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A Factor Graph Framework for
Semantic Video Indexing

Milind Ramesh Naphade, Igor V. Kozintsev, and Thomas S. Huang

Abstract—Video query by semantic keywords is one of the
most challenging research issues in video data management. To
go beyond low-level similarity and access video data content
by semantics, we need to bridge the gap between the low-level
representation and high-level semantics. This is a difficult multi-
media understanding problem. We formulate this problem as a
probabilistic pattern-recognition problem for modeling semantics
in terms of concepts and context. To map low-level features
to high-level semantics, we propose probabilistic multimedia
objects (multijects). Examples of multijects in movies include
explosion, mountain, beach, outdoor, music, etc. Semantic concepts
in videos interact and appear in context. To model this interaction
explicitly, we propose a network of multijects (multinet). To
model the multinet computationally, we propose a factor graph
framework which can enforce spatio-temporal constraints. Using
probabilistic models for multijects, rocks, sky, snow, water-body,
and forestry/greenery, and using a factor graph as the multinet, we
demonstrate the application of this framework to semantic video
indexing. We demonstrate how detection performance can be
significantly improved using the multinet to take inter-conceptual
relationships into account. Our experiments using a large video
database consisting of clips from several movies and based on
a set of five semantic concepts reveal a significant improvement
in detection performance by over 22%. We also show how the
multinet is extended to take temporal correlation into account.
By constructing a dynamic multinet, we show that the detection
performance is further enhanced by as much as 12%. With this
framework, we show how keyword-based query and semantic
filtering is possible for a predetermined set of concepts.

Index Terms—Factor graphs, hidden Markov models, likelihood
ratio test, multimedia understanding, probabilistic graphical net-
works, probability propagation, query by example, query by key-
words, ROC curves, semantic video indexing, sum-product algo-
rithm.

I. INTRODUCTION

T HE availability of digital video content has increased
tremendously in recent years. Rapid advances in the tech-

nology for media capture, storage, and transmission, and the
dwindling prices of these devices, has contributed to an amazing
growth in the amount of multimedia content that is generated.
While content generation and dissemination grows explosively,
there are very few tools to filter, classify, search, and retrieve it
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Fig. 1. Organizing a video with a ToC and SI). The ToC gives a top-down
break-up in terms of scenes, shots and key-frames. The SI lists key concepts
occurring in the video. The links indicate the exact location of these concepts
and the confidence measure.

efficiently. Lack of tools for efficient content-based access and
multimedia data mining threatens to render most of this data
useless. Current techniques in content-based retrieval for image
sequences support the paradigm of query by example using
similarity in low-level media features [1]–[6]. In this paradigm,
the query must be phrased in terms of a video clip or at least
a few key-frames extracted from the query clip. The retrieval
is based on a matching algorithm which ranks the database
clips according to a heuristic measure of similarity between the
query and the target.

Although effective for browsing and low-level search, there
are some basic problems, with this paradigm. The first is that
low-level similarity may not match with the user’s perception
of similarity. This is often caused by the user having high-level
semantics in mind, which the system cannot support. Secondly,
it is not realistic to assume that a person may have access to
a clip, which can represent, what the person wishes to find. In
order to be able to analyze content semantically, it is also es-
sential to fuse information from multiple modalities, especially
the image sequence and audio streams. Several existing sys-
tems fail to use this multimodality. To address these problems,
we need a semantic indexing, filtering, and retrieval scheme,
which can map low-level multimodal features to high-level se-
mantics.

One way of organizing a video for efficient browsing and
searching is shown in Fig. 1. On one hand, there is a system-
atic top-down breakdown of the video into scenes, shots and
key-frames. On the other hand there is a semantic index (SI),
which lists the key semantic concepts occurring in the shots. The
links connecting entries in the SI to shots/scenes in the Table of
Contents (ToC) also indicate a measure of confidence about the
occurrence of the particular concepts in the video.

1051–8215/02$17.00 © 2002 IEEE



NAPHADE et al.: FACTOR GRAPH FRAMEWORK FOR SEMANTIC VIDEO INDEXING 41

Automatic techniques for generating the ToC exist. The first
step in generating the ToC is the segmentation of the video track
into smaller units. Shot boundary detection can be performed
in compressed domain [7]–[9], as well as uncompressed do-
main [10]. Shots can be grouped based on continuity, temporal
proximity, and similarity to form scenes [5]. Most systems sup-
porting query by example [2]–[6] can be used to group shots
and enhance the ability to browse. The user may browse a video
and then provide one of the clips in the ToC structure as an ex-
ample to drive the retrieval systems mentioned earlier. Changet
al. [2] allow the user can provide a sketch of a dominant object
along with its color shape and motion trajectory. Key-frames
can be extracted from shots to help efficient browsing. The ToC
is thus useful in efficient browsing. The need for a semantic
index is felt to facilitate search using keywords or key concepts.
For a system to fetch clips of an aeroplane, the system must be
able to capture the semantic concept of an aeroplane in terms
of a model. Similarly, to support a query of theexplosion on a
beachkind, the system must understand how the conceptsex-
plosionandbeachare represented. This is a difficult problem.
The difficulty lies in the gap that exists between low-level media
features and high-level semantics. Query using keywords repre-
senting semantic concepts has motivated recent research in se-
mantic video indexing [11]–[14]. Recent attempts to introduce
semantics in the structuring of videos includes [15]–[17]. We
present novel ideas in semantic video indexing by learning prob-
abilistic multimedia representations of semantic events likeex-
plosionand sites likewaterfall [11]. Changet al. introduce the
notion of semantic visual templates [12]. Wolfet al.use hidden
Markov models to parse video [15]. Fermanet al. attempt to
model semantic structures likedialoguesin video [16].

