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Abstract

We present a statistical model for organizing image
collections which integrates semantic information
provided by associated text and visual information
provided by image features. The model is very promising
for information retrieval tasks such as database browsing
and searching for images based on text and/or image
features. Furthermore, since the model learns
relationships between text and image features, it can be
used for novel applications such as associating words
with pictures, and unsupervised learning for object
recognition.

1. Introduction

We present a method which organizes image databases
using both image features and associated text. By
integrating the two kinds of information during model
construction, the system learns links between the image
features and semantics which can be exploited for better
browsing (§3.1), better search (§3.2), and novel
applications such as associating words with pictures, and
unsupervised learning for object recognition (§4). The
system works by modeling the statistics of word and
feature occurrence and co-occurrence. We use a
hierarchical structure which further encourages semantics
through levels of generalization, as well as being a natural
choice for browsing applications. An additional advantage
of our approach is that since it is a generative model, it
implicitly contains processes for predicting image
components—words and features—from observed image
components. Since we can ask if some observed
components are predicted by others, we can measure the
performance of the model in ways not typically available
for image retrieval systems (§4). This is exciting because
an effective performance measure is an important tool for
further improving the model (§5).

A number of other researchers have introduced
systems for searching image databases. This work

includes search by text [1, 2], search by image feature
similarity [3-6], search by segment features [7], search for
specific types of images using more compressive methods
[8, 9], and search by image sketch [1]. A few systems
combine text and image data. Search using a simple
conjunction of keywords and image features is provided
in Blobworld [7]. Here the image segment color is
translated in a pre-processing step into one of a handful of
color categories. Thus, image feature search becomes a
text search, and standard database systems can be used
for the query. This is efficient, but potential for more
sophisticated use of image features is limited. Webseer
[10] uses similar ideas for query of images on the web,
but also indexes the results of a few automatically
estimated image features. These include whether the
image is a photograph or a sketch and notably the output
of a face finder. Going further, Cascia et al integrate some
text and histogram data in the indexing [11]. Others have
also experimented with using image features as part of a
query refinement process [12]. Enser and others have
studied the nature of the image database query task [13-
15]. The model we build on is developed in [16]. Others
also argue for statistical models of data for image
retrieval [17]. Finally, in the area of using associated text
for image understanding the work of Srihari and others
[18-22] bears mentioning.

For the image retrieval component of this work we
insisted that browsing was well supported. This is in
contrast with many existing systems where the main
access to the images is through query. This puts the
burden on the user to pose the correct question, and the
system to provide the correct prompts. It is easier for the
user to find an image of interest if some structure can be
imposed on the collection and exposed to the user. Other
work emphasizing this philosophy include the application
of multidimensional scaling using the Earth Mover’s
distance to image displays [23]. Our interest in browsing
leads us to consider a hierarchical model which imposes a
coarse to fine, or general to specific, structure on the
image collection. Such structure is part of semantics, and
therefore we propose that a hierarchical system is better
poised to capture semantics than a flat one.



2. Modeling Image Dataset Statistics

Our model is a generative hierarchical model, inspired
by one proposed for text by Hofmann [16, 24]. This
model is a hierarchical combination of the assymetric
clustering model which maps documents into clusters, and
the symmetric clustering model which models the joint
distribution of documents and features (the “aspect”
model). The data is modeled as being generated by a fixed
hierarchy of nodes, with the leaves of the hierarchy
corresponding to clusters. Each node in the tree has some
probability of generating each word, and similarly, each
node has some probability of generating an image
segment with given features. The documents belonging to
a given cluster are modeled as being generated by the
nodes along the path from the leaf corresponding to the
cluster, up to the root node, with each node being
weighted on a document and cluster basis. Conceptually a
document belongs to a specific cluster, but given finite
data we can only model the probability that a document
belongs to a cluster, which essentially makes the clusters
soft. We note also that clusters which have insufficient
membership are extinguished, and therefore, some of the
branches down from the root may end prematurely.

The model is illustrated further in Figure 1. For this
work we model documents as a sequence of words and a
sequence of segments, with the segments being taken

from the Blobworld representation [7]. To the extent that
the sunset image illustrated is in the third cluster, as
indicated in the figure, its words and segments are
modeled by the nodes along the path shown. Taking all
clusters into consideration, the document is modeled by a
sum over the clusters, weighted by the probability that the
document is in the cluster. Mathematically, the process
for generating the set of observations D associated with a
document d can be described by
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where c indexes clusters, i indexes items (words or image
segments), and l indexes levels. Note that given the hard
hierarchy, a cluster and a level together specify a node. In
words, equation (1) describes a weighted sum over
aspects which have tied parameters to force the
hierarchical structure. Since the aspects model the joint
distribution of documents and items, the weighting
P l c d( | , )  is a function of the document. When we
encounter a new document, we can either re-fit the model
to estimate P l c d( | , ) , or use a cluster specific
approximation, which generally works well, and is much
cheaper to compute.

