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A Factor Graph Framework for
Semantic Video Indexing

Milind Ramesh Naphade, Igor V. Kozintsev, and Thomas S. Huang

Abstract—Video query by semantic keywords is one of the Table of Contents Semantic Index
most challenging research issues in video data management. To
go beyond low-level similarity and access video data content Scene 1 08 Sites
by semantics, we need to bridge the gap between the low-level . Outdoor
representation and high-level semantics. This is a difficult multi- Shot 1.1 ~__ Indoor
media understanding problem. We formulate this problem as a Key-frames e
probabilistic pattern-recognition problem for modeling semantics e e Objects
in terms of concepts and context. To map low-level features Scene 2 _0.85 People
to high-level semantics, we propose probabilistic multimedia Shot 2.1 i Cars
objects (multijects. Examples of multijects in movies include
explosion, mountain, beach, outdoor, musietc. Semantic concepts Key-frames o3 Events
in videos interact and appear in context. To model this interaction s ) Explosion
explicitly, we propose a network of multijects (nultinet). To Ball-game

model the multinet computationally, we propose a factor graph

framework which can enforce spatio-temporal constraints. Using Fig. 1. Organizing a video with a ToC and SI). The ToC gives a top-down
probabilistic models for multijects, rocks, sky, snow, water-body, break-up in terms of scenes, shots and key-frames. The S lists key concepts
and forestry/greeneryand using a factor graph as the multinet, we occurring in the video. The links indicate the exact location of these concepts
demonstrate the application of this framework to semantic video and the confidence measure.

indexing. We demonstrate how detection performance can be

significantly improved using the multinet to take inter-conceptual . .
relationships into account. Our experiments using a large video efflClentIy. Lack of tools for efficient content-based access and

database consisting of clips from several movies and based onmultimedia data mining threatens to render most of this data
a set of five semantic concepts revea})l a significant improvement yseless. Current techniques in content-based retrieval for image
in detection performance by over 22%. We also show how the sequences support the paradigm of query by example using

multinet is extended to take temporal correlation into account. . ilarity in | | | dia feat 11161, In thi di
By constructing a dynamic multinet, we show that the detection similarity in low-level media features [1]-{6]. In this paradigm,

performance is further enhanced by as much as 12%. With this the query must be phrased in terms of a video clip or at least
framework, we show how keyword-based query and semantic a few key-frames extracted from the query clip. The retrieval

filtering is possible for a predetermined set of concepts. is based on a matching algorithm which ranks the database
Index Terms—Factor graphs, hidden Markov models, likelihood clips according to a heuristic measure of similarity between the
ratio test, multimedia understanding, probabilistic graphical net-  query and the target.
works, probability propagation, query by example, query by key- = Although effective for browsing and low-level search, there
words, ROC curves, semantic video indexing, sum-product algo- - . . . S
rithm. are some basic problems, with this paradigm. The first is that
low-level similarity may not match with the user’s perception
of similarity. This is often caused by the user having high-level
. INTRODUCTION semantics in mind, which the system cannot support. Secondly,

HE availability of digital video content has increasedt is not realistic to assume that a person may have access to
T tremendously in recent years. Rapid advances in the teéhClip, which can represent, what the person wishes to find. In
nology for media capture, storage, and transmission, and ff€er to be able to analyze content semantically, it is also es-
dwindling prices of these devices, has contributed to an amazﬁ@wtial to fuse information from multiple modalities, especially
growth in the amount of multimedia content that is generatedl® image sequence and audio streams. Several existing sys-
While content generation and dissemination grows explosivelgms fail to use this multimodality. To address these problems,

there are very few tools to filter, classify, search, and retrieve#f¢ Need a semantic indexing, filtering, and retrieval scheme,
which can map low-level multimodal features to high-level se-