In this paper, we present a novel probabilistic framework
to bridge this gap to some extent. We view the problem
of semantic video indexing as a multimedia understanding
problem. We apply advanced pattern-recognition techniques to
develop models representing semantic concepts and show how
these models can be used for filtering of semantic concepts
and retrieval using keywords. Semantic concepts do not occur
in isolation. There is always a context to the co-occurrence
of semantic concepts in a video scene. We believe that it can
be beneficial to model this context. We use a probabilistic
graphical network to model this context and demonstrate how
this leads to a significant improvement in the performance
of the scheme. We also show how the context can be used
to infer about some concepts based on their relation with
other detected concepts. We develop models for the following
semantic concepts:sky, snow, rocky-terrain, water-body,and
forestry/greenery. Using these concepts for our experiments,
we demonstrate how filtering and keyword-based retrieval can
be performed on multimedia databases.

The paper is organized as follows. In Section II, we present
a probabilistic framework of multijects and multinets to map
low-level features to semantics in terms of concepts and context.
In Section III, we discuss the preprocessing steps including
feature extraction, representation, segmentation and tracking.
We also discuss the details of the database used in subsequent
experiments. In Section IV, we present the experimental results
of detection for a set of five semantic concepts with and without

Fig. 2. A multiject for the semantic conceptoutdoor. The media support for
the labeloutdooris in the form of audio-visual features. In addition to this, there
may be support from other multijects representing semantic concepts likesky.

using the multinet to model spatial as well as spatio-temporal
context. We show how the use of the multinet enhances detection
performance in Section IV. We also discuss the application of this
framework to filter videos semantically in Section IV. Directions
for future research and conclusions are presented in Section V.

II. PROBABILISTIC FRAMEWORK OF MULTIJECTS AND

MULTINETS

A. Probabilistic Multimedia Objects (Multijects)

Users of video databases are interested in finding video clips
using queries, which represent high-level concepts. While such
semantic queries are very difficult to support exhaustively, they
might be supported partially, if models representing semantic
concepts are available. User queries might involvesky, car,
mountain, sunset, beach, explosion,etc. Detection of some of
these concepts may be possible, while some others may be
difficult to model using low-level features only. To support such
queries, we define amultiject. A multiject [11] is a probabilistic
multimedia object which has a semantic label and which sum-
marizes a time sequence of features extracted from multiple
media.Multijects can belong to any of the three categories:
objects (car, man, helicopter), sites (outdoor, beach), or events
(explosion, man-walking, ball-game). The features themselves
may be low-level features, intermediate-level visual templates,
or specialized concept detectors like face detectors or multijects
representing other semantic concepts. Fig. 2 shows an example.

B. The Multinet: A Network of Multijects

Semantic concepts are related to each other. One of the main
contributions of this paper is a computational framework in the
form of a probabilistic graphical network to model this interac-
tion or context. It is intuitively obvious that detection of certain
multijects boosts the chances of detecting certain other multi-
jects. Similarly, some multijects are less likely to occur in pres-
ence of others. For example, the detection ofskyandwaterboosts
thechancesofbeachand reduces thechancesofdetectingindoor.
An important observation from this interaction is that it might be
possible to infer some concepts (whose detection may be diffi-
cult) based on their interaction with other concepts (which are
relatively easier to detect). For example, it may be possible to de-
tect human speech in the audio stream and detect a human face
in the video stream and infer the concepthuman talking. To in-
tegrate all the multijects and model their interaction or context,
we therefore propose a network of multijects, which we call a
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Fig. 3. Conceptual figure of a multinet. The multinet captures the interaction
between various semantic concepts. The edges between multijects denote
interaction and the signs on the edges denote the nature of interaction.

multinet. A conceptual figure of a multinet is shown in Fig. 3 with
the positive signs in the figure indicating a positive interaction
and negative signs indicating a negative interaction. By taking
into account the relationship between various multijects, we can
enforce spatio-temporal constraints to do the following.

1) Enhance Detection:Detection of multijects can be en-
hanced by correcting the soft decisions based on the constraints
enforced by the context.

2) Support Inference:While some multijects may be easier
to detect, others may not provide us with the required degree
of invariance in feature spaces. For the detection of such mul-
tijects, the multinet can support inference based on the relation
that these multijects share with other multijects (which can be
detected with greater ease). For example, we can detect the mul-
tiject beachbased on the presence of such multijects aswater,
sand, trees,andboat. Based on this detection ofbeach, we can
then claim that the scene is anoutdoorscene.