The probabilities for an item, P i l c( | , ) , is
conditionally independent, given a node in the tree. A
node is uniquely specified by cluster and level. In the
case of a word, P i l c( | , )  is simply tabulated, being
determined by the appropriate word counts during
training. For image segments, we use Gaussian
distributions over a number of features capturing some
aspects of size, position, colour, texture, and shape. These
features taken together form a feature vector X. Each
node, subscripted by cluster c, and level l, specifies a
probability distribution over image segments by the usual
formula:
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In this work we assume independence of the features,
as learning the full covariance matrix leads to precision
problems. A reasonable compromise would be to enforce
a block diagonal structure for the covariance matrix to
capture the most important dependencies.

To train the model we use the Expectation-
Maximization algorithm [25]. This involves introducing
hidden variables H d c,  indicating that training document d
is in cluster c, and Vd i l, ,  indicating that item i of document
d was generated at level l. Additional details on the EM
equations can be found in [16].

We chose a hierarchical model over several non-
hierarchal possibilities because it best supports browsing
of large collections of images. Furthermore, because
some of the information for each document is shared
among the higher level nodes, the representation is also
more compact than a similar non-hierarchical one. This

Sun
Sky
Sea
Waves

Higher level nodes emit
more general words and
blobs (e.g. sky)

Lower level nodes
emit more specific
words and blobs
(e.g. waves)

Moderately general
words and blobs
(e.g. sun, sea)

Figure 1. Illustration of t he generative process
implicit in the statistical model. Each document
has some probability of being in each cluster. To
the extent that it is in a given cluster, it is
modeled by being generated by sampling from
the nodes on the path to the root.



economy is exactly why the model can be trained
appropriately. Specifically, more general terms and more
generic image segment descriptions will occur in the
higher level nodes because they occur more often. Of
course, this assumes a loose definition of general. For
example, if the word “the” is not removed from free text
descriptions of images, then it will be treated as a general
term.

We mention a few implementation details relevant for
scalability and avoiding over-training. The training
procedure, as described, can cluster a few thousand
images in a few hours on a state of the art PC. Since the
resource requirements, most notably memory, increase
rapidly with the number of images, going significantly
beyond this requires extra care. We have experimented
with several approaches. In the first approach we train on
a randomly selected subset of the images until the log
likelihood for held out data, randomly selected from the
remaining data, begins to drop. The model so found is
then used as a starting point for the next training round
using a second randomly selected set of images. This
method helps avoid over-training as well as reducing
resource usage.

A second method for reducing resource usage is to
limit cluster membership. We first compute an
approximate clustering by training on a subset. We then
cluster the entire dataset but only maintain the probability
that a point is in a cluster for the top 20 clusters. The rest
of the membership probabilities are assumed to be zero
for the next few iterations, at which point the top 20
clusters are re-estimated. Finally, we have experimented
with first clustering with reduced tree depth to get
approximate clusterings.

3. Testing and Using the Basic Model

We tested our method for stability by running the
fitting process a number of times on the same data with
different initial conditions, as the EM process is known to
be sensitive to the starting point. The resulting clusterings
had similar character, although numerical tests showed
that the exact structure was in fact somewhat sensitive to
the starting point. In a more important test we reran the
experiment, but now hid a percentage of the data (5, 10,
15, and 20 percent) from the training process.
Interestingly, this had little effect on the variance of the
cluster process. Thus we conclude that the clustering
process depends significantly more on the starting point
than on the exact images chosen for training.

The next general test was to verify that clustering on
both image segment features and text has an advantage
over either alone. Figure 2 shows 16 images from a
cluster found using text only, Figure 3 shows 16 images
found using only image features, and Figure 4 shows 16
images from each of two adjacent clusters, found using

both text and features. The cluster found using only text
contains images related through the word “ocean”, but
within this category contains a fair variety of images.
Figure 3 consists of visually similar images, but has
combined red coral and red flowers. Figure 4, on the
other hand, has broken the ocean images along visual
lines, separating images with significant amounts of red
(mostly coral), and ones which are predominantly blue.
Figure 2 shows that the breakdown is lost when only
words are used, and Figure 3 shows that some of the
semantics are lost when only image features are used.

