multiscale motion-related measurementsxa and the related
set of temporal and scale cooccurrence distributions�(xa).
We then estimate the modelMc best fitting the observation
setfxaga2Ac

w.r.t. the ML criterion. We solve for:

Mc = argmax
M

" Y
a2Ac

PM(xa)

#
(22)

Using the exponential formulation ofPM(xa) given by re-
lation (16), we obtain:

Mc = argmax
M

"X
a2Ac

	M � �(xa)

#
(23)

Since the dot product	M � �(xa) is linear w.r.t. the cooc-
currence distribution�(xa), this expression leads to:

Mc = argmax
M

"
	M �

X
a2Ac

�(xa)

#
(24)

Thus, solving for (22) simply comes to determine the model
best fitting the average cooccurrence distributions�c over
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the set of cooccurrence distributionsf�(xa)ga2Ac
:

Mc = argmax
M

[	M � �c] (25)

with: 8(l; �; �0) 2 J0; LK� �2,

�l
c(�; �

0) =
X
a2Ac

�l(�; �0jxa) (26)

Potentials	Mc
are then directly computed from the cooc-

currence distribution�c using relation (21).
Using the set of statistical non parametric motion models

fMcgc2C, motion recognition is stated as a statistical infer-
ence issue based on the ML criterion. Givent in the test set
T , we compute its sequence of maps of multiscale motion-
related measurementsxt and the associated temporal and
scale cooccurrence distributions�(xt). To determine its
motion classct, we again resort to the ML criterion:

ct = argmax
c2C

PMc
(xt)

= argmax
c2C

�
	Mc

� �(xt)
� (27)

This only involves the computation of eight dot products
f	Mc

� �(xt)g between model potentialsf	Mc
gc2C and

cooccurrence distributions�(xt).

5.3 Motion recognition experiments

All the experiments have been conducted using the follow-
ing parameter setting. Quantization of motion-related meas-
urements involve 64 levels within range[0; 8]. We have
considered different values of the numberL of scale levels,
from 0 to 4. The scheme used for model complexity reduc-
tion leads to keep only10% to 20% of significant model
potentials (over about 1000 potentials for each set of model
potentials	M).

Let us point out that no multiscale information is used if
L = 0. In this case, no spatial aspect of motion content is
captured. We will refer to these models withL = 0 as the
Temporal Gibbs Models (TGM), whereas the models with
L � 1 are called the Temporal Multiscale Gibbs Models
(TMGM). In the sequel, the associated method for motion
recognition are resp. denoted as the TGM method and the
TMGM method. The comparison between these two meth-
ods will allow us to evaluate the interest of the combined
characterization of spatial and temporal aspects of motion
content through the considered multiscale modeling.

In Fig.2, we plot the average� and the standard deviation
�� , over the eight motion classes, of the correct classific-
ation rate obtained for the elements of the test setT . We
report results obtained using TMG and TMGM with 1 to
4 scale levels. Average rate� is greater than95% using

0 1 2 3 4
75

80

85

90

95

100

105

number L of scale levels

97.1

92.4

95.2

99.5

96

τ+∆τ
τ
τ−∆τ

Figure 2: Motion recognition results for the video base
presented in Fig. 1 using Temporal Multiscale Gibbs mod-
els (TMGM) withL 2 J1; 4K and Temporal Gibbs Models
(TGM) (L = 0). We report the average� and the stand-
ard deviation�� of the correct classification rate computed
over the eight motion classes.

TMGM, whereas we get only92:4% of correct classifica-
tion using TGM. The best results are obtained using TMGM
with L = 3 for which the mean classification rate is higher
than99% with a standard deviation lower than1. Thus, the
explicit combination of spatial and temporal modeling of
motion information through the proposed multiscale frame-
work outperforms the TGM method. Besides, the average
rate� decreases whenL is greater than to3. This is due
to the combination of two elements. First, the values of the
terms close to the diagonal in scale cooccurrence distribu-
tions�l(x) become higher over scale. Second, the more the
numberL of scale levels increases, the less influential the
motion information captured by the distribution of temporal
cooccurrences�L(x) is.

Table 1 provides a detailed evaluation of the recognition
results obtained using the TGM method and the TMGM
method withL = 3. In both cases, we report the per-
centage of correct and false classification for each motion
class. The comparison of the results shows that the TMGM
method outperforms the TGM method for all classes. The
correct classification rate is indeed always greater than to
97% using the TMGM method, whereas it is comprised
between69:6% and 100% using the TGM method. The
most significant improvements are obtained for classes (A)
and (E), for which the correct classification rate increases
respectively from83% to 97:9% and from69:6% to 100%.
In the last case,28:3% of test samples of class (E) are
wrongly classified into class (D). Let us point out that
micro-sequences of class (E) involve a low motion activity
with small displacements of the anchor person, and the tree
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sequences of class (D) include fluttering leaves with motion
of rather low magnitudes. The handling of spatial aspects
of motion distribution using TMGM allows us to perfectly
discriminate elements from classes (D) and (E).

A B C D E F G H
A 97.9 2.1

83.0 4.3 12.7
B 100.

100.
C 100.

100.
D 97.9 2.1

91.5 2.1 6.4
E 100.0

2.1 28.3 69.6
F 100.

2.1 97.9
G 100.

100.0
H 100.0

2.4 97.6

Table 1: Percentage of correct and false classification for
the eight considered motion. For each class, we report res-
ults obtained using TGM and TMGM withL = 3. For each
class, the first line (bold type) refers to the TMGM method
(for instance, for class (A), the percentage of samples as-
signed to class (A) and (C) were resp.97:9% and 2:1%
using TMGM), whereas experiments conducted with the
TGM method are reported on the second line (italic type).

6 Conclusion

We have presented a unified non parametric statistical mo-
tion modeling framework which copes with both temporal
and spatial aspects of dynamic scenes. It relies on temporal
multiscale Gibbs models of distributions of local motion-
related motion measurements. It can be straightforwardly
exploited for motion recognition, since the complete eval-
uation of conditional likelihood functions is easy. Model
estimation proceeds from ML criteria. We have shown that
the designed statistical framework can be applied to perform
supervised motion classification.

Our non parametric method is able to handle a wide
range of dynamic contents, from rigid motion to temporal
textures. Quite satisfactory results have been obtained in
motion recognition over a representative set of image se-
quences. This demonstrates the interest of considering non
parametric motion characterization. Furthermore, the use of
temporal multiscale models allows us to capture in an easy
and efficient way both spatial an temporal aspects of image
motion structure.
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