3) Impose Prior Knowledge:The multinet can provide the
mechanism for imposing time-varying or time-invariant prior
knowledge of multiple modalities and enforce context changes
on the structure.

The multinet is thus a mechanism for imposing spatio-tem-
poral constraints governing the joint existence of semantic con-
cepts with spatio-temporal support.

C. Estimating Multiject Models

The multijects link the low-level features to high-level labels
through a probabilistic structure. Depending on the support, a
multiject enjoys in space and time, the structure in which the
features are probabilistically encoded varies. In general, the
multiject might either enjoy only spatial support statically within
a frame or enjoy spatio-temporal support in an image sequence
or audio frame sequence. We build our multiject models using
the Bayes decision theory [18], [19]. Let each observation
(image/audio frame) be represented in terms of a feature vector

. We characterize these features through their statistical prop-
erties. We assume that the features are drawn from probability
distribution functions under all possible mutually exclusive hy-
potheses. Under each hypothesis, we define a class-conditional
density function for the features and a prior on the hypothesis.
We assume that, while using the Bayes decision theory to choose
among the possible hypotheses, these class-conditional density

functions are known to us through estimation. In the simplest
form, we model a semantic concept as a binary random variable
and define the two hypotheses and as

(1)

where and denote the class-conditional proba-
bility density functions of the feature vectors conditioned on
the null hypothesis (concept absent) and the true hypothesis
(concept present) respectively. In case of sites (or static pat-
terns), these class-conditional density functions of the feature
vector under the true and null hypotheses are modeled as mix-
ture of multidimensional gaussians (Gaussian mixture models
or GMMs). The temporal flow is not taken into consideration. In
case of events and objects with spatio-temporal support, we use
hidden Markov models (HMM) with continuous multidimen-
sional Gaussian mixture observation densities in each state for
modeling the time series of the feature vectors of all the frames
within a shot under the null and true hypotheses. In the case of
temporal support, is assumed to represent the time series of
the feature vectors within a single video shot. Assuming that the
class conditional density functions are known to us and that the
cost of making a decision , when the true class is is
and is defined in (3)

(2)

We can use the Bayes decision rule to choose hypothesis
over for a new image/image sequence represented by fea-
tures if

(3)

Otherwise, we choose hypothesis. The test in (3) is known
as the likelihood ratio test [18].

As stated earlier, the use of (3) demands the knowledge of the
class conditional density functions. To evaluate these functions
using the maximum likelihood parameter estimation technique,
the EM algorithm [20], [21] is used in both cases to estimate
the means, covariance matrices, mixing proportions (GMM and
HMMS) and transition matrix (HMM).

In this paper, we present results of the detection using (3) in
Section IV for the following regional site multijects which use
visual features alone:sky, water, forest, rocks,andsnow. While
these five site multijects are used in our experiments in the re-
mainder of this paper, we have developed models for several
other multijects. Some of them are based on audio features, e.g.,
human-speech, music[22], andhelicopter. Others are based on
image sequence features e.g.,outdoor [23], beach, etc. Some
others are based on audio and video features e.g.,explosion, wa-
terfall [11]. Through these examples, we have demonstrated that
this framework is scalable. As long as the concepts belonging
to the three types—objects, sites, and events—offer some in-
variance in one or more features and there is a large training set
for estimating class-conditional density functions, we can model
the multiject and, thus, estimate the probabilistic mapping from
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low-level features to high-level semantics. While the construc-
tion of a large labeled training set can be a tedious procedure,
we have presented some preliminary results in alleviating the
burden of labeling large data-sets [24].

An important aspect of modeling semantics is the interaction
between semantic concepts, that forms the context. Humans use
their knowledge to enforce context. In Section II-D, we present
an elegant computational framework to model context in terms
of co-occurrence.

D. Factor Graphs

To model the interaction between multijects in a multinet,
we propose using a novelfactor graph[25]–[27] framework.
A factor graph is a bipartite graph that expresses how a
global function of many variables factors into a product of
local functions [26], [27]. Factor graphs subsume many other
graphical models including Bayesian networks and Markov
random fields. Many problems in signal processing and
learning are formulated as minimizing or maximizing a global
function marginalized for a subset of its arguments. The
algorithm which allows us to perform this efficiently, though
in most cases only approximately, is called thesum-product
algorithm . Based on a rule, thesum-product algorithm[27] is
used in factor graphs to compute various marginal functions
by distributed message-passing. Depending on the structure
of the global function represented by the factor graph, the
sum–product algorithm can lead to exact or approximate
computation of the marginal functions. Many algorithms in
various engineering and scientific areas turn out to be examples
of the sum-product algorithm. Famous examples include the
BCJR algorithm [28], the forward–backward algorithm [21],
Pearl’s belief propagation and belief revision algorithm [29]
operating in a Bayesian network.