One reason why clustering on both the text and image
segment features is generally more appropriate is simply
that people relate to images using both semantic and
visual content. For example, we may be interested in
pictures with flowers, but we may also be interested in
predominantly red flowers. The attribute red is not likely
to be added as a keyword, because its meaning is inherent
in the image. Using the combined text/feature strategy in
a hierarchical system, images with the associated word
“flowers” may be broken into associated clusters which
have predominantly red flowers, predominantly yellow
flowers, and predominantly green garden scenes.

The combined clustering approach is also best for an
important pragmatic reason. Browsing the results of
clustering with image segment features alone verifies that
they can provide some semantic coherence. Therefore it
is reasonable to expect that image features can sometimes
provide semantic coherence even if it is not available in
the words. Similarly, clustering on text alone yields some
visual coherence, and it is reasonable to expect that they
sometimes capture visual similarity which goes beyond
the capacity of our feature set, especially in the face of
segmentation errors.

3.1. Browsing

Most image retrieval systems do not support browsing,
likely because it is difficult to define and implement.
Rather these systems force the user to specify what they
are looking for with a query. This does not help the user
learn what kind of images can be found. Setting up image
databases so that their content is easy to internalize and
thus navigate is difficult, and normally involves much
human input. One of our goals in this work is to automate
this task.

A key issue to browsing is whether the clusters found
make sense to the user. If the user finds the clusters
coherent, then they can begin to internalize the kind of
structure they represent. Furthermore, a small portion of
the cluster can be used to represent the whole, and will
accurately suggest the kinds of pictures that will be found
by exploring that cluster further. Thus we posit that an
important first test of browsing suitability is whether the
clusters make sense to humans.



To investigate this question we set up the following
experiment. We first clustered roughly 3000 Corel images
into 64 clusters. An additional 64 random clusters were
generated from the same images. The random clusters
where matched in size to randomly selected true clusters.
The two sets were combined so that the clusters and non-

clusters were randomly interspersed. A subject was then
asked to view the clusters and say whether a candidate
cluster had sufficient coherence to be considered a
coherent unit. The definition of coherence was left up to
the subject, but the subject was aware that both semantics
and visual content could play a role, and that the

Figure 2. Some of the images from an ocean theme
cluster found by clustering on text only. This cluster
contains most the images in the two clusters in Figure 4,
but the red corals are mixed in with the other more
general ocean pictures.

Figure 3 An example of a cluster found using image
features alone. Here the coral images are found among
visually similar flower images. Clearly some semantics
are lost, although the grouping across semantic
categories is interesting.

Figure 4. Two adjacent clusters computed using both text and image segments. The words clearly help ensure
consistency in overall ocean/underwater themes, as well as making it so that the clusters are in neighboring leaves of the
tree. Using image segment features in the clustering promotes visual similarly among the images in the clusters, and here
ensures that the red coral is separated from the other ocean scenes which are generally quite blue.



occasional anomaly did not necessarily mean that a
cluster should be rated as a non-cluster, if the overall
coherence was adequate. We found that our subject was
able to separate the two classes with an accuracy of 94%.
Thus we conclude that our clusters likely have sufficient
coherence to be useful for browsing. Specifically, the
presentation of a small subset of the cluster as thumbnails
should indicate to the user whether that region of the data
is worth exploring.

3.2. Search

A second important facility for image databases is
retrieval based on user queries. We wish to support
queries based on text, image features, or both. We also
would like the queries to be soft in the sense that the
combinations of items is taken into consideration, but
documents which do not have a given item should still be
considered. Finally, we would like the queries to be easily
specified without reference to images already found.

Our approach to searching is to compute the
probability of each candidate image of emitting the query
items. Defining search by the computation of probabilities
very naturally yields an appealing soft query system. For
example, if we query the Corel images for an image with
“tiger” and “river”, we get a reasonable result despite the
fact that both words do not appear together with any
single image. However, “river” clusters with “water”,
possibly helped by image segment features, and therefore
a number of images of interest have high probability with
the query. Figure 5 shows the top results of the “river”
and “tiger” query.

Given a set of query items, Q, and a candidate
document d, we can express the probability that a
document produces the query by:
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Documents with a high score are then returned to the
user. A second approach is to find the probabilities that
the query is generated by each cluster, and then sample
from the clusters, weighted by the probability that the
cluster emits the query. This often works reasonably well
because cluster membership plays the dominant role (at
least for broad trees) in generating the documents, which
simply reflects the fact that the clusters are coherent.
Nonetheless, we have found that the results using (2) are
sometimes significantly better, and rarely worse.