mantics.
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Automatic techniques for generating the ToC exist. The first P(Outdoor=PresentMultimedia features, other multijects)=0.7
step in generating the ToC is the segmentation of the video track P(Outdoor=AbsentMultimedia featutes, othet maltijects)=0.3
into smaller units. Shot boundary detection can be performed
in compressed domain [7]-[9], as well as uncompressed do-
main [10]. Shots can be grouped based on continuity, temporal
proximity, and similarity to form scenes [5]. Most systems sup-
porting query by example [2]-[6] can be used to group sh_ots
and enhance the ability to browse. The user may browse a video Closed-caption/Text Features
and then provide one of the clips in the ToC structure as an ex-
ample to drive the retrieval systems mentioned earlier. Cbangzig. 2. A multiject for the semantic conceptitdoor The media support for
al. [2] allow the user can provide a sketch of a dominant objeti labebutdooris in the form of audio-visual features. In addition to this, there
along with its color shape and motion trajectory. Key-framegay be support from other multijects representing semantic conceptskiike
can be extracted from shots to help efficient browsing. The ToC
is thus useful in efficient browsing. The need for a semantising the multinet to model spatial as well as spatio-temporal
index is felt to facilitate search using keywords or key conceptsantext. We show how the use of the multinet enhances detection
For a system to fetch clips of an aeroplane, the system mustdagformance in Section IV. We also discuss the application of this
able to capture the semantic concept of an aeroplane in terfinasnework to filter videos semantically in Section IV. Directions
of a model. Similarly, to support a query of tegplosion on a for future research and conclusions are presented in Section V.
beachkind, the system must understand how the concepts
plosionandbeachare represented. This is a difficult problem. ||. PrRoBABILISTIC FRAMEWORK OF MULTIJECTS AND
The difficulty lies in the gap that exists between low-level media MULTINETS
features and high-level semantics. Query using keywords repre- . . . . .
senting semangc concepts has motivated recent research i e_Probab llistic Multimedia Objects (Multijects)
mantic video indexing [11]-[14]. Recent attempts to introduce Users of video databases are interested in finding video clips
semantics in the structuring of videos includes [15]-[17]. Wesing queries, which represent high-level concepts. While such
present novel ideas in semantic video indexing by learning praggmantic queries are very difficult to support exhaustively, they
abilistic multimedia representations of semantic eventsdike might be supported partially, if models representing semantic
plosionand sites likevaterfall [11]. Changet al.introduce the concepts are available. User queries might invadkg, car,
notion of semantic visual templates [12]. Welfal.use hidden mountain, sunset, beach, explosietg. Detection of some of
Markov models to parse video [15]. Fermanal. attempt to these concepts may be possible, while some others may be
model semantic structures likikaloguesin video [16]. difficult to model using low-level features only. To support such

In this paper, we present a novel probabilistic framewortueries, we define multiject A multiject [11] is a probabilistic
to bridge this gap to some extent. We view the problefultimedia object which has a semantic label and which sum-
of semantic video indexing as a multimedia understandifgarizes a time sequence of features extracted from multiple
problem. We apply advanced pattern-recognition techniquestgdia. Multijects can belong to any of the three categories:
develop models representing semantic concepts and show ®Riects ¢ar, man, helicopter sites putdoor, beac)) or events
these models can be used for filtering of semantic concef@xplosion, man-walking, ball-gamerhe features themselves
and retrieval using keywords. Semantic concepts do not océd@y be low-level features, intermediate-level visual templates,
in isolation. There is always a context to the co-occurrené specialized concept detectors like face detectors or multijects
of semantic concepts in a video scene. We believe that it c@presenting other semantic concepts. Fig. 2 shows an example.
be beneficial to model this context. We use a probabilistic . )
graphical network to model this context and demonstrate hdt The Multinet: A Network of Multijects
this leads to a significant improvement in the performance Semantic concepts are related to each other. One of the main
of the scheme. We also show how the context can be usgshtributions of this paper is a computational framework in the
to infer about some concepts based on their relation witbrm of a probabilistic graphical network to model this interac-
other detected concepts. We develop models for the followitign or context. It is intuitively obvious that detection of certain
semantic conceptsky, snow, rocky-terrain, water-bodgnd multijects boosts the chances of detecting certain other multi-
forestry/greenery Using these concepts for our experimentgects. Similarly, some multijects are less likely to occur in pres-
we demonstrate how filtering and keyword-based retrieval cance of others. For example, the detectioskyhindwaterboosts
be performed on multimedia databases. the chances dfeachand reduces the chances of detecitiaipor.