Factor graphs were initially successfully applied in the area
of channel-error correction coding [30], [31] and specifically,
iterative decoding [32], [33]. Turbo decoding and other itera-
tive decoding techniques have, in the last few years, proven to
be landmark developments in coding theory. Before explaining
how factor graphs can be used to model global functions we in-
troduce some necessary notation. Most of the notation here fol-
lows Kschischanget al.[27]. Let be a set
of variables. Consider a function , with factors as follows:

(4)

where is the set of variables, which are the arguments of
the function . A factor graph for is defined as the bipar-
tite graph with two vertex classes and of sizes and

respectively, such that theth node in is connected to
the th node in if and only if is an argument of func-
tion . Fig. 4 shows a simple factor graph representation of

with function nodes
and variable nodes .

E. The Sum–Product Algorithm

The sum–product algorithm works by computing messages
at the nodes using a simple rule and then passing the messages

Fig. 4. Simple factor graph with a factorization off(x ; x ; x ) as
f (x ; x ) � f (x ; x ).

between nodes according to a selected schedule. For a discus-
sion on schedules, see Kschischanget al. [27]. A message from
a function node to a variable node is the product of all mes-
sages incoming to the function node with the function itself,
summarized for the variable associated with the variable node.
A message from a variable node to a function node is simply
the product of all messages incoming to the variable node from
other functions connected to it.

Consider a message on the edge connecting function node
to variable node . Let denote the message sent

along the edge from variable node to function node
. Also, let denote the message sent along the edge

from function node to function node . Further, let
denote the set of all the neighbors of nodeand let indicate the
summary operator. A summary operator summarizes a function
for a particular set of variables. For example consider a function

, then a possible summary operator could be the
summation operator in (5)

(5)

With this notation, the message computations performed by the
sum–product algorithm can be expressed as follows in (6) and
(7):

(6)

(7)

Probability propagation in Bayesian nets [29] is equivalent
to the application of the sum–product algorithm to the corre-
sponding factor graph. If the factor graph is a tree, exact infer-
ence is possible using a single set of forward and backward pas-
sage of messages. For all other cases, inference is approximate
and the message passing is iterative [27], leading to loopy prob-
ability propagation. This has a direct bearing on our problem
because relations between semantic concepts are complicated
and, in general, contain numerous cycles (e.g., see Fig. 3).

The single most significant outcome of using a factor graph
framework for a multinet is that the interaction between se-
mantic concepts need not be modeled as a causal entity. The
next most significant outcome is that loops and cycles can be
supported. It must be noted, though, that when the factor graph
is not a tree, the marginals computed are approximate.
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(a) (b) (c)

Fig. 5. A multinet: accounting for concept dependencies using a function equivalent to the joint mass function of five concepts. (a) Passing the messagesP (F =
0 j X ) andP (F = 1 j X ) to the variable nodes. (b) Propagating the messages received in (a) to the function node. (c) Propagating the messages from the function
node back to the variable nodes after appropriate marginalization.

F. Factor Graph Multinet

We now describe a frame-level factor graph to model the
probabilistic relations between various frame-level semantic
features defined in

if concept is present in the current frame
otherwise

(8)

To capture the co-occurrence relationship between the se-
mantic concepts at the frame level, we define a function node
which is connected to the variable nodes representing the con-
cepts, as shown in Fig. 5(a). This function node represents the
joint-probability mass function of the five semantic concepts
represented at frame level by the binary random variables

i.e., . The joint function over
all the random variables in the factor graph is then given by (9)

(9)

Each entry in the joint mass function table tells us about the
numerical viability of the configuration of the random vari-
ables. For example, if there are only two concepts,outdoor
andhelicopter , the entry corresponding to the configura-
tion tells us how likely it is to be outdoor,
without seeing or hearing a helicopter given our model of the
world (context), while the entry corresponding to the configu-
ration tells us how likely it is to hear or see a
helicopter in an indoor scene. Clearly, one would imagine that
it is more likely to see a helicopter while in an outdoor scene

than in an indoor scene .
Another observation is that if we are presented with very strong
evidence of having heard or seen a helicopter, this should boost
out belief of being in an outdoor scene. It is through intuitive
interactions like the ones mentioned in this example that the
multinet fuses context with evidence.

The function nodes below the five variable nodes in Fig. 5 de-
note the frame-level soft decisions for the binary random vari-
ables given the image features ,i.e., and

. These are then propagated to the function node.
At the function node, the messages are multiplied by the func-
tion, which is estimated from the co-occurrence of the concepts
in the training set. The function node then sends back messages
summarized for each variable. This modifies the soft decisions

at the variable nodes according to the high-level relationship be-
tween the five concepts. The probability mass function at the
function node in Fig. 5 is exponential in the number of concepts

and computational cost may increase quickly. To alleviate
this, we can enforce a factorization of the function in Fig. 6 as a
product of a set of local functions where each local function ac-
counts for the co-occurrence of two variables only. Fig. 6 shows
one iteration of message passing in the multinet with a factored
joint mass function.