We have implemented search for arbitrary
combinations of words and image features. For the
purposes of experimentation we specify features simply
by selecting segments from our available data, and using

the features of the selected segments. Clearly providing a
more flexible method of specifying image features is an
important next step. Part of such a system could employ a
user’s selection from features suggested by a returned
result set. This is as explored in the many “query by
example” image retrieval systems. However, this is only
one strategy, and we emphasize that our system can
retrieve images without starting from an example image.
This captures the users needs in some ways, but not in
others. Put differently, we can query for a dog by the
word “dog”, and if we want blue sky above the dog, then
we can add the appropriate segment feature to the query.
Working with pieces of other images is not required.

4. Pictures from Words and Words From
Pictures

Given the above search strategy, one can build an
application which takes text selected from a document,
and suggests images to go with the text. This “auto-
illustrate” application is essentially a process of linking
pictures to words. However, it should be clear by
symmetry that we can just as easily go the other way, and
link words to pictures. This “auto-annotate” process is
very interesting for a number of reasons. First, given an
image, if we can produce reasonable words for it, then we
can use existing text search infrastructure to broaden
searches beyond the confines of our system. For example,
consider image search by user sketch. If the sketch
contains an orange ball in the upper right corner, and if
that segment is associated with the words “sun” and

Figure 5. The results of the “river” and “tiger” query.
The words “tiger” and “river” never appear together.
Among tiger pictures, ones with the word “water”
tend to get selected because “river” and “water”
appear together in the training set. The same
applies to segments are similar to ones which co-
occur with the word “river” in training.



“sunset”, then text based query engines can be
automatically consulted for interesting images based on
these words, without having to be indexed by feature. The
images found could then be analyzed in more detail.

The association of text with images is even more
interesting from a computer vision perspective because it
is a form of minimally supervised learning of semantic
labels for image features. Although extreme accuracy in
this task is clearly wishful thinking, we argue that doing
significantly better than chance is useful, and with care
could be used to further boot-strap machine recognition.
We describe one step in this direction in the following
section.

To use the model to attach words to pictures, we
compute the probability that an image emits a proposed
word, given the observed segments, B:
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At a glance the term P l c B( | , )  is difficult to compute.

Interestingly, substituting the average value, P l c( | ) , only
slightly degrades the answer, compared with using a more
accurate estimate of P l c B( | , ) . The more accurate
estimate is obtained by essentially refitting the model for
a few iterations using the observations B, but without
updating node specific parameters.

Figure 6 shows some sample results. To further test
how well the annotation procedure works, we use the
model to predict image words based only on the
segments, and then compare the predicted words to the
keywords. We perform this test on the training data, and
two different test sets. The first set is randomly selected
from the held out set from the proposed training data. The
proposed training data comes from a number of Corel
CD’s. For the second set we use images from other CD’s.

Keywords
GRASS TIGER CAT FOREST

Predicted Words (rank order)
tiger cat grass people water
bengal buildings ocean forest
reef

Keywords
HIPPO BULL mouth walk

Predicted Words (rank order)
water hippos rhino river grass
reflection one-horned head
plain sand

Keywords
FLOWER coralberry LEAVES
PLANT

Predicted Words (rank order)
fish reef church wall people
water landscape coral sand
trees

Figure 6. Some annotation results showing the original image, the Blobworld segmentation, the Corel keywords, and the
predicted words in rank order. The test images were not in the training set, but did come from the same set of CD’s used
for training. Keywords in upper-case are in the vocabulary. The examples chosen descend in accuracy from excellent
(top) to poor (bottom). Flower examples similar to this one often do well, as the large, colorful segments provide a
significant cue. However, in this case, the blobs show more affinity to the ones in non-flower clusters. The prediction of
the word “reflection”, which is correct by the image, but not by the available keywords, illustrates how this method can be
used to finesse some very difficult problems. Reflection is proposed by the system because it occurs with words like
“water” and segments like the ones in the image.



It is important to consider such a hold out set because the
each Corel CD contains images with a single theme.

Given a test document and the associated words, we
average the predicted probability of each observed
keyword, which is the quantity the calculation above
seeks to maximize. We scale these probabilities by the
probability of occurrence, assuming uniform statistics,
which specifies the extent to which the model predicts the
word relative to complete ignorance. It is possible to do
better than complete ignorance without considering image
content by guessing words in proportion to their
frequency of occurrence. Thus a more rigid test is how we
do against this process, and thus we report a similar score,
where each prediction was normalized by the overall
probability of the word given the model. For a third
measure we look at the 15 top ranked words, scoring each
inversely to its rank. Thus, if a document word is
predicted at rank 5, then it gives a score of 1/3. This
measure is meant to capture the process of eyeballing the
results. If a word does not occur in the top 15 or so, we
loose interest in looking for it. Specifying a fixed cutoff
also makes such a measure less sensitive to vocabulary
size.