Each function in Fig. 6 represents the joint probability mass
of those two variables that are its arguments (and there are
such functions), thus reducing the complexity. The joint func-
tion over all the random variables in the factor graph is now
given by

where and (10)

The factor graph is no longer a tree and exact inference be-
comes hard as the number of loops grows. We then apply it-
erative message passing based on the sum-product algorithm to
overcome this. Each iteration involves a set of messages passed
from variable nodes to function nodes and a set of messages
passed from the function nodes back to the variable nodes. Ap-
proximate marginals are obtained after a few iterations of mes-
sage passing. The most significant achievement of the factor-
ized multinet is that it makes the computational model of con-
text scalable. Estimating entries at each local function is highly
efficient computationally and estimating all the entries for the

functions is quadratic in the number of concepts. This is
a significant improvement computationally, as compared to the
estimation for the global function, which was exponential in the
number of concepts. The second most significant achievement
is the ability to model causal as well as noncausal interactions.
It is this ability that makes factor graphs an elegant framework
to implement the multinet as against causal probabilistic graph-
ical networks like the Bayesian networks [29], [34].

G. Dynamic Multinets: Extending the Dependence Temporally

In addition to the inter-conceptual intra-frame dependencies,
we can also model the inter-frame, intra-conceptual dependen-
cies. Since processing is temporally localized to frames within
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(a) (b) (c)

Fig. 6. Replacing the unfactored function in Fig. 5 by a product of ten local functions. Each local function now accounts for the co-occurrence of only two
variables. (a) Passing the messages computed in (15) to the variable nodes. (b) Propagating the messages received in (a) to the function node. (c) Propagating the
messages from the function node back to the variable nodes after appropriate marginalization.

Fig. 7. (a) Replicating the multinet in Fig. 5 for each frame in a shot and introducing temporal dependencies between the binary random variable representing
identical concepts at frame level in consecutive frames. The function node that appears below each variable node represents the message computed in (15).
(b) Repeating this for Fig. 6.

a shot, there is low probability of a concept appearing in a frame
and disappearing in the next frame. Modeling this temporal de-
pendency for each concept can lead to smoothing of the soft de-
cisions within each shot. These dependencies can be modeled
by extending the multinets in Figs. 5 and 6, as shown in Fig. 7.

The multinets in Figs. 5 and 6 represent a single slice or video
frame. We replicate the slice of factor graphs in Figs. 5 or 6 as
many times as the number of frames within a single video shot.
Between the nodes in consecutive slices, representing identical
concepts, we now introduce a function which captures the dy-
namics of this concept across frames. For a concept, let
and represent consecutive frames. Then the function represents
the transition matrix as

Fig. 7(a) and (b) show two consecutive time slices and extend
the models in Figs. 5 and 6, respectively. The horizontal links in
Fig. 7(a) and (b) connect the variable node for each concept in
a time slice to the corresponding variable node in the next time
slice through a function modeling the transition probability. This
framework now becomes a dynamic probabilistic network.

For inference, messages are iteratively passed locally within
each slice. This is followed by message passing across the time
slices in the forward direction and then in the backward direc-

tion. Accounting for temporal dependencies thus leads to tem-
poral smoothing of the soft decisions within each shot.

III. EXPERIMENTAL SETUP, PREPROCESSING, AND FEATURE

EXTRACTION

A. Experimental Setup

We have digitized movies of different genres including ac-
tion, adventure, romance, and drama to create a database of a
few hours of video. Data from eight movies has been used for
the experiments. Fig. 8 shows a random collection of shots from
some of the movies in the database and should convince the
reader of the tremendous variability in the data and represen-
tative nature of the database1 . The MPEG streams of data are
decompressed to perform shot-boundary detection, spatio-tem-
poral video-region segmentation and subsequent feature extrac-
tion. For all the experiments reported in this paper, segments
from over 1800 frames are used for training and segments from
another 9400 frames are used for testing. These images are ob-
tained by downsampling the videos temporally, in order to avoid
redundant images in the training set. In effect we are using a

1We have made an attempt to represent several genres of movies in the data-
base making it a collection of videos with significant variability. Unfortunately
no standard databases are available to us for the purpose of benchmarking. We
hope that with increasing interest of the multimedia retrieval community in se-
mantic indexing, a benchmark database will emerge.
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Fig. 8. Random collection of shots from some of the movies in the database.

training set of 18 000 frames and a test set of 94 000 frames.
Each frame in the video is of the size 176112 pixels. For
each concept, the model for the true hypothesis has five compo-
nents in the Gaussian mixture. For each concept, the model for
the null hypothesis has ten components in the gaussian mixture.
The reason for having more components for the model for the
null hypothesis is that the null hypothesis is expected to cover a
lot more variations than the true hypothesis. We model the five
site multijects:rocksrepresenting rocky terrain,skyrepresenting
the sky,snowrepresenting snow-covered ground,water repre-
senting water-bodies like lakes, rivers, oceans etc., andforest
representing vegetation and greenery.

Some multijects exist at the region level (face), while others
exist at the global or frame level (outdoor). To build multiject
models, we need to extract features at regional and global level
from the visual stream and features from the audio stream as
well.

B. Preprocessing and Feature Extraction

The video clips are segmented into shots using the algorithm
by Naphadeet al.[10]. We then use the spatio-temporal segmen-
tation in [2] applied separately to each shot to obtain regions ho-

Fig. 9. Spatio-temporal segmentation applied to each shot. (a) Frame from the
sequence. (b) Segmented version of the sequence.

mogeneous in color and motion. Depending on the genre of the
movie and the story line, shots may range from a few frames to
a few hundred frames. For large shots, artificial cuts are intro-
duced every 2 s. This ensures, that the spatio-temporal tracking
and segmentation does not break down due to appearance and
disappearance of regions. The segmentation and tracking algo-
rithm uses color, edge, and motion to perform segmentation
and computes the optical flow for motion estimation. Fig. 9
shows a video frame and its segmented version with six domi-
nant segments. These segments are labeled manually to create
the ground truth. Since they are tracked within each shot using
optical flow, the labels can be propagated to instances of the seg-
ments in all the frames within the shot.
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Each region is then processed to extract a set of features char-
acterizing the visual properties including the color, texture, mo-
tion. and structure of each region. We extract the following set
of features.2

1) Color: A normalized, linearized3 3-channel his-
togram is used, with 12 bins each, for hue , saturation ,
and intensity . The invariance to size, shape, intra-frame mo-
tion. and their relative insensitivity to noise makes color his-
tograms the most popular features for color content description.

2) Texture: Texture is a spatial property. A 2-D dependence
matrix, which captures the spatial dependence of gray-level
values contributing to the perception of texture, is called
a gray-level co-occurrence matrix (GLCM). A GLCM is a
statistical measure extensively used in texture analysis. In
general, we denote

(11)

where is the GLCM for the displacement vectorand
orientation and is the normalizing factor to make the
left-hand side of (11) a probability distribution. In our work, we
compute GLCMs of the channel using 32 gray levels and at
four orientations, corresponding to:values of 0, 45 , 90 , and
135 degrees, respectively. For all four GLCMs, we consider
pixels which are at a distance of 1 unit from the current pixel re-
spectively . For each of the four matrices (corresponding
to a fixed and ), six statistical features of the GLCMs are
computed. The features are Contrast, Energy, Entropy, Homo-
geneity, Correlation, and Inverse Difference Moment [35].

3) Structure: To capture the structure within each region, a
Sobel operator with a 3 3 window is applied to each region
and the edge map is obtained. Using this edge map an 18-bin
histogram of edge directions is obtained as in [36]. The edge
direction histogram is supposed to be a robust representation of
shape [37].

4) Shape: Moment invariants as in Dudaniet al. [38] are
used to describe shape of each region. For a binary image mask
the central moments are given by

(12)

where are the image coordinates,and are the mean
values of the and coordinates, respectively, and the order
of the central moment is .

5) Motion: The inter-frame affine motion parameters for
each region tracked by the spatio-temporal segmentation
algorithm are used as motion features.

6) Color Moments:The first-order moments and the
second-order central moments are computed for each of the
three channels and .

2Our aim is to work with a set of reasonable features. There is no claim to the
optimality of this set of features and it is definitely endorsed that better features
will lead to better performance.

3A linearized histogram of multiple channels is obtained by concatenating
the histogram of each channel. This avoids dealing with multi-dimensional his-
tograms.

In all, 98 features are extracted to represent the visual proper-
ties of the region, of which 84 features (color, texture, structure
and moments) are used for sites. For objects and events, all 98
features are used. A similar set/subset of features can also be
obtained at the global level without segmentation and also on
difference frames obtained using successive consecutive frames
[11].

Semantic concepts likeexplosion, helicopter-flying, man-
talking,etc. are heavily dependent on the audio features. In this
paper, we will deal with multijects which only use visual fea-
tures. Details about audio feature extraction and audio models
for concepts likeexplosion[11], music[22], etc. are not pre-
sented here. Some semantic concepts enjoy local or regional
support in the image sequence. Examples include sites likesky
or water-body. Some others enjoy global support (over the en-
tire frame). Examples includeoutdooror beach. If a concept
enjoys regional support, the probability that a concept occurs in
a particular frame given the features for all the regions in the
frame is a function of the probabilities, with which it occurs in
these regions. To obtain a single frame-level/global measure of
confidence, we therefore need to integrate region-level soft de-
cisions (confidence measures). The multinet exists at the frame
level and uses these frame-level soft decisions to model context.

C. Integrating Regional Multijects to the Frame Level

A static multinet models the interaction between multijects
at the frame-level. To obtain frame-level features, we need to
fuse the region-level features. The strategy for fusing region-
level multijects to obtain frame-level semantic features must
take into account the unavoidable imperfections in segmenta-
tion. We tune the segmentation algorithm to obtain coarse, large
regions. This can lead to the existence of multiple semantic con-
cepts in a single segment or region. We address this problem
by checking each region or segment for each concept indepen-
dently. By doing this, we avoid a loss of information that could
have occurred if we used classes which were mutually exclusive
and chose one class (concept) for each region. For the binary
classification of each concept in each region, we define binary
random variables here

if concept is present in region
otherwise.