Table 1 summarizes the annotation result using the
three scoring methods and the three held out sets. We
average the results of 5 separate runs with different held
out sets. Using the comparison of sampling from the word
prior, we score 3.14 on the training data, 2.70 on non-
training data from the same CD set as the training data,
and 1.65 for test data taken from a completely different
set of CD’s.

4.1. Links to recognition

Given the task, we are not surprised that the results using
images from different CD’s are somewhat lower than the
results with images from the same CD as the training set.
The nature of the task being attempted is exemplified by

predicting words like SKY in images of airplanes, after
being trained on images of rhinos and tigers. Doing
significantly better than chance on this general task
indicates that the system has learnt some correspondences
between image components and words. This means that
the system has learnt, with minimal supervision,
something about recognition. This in turn is interesting in
the face of a key vision problem, namely how to approach
general recognition. Systems have been built which are
relatively effective at recognizing specific things, usually
under specific circumstances. Doing well at these tasks
has generally required a lot of high quality training data.
We also use a lot of data, but it is of a much more
available nature. There is no shortage of image data with
text, especially if one includes video. It seems that the
information required is contained in these data sets, and
therefore looking at the recognition problem in this way
should bear fruit.

5. Discussion

An important characteristic of the system is that we can
measure its performance in a principled way by taking
advantage of its predictive capabilities. In the previous
section we used this to measure the annotation
performance. The next step is to exploit this capability to
improve the model. We can use our performance measure
to study things like tree topology, data pre-processing,
compromises made for scalability, training parameters,
and word and segment vocabulary selection, as discussed
further below.

One possible problem facing the application of this
work to more general datasets, is that there may be words
in the vocabulary which have no relevance to visual
content. At best, such words cause random noise, but in
doing so they take away probability from words which
are more relevant. Some of these words could be culled if
they are standard stop words, but this will leave dataset-
dependent stop words. An example of such a word might
be the name of the person who catalogued the image.
Such words could be removed by observing that their
emission probabilities are spread out over the nodes.
Whether this automatic vocabulary reduction method
makes sense depends on the nature of the data set. In the
case of the Corel data set, the key word sets are both
small and pertinent, and a quick investigation indicates
that for this kind of data, global vocabulary selection is
not appropriate.

A more serious difficulty with attaching words to
pictures is that it relies on semantically meaningful
segmentation. Such segmentations for general images
will not become available in the near future. Our method
works because given a healthy amount of data, some
segmentations work well enough, and some words are
sufficiently correlated with the segment features. Many

Rank
Average

Relative to
uniform prior

Relative to
actual prior

Training data 0.64  (0.01) 4.92  (0.24) 3.14  (0.18)

Test data, from
same CD set as
training

0.60  (0.02) 4.53  (0.28) 2.70  (0.20)

Test on data from
different CD set
from training.

0.50  (0.02) 3.82  (0.13) 1.65  (0.12)

Table 1. Annotation results on the three kinds of test
data, with three different scoring methods. Error
estimates are given in parenthesis. The maximum
possible score is 1.0. A score of 0.5 indicates that an
average, predicted words are at rank 7—in other
words, quite likely to be in the top 10.



words and segments, however, just add to the noise. For
example, we expect that with good data, we should be
able to learn a relationship between an orange ball in the
upper half of the image and the word “sun”. On the other
hand, it would not surprise us if words like “omelet”—an
actual Corel keyword— are never reliably predicted. The
omelet is simply not obvious, even to a human, in any of
the pictures, and is rarely, if ever, segmented as such. In
general, some segments are more useful than others.

Given this analysis, it is compelling to use the model to
identify which words and image segments can be related
given the data and which cannot. It should then be
possible to use this information to improve the training
process. For example, if the word omelet cannot be
predicted by image segments, then it may be best to
remove it from further training. The same should apply to
image segments. If a given segment cannot be predicted
very well by the associated words, then perhaps it should
be culled from the data set.

We stress that these strategies are possible because we
have a way to measure performance. This is but one of the
advantages of using a generative statistical model. By
using such a model to integrate the semantic information
available in text and image segments, we can support
powerful browsing, creative searching, novel applications
such as attaching words to images, and may provide some
insight to the object recognition process.
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