(13)

Using the Bayes’ rule, we then obtain (14), shown at the bottom
of the page, where denotes the feature vector for region.
The multijects used here are region-level semantic-detectors.
To integrate them at the frame-level we define frame-level se-
mantic features defined in (8). To fuse the
region-level concepts we use theOR operator. Let the number
of regions in the frame be . Using the compact notation

, theOR operation is as defined as

(15)

If we extract features at the frame-level (globally), then the mul-
tijects based on such features exist at the frame level and there
is no need for fusion across regions.
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TABLE I
MAXIMUM LIKELIHOOD BINARY CLASSIFICATION PERFORMANCE

OVER SEGMENTED REGIONS FORSITE MULTIJECTS USING GAUSSIAN

MIXTURE CLASS CONDITIONAL DENSITY FUNCTIONS FOR THE

TRUE AND NULL HYPOTHESES FOREACH MULTIJECT

IV. RESULTS

The detection performance of the fivesitemultijects over the
test-set is given in Table I. The results in Table I are based on
a maximum likelihood binary classification strategy using the
GMMs for the true and null hypotheses for each multiject.

A. Using the Factor Graph Multinet for Enhancing Detection

We use the soft decisions of the multijects in the frames from
the training set to train the multinet. To evaluate the performance
of the system over the frames in the test-set, we propose to com-
pare the detection performance over the test-set using the re-
ceiver operating characteristics (ROC) curves. An ROC curve
is one of the most explicit methods of performance evaluation
for binary classification. An ROC curve is a parametric plot of
the probability of detection plotted against the probability of
false alarms obtained at different values of the parameter (the
threshold in our case). A false alarm occurs, when a concept is
detected by the scheme, while it is not present. Detection is de-
fined as detecting a concept when it is is actually present. Any
point on the ROC curve thus corresponds to the best possible de-
tection performance using the likelihood ratio test [18] subject
to the particular false alarm rate using that detection scheme.
Operating at various probabilities of false alarms, one clearly
wants to attain the highest probability of detection possible.

Fig. 10 shows the ROC curve for the overall performance
across all the five multijects.

The ROC curve for multiject based detection performance is
obtained by using the likelihood ratio test in (16) with the soft
decisions at the frame level obtained in (15)

(16)

where is the number of multijects. The different points on the
ROC curve are obtained by changing the threshold valuefrom
one extreme ( corresponding to the coordinates (1, 1) in
the graph) to the other ( corresponding to the coordinates
(0, 0) in the graph.). We evaluate the probability of detection and

Fig. 10. ROC curves for overall performance using the multijects for isolated
detection, the factor graph in Fig. 5, and the graph in Fig. 6.

false alarm at 2000 threshold values to obtain the curves. To ob-
tain overall performance, the performance across all the multi-
jects is averaged. This represents the best possible detection per-
formance using the multijects obtained in Section II-C. This is
then compared against the ROC curve obtained by the likelihood
ratio test using soft decisions after a forward and backward pass
of messages in the multinet of Fig. 5(c). The third ROC curve
is obtained by using the soft decisions after several iterations of
loopy probability propagation through message passing in the
multinet of Fig. 6.

Fig. 10 demonstrates excellent improvement in detection per-
formance by using the multinets in Fig. 5 over the isolated de-
tection using frame level multiject-based features of (15). Inter-
estingly, detection based on the factorized function (Fig. 6) per-
forms better than the the one based on the unfactorized function
(Fig. 5). This may suggest that the factorized function of Fig. 6
is a better representative for the concept dependencies than the
one shown in Fig. 5 due to the fact that the factorized function
is estimated more reliably (it has less coefficients to estimate).
There is also the possibility that local interactions within subsets
of concepts are stronger and are better characterized than global
interactions. Improvement in detection is more than 22%
for a range of thresholds corresponding to small probability of
false alarms . To compare the joint detection performance
of the system with and without the multinet, we also plot prob-
ability of error curves. In order to accommodate all possible
hypotheses (corresponding to every possible configuration of
the binary random variables), we view each configuration as a
hypothesis and then use the one-zero cost function in (3). Fig. 11
shows that. irrespective of our choice of threshold, classification
error is least for the multinet with factorized joint mass.

(14)
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Fig. 11. Probability of error curves for the baseline system, the multinet with
the unfactored global function and the multinet with the factorized global
function. The multinet with factorized form results in the lowest error for any
threshold value.

Fig. 12. ROC curves for overall performance using temporal smoothing. The
curves correspond to performance using multijects for isolated detection, the
factor graph in Fig. 7(a) and the graph in Fig. 7(b).

B. Using the Dynamic Multinet to Model Spatio-Temporal
Context

The baseline performance is now obtained by using the
frame-level multiject features obtained in (15) followed by
temporal smoothing using the forward backward propagation
within frames in a shot. This is then compared to the perfor-
mance obtained by using the dynamic multinets in Fig. 7(a) and
(b). Once again, the performance of the multinet with factored
global distribution and temporal smoothing is superior to the
other configurations. Also, the performance of the multinet
with unfactored global distribution and temporal smoothing is
better than the baseline. To compare the performance with and
without temporal smoothing, we compare the three configura-
tions individually. The comparison can be seen in Figs. 13–15.

From Figs. 13–15, the benefit of temporal smoothing is ob-
vious. For each configuration, there is further improvement in

Fig. 13. Comparing the baseline performance of the reference system with and
without temporal smoothing.

Fig. 14. Comparing the performance of the multinet with unfactored global
distribution (Fig. 5) with the dynamic multinet using unfactored global distribu-
tion and temporal smoothing [Fig. 7(a)].

Fig. 15. Comparing the performance of the multinet with factored global
distribution (Fig. 6) with the dynamic multinet using factored global distribution
and temporal smoothing [Fig. 7(b)].

detection performance by using the multinet to model the depen-
dencies between intra-frame concepts (Fig. 7) and inter-frame
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Fig. 16. Block diagram of the entire system.

Fig. 17. Four clips retrieved when searched using the keywordsskyandwater.

temporal dependencies across video frames and by performing
smoothing using the forward backward algorithm. The improve-
ment in performance is upto 9% in Fig. 13, 12% in Fig. 14, and
9% in Fig. 15. Maximum improvement occurs at very low false
alarm rates i.e., in the range of .

The spatio-temporal context modeled by the multinet, ex-
ploits the mutual information among the multijects to enhance
detection performance. If the concepts are independent, there
will be no gains by modeling the context. On the other hand, as is
often observed, if there is mutual interaction between concepts,
the multinet will then enforce this interaction and improve de-

tection. This observation holds true irrespective of the nature of
the video. The gain in detection is directly related to the amount
of inter-dependence between concepts and greater gains in de-
tection are predicted with greater inter-dependence.

C. Filtering and Semantic Indexing Using the Framework

The block diagram for the system using the multijects and
multinet for semantic video indexing is shown in Fig. 16.
We have presented a probabilistic framework of multijects
and multinet for semantic video indexing. This framework is
designed to handle a large number of multijects. Since the soft
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decisions are available the user can vary the threshold for each
multiject to tune the filter. Similarly, multijects for concepts
like explosion, gunshots,etc. can be used to block access to
all those video clips on the net which have graphic depiction
of violence. Another example is smart televisions and video
recorders, which can scan the available channels, and record
all possible video clips, with abeachor ball-game. Semantic
indexing can also provide keyword search and bring video clips
at par with text-databases. Popular internet search engines can
definitely be enhanced if they support keyword based video
search. Fig. 17 shows four clips retrieved when searched using
the keywordsskyandwater. Keywords such assky, greenery,
and explosionthat are used for querying represent high-level
concepts and the system fetches clips, which contain these
concepts with the required degree of confidence, that a user
desires. Since we provide the confidence measures, thresholds
can be personalized for the individual user. Since the actual
processing is done at the server hosting the video clips or at the
search engine through crawlers, the problem of computational
cost is not daunting. In fact, once the video clips are automati-
cally annotated using the multijects and multinets, video search
reduces to text-search using the keywords. Used in conjunction
with the query-by-example paradigm, this can prove to be a
powerful tool for content-based multimedia access.

V. FUTURE RESEARCH ANDCONCLUSIONS

In this paper, we have presented a novel probabilistic frame-
work for semantic video indexing. The framework is based on
multijects and multinets. We have presented a framework to
obtain multiject models for various objects sites and events in
audio and video. The procedure remains identical for a large
variety of multijects. To discover the relationship and interac-
tion between multiject models, we have presented a factor graph
multinet and described how it is automatically learnt. Using the
multinet to explicitly model the interaction between multijects,
we have demonstrated a substantial improvement in detection
performance and also facilitated detection of concepts, which
may not be directly observed in the media features. We have
also extended the multinet to account for temporal dependen-
cies within concepts across consecutive video frames within
shots. This has lead to further performance improvement. We
have proposed and demonstrated an open ended and flexible ar-
chitecture for semantic video indexing. In addition to the novel
probabilistic framework for semantic indexing, we have also
used an objective quantitative evaluation strategy in the form
of ROC curves and have demonstrated the superior detection
performance of the proposed scheme using these curves. Fu-
ture research aims at demonstrating the ability of the multinet
to seamlessly integrate multiple media simultaneously and sup-
port inference of those concepts which may not be observable in
the multimedia features. The multinet architecture does not im-
pose any conditions on the multiject architecture except that it be
probabilistic. We can, therefore, experiment with more sophis-
ticated class-conditional density functions for modeling multi-
jects. This will lead to an improvement in the baseline perfor-
mance, as well as system performance. In the future, we will also
attempt to model characteristics of the interaction between se-
mantic concepts other than co-occurrence. Spatial layout is one

aspect that needs to be modeled together with co-occurrence for
better modeling of context.
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