The paper is organized as follows. In Section I, we preseAnh important observation from this interaction is that it might be
a probabilistic framework of multijects and multinets to mapossible to infer some concepts (whose detection may be diffi-
low-level features to semantics in terms of concepts and conteodlt) based on their interaction with other concepts (which are
In Section lll, we discuss the preprocessing steps includinglatively easier to detect). For example, it may be possible to de-
feature extraction, representation, segmentation and trackitegt human speech in the audio stream and detect a human face
We also discuss the details of the database used in subseqiretite video stream and infer the concépiman talking To in-
experiments. In Section IV, we present the experimental resuiégrate all the multijects and model their interaction or context,
of detection for a set of five semantic concepts with and withoute therefore propose a network of multijects, which we call a
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functions are known to us through estimation. In the simplest
form, we model a semantic concept as a binary random variable
and define the two hypothesék, and H; as

“\ \\\
//—‘:‘\\.\ {_ Explosion

Aeroplane Audio, video and ‘ H O:X ~ P O(X )
\—"/4_ closed captioning ) ‘ u H:: X’ P X’ 1
Y,  data Y  Skiing ) 1 X~ Pi(X) @
- ‘\H”k’T where Fy(X) and P (X)) denote the class-conditional proba-
Dot i oc eyg-) bility density func’_[ions of the feature vectors conditioned on
\_/’\( ? the null hypothesis (concept absent) and the true hypothesis
Shark ) (concept present) respectively. In case of sites (or static pat-

terns), these class-conditional density functions of the feature
Fig. 3. Conceptual figure of a multinet. The multinet captures the interactierector under the true and null hypotheses are modeled as mix-
between various semantic concepts. The edges between multiiects deggigy of myltidimensional gaussians (Gaussian mixture models
interaction and the signs on the edges denote the nature of interaction. . . . .

or GMMs). The temporal flow is not taken into consideration. In

case of events and objects with spatio-temporal support, we use
multinet A conceptual figure of a multinetis shownin Fig. 3 withhidden Markov models (HMM) with continuous multidimen-
the positive signs in the figure indicating a positive interactiogional Gaussian mixture observation densities in each state for
and negative signs indicating a negative interaction. By takifpgodeling the time series of the feature vectors of all the frames
into account the relationship between various multijects, we Cgfithin a shot under the null and true hypotheses. In the case of
enforce spatio-temporal constraints to do the following. temporal supportX is assumed to represent the time series of

1) Enhance DetectionDetection of multijects can be en-the feature vectors within a single video shot. Assuming that the

hanced by correcting the soft decisions based on the constragiiss conditional density functions are known to us and that the

enforced by the context. cost of making a decision;, when the true class is; is \;;
2) Support Inference:While some multijects may be easierang is defined in (3)

to detect, others may not provide us with the required degree

of invariance in feature spaces. For the detection of such mul- N O E=g 2)
tijects, the multinet can support inference based on the relation Yo i

that these multijects share with other multijects (which can %

detected with greater ease). For example, we can detect the nae?e-rcgn ;Josreat:eevs?rﬁzs :/?rﬁ':c;nsgIi;ﬁccehfgszggst% tﬁﬁ'iea_
tiject beachbased on the presence of such multijectsvater, Y 9 9 q P y

=
sand, treesandboat Based on this detection bEach we can tures X" if
thesr; ?Irilrgsﬂe]al;[’rt'ir:)er SK%?)T/ilelfj as':[lEjl hoeoﬁﬁleti?lzt can provide the AX) > Pln) 3)

mechanism for imposing time-varying or time-invariant prior

knowledge of multiple modalities and enforce context Chang%?herwise, we choose hypothedfs. The test in (3) is known
on the structure. _ , _ _as the likelihood ratio test [18].

The multinet is thus a mechanism for imposing spatio-tem- zq stated earlier, the use of (3) demands the knowledge of the
poral constraints governing the joint existence of semantic CQljass conditional density functions. To evaluate these functions
cepts with spatio-temporal support. using the maximum likelihood parameter estimation technique,

o . the EM algorithm [20], [21] is used in both cases to estimate
C. Estimating Multiject Models the means, covariance matrices, mixing proportions (GMM and

The multijects link the low-level features to high-level label$§IMMS) and transition matrix (HMM).
through a probabilistic structure. Depending on the support, aln this paper, we present results of the detection using (3) in
multiject enjoys in space and time, the structure in which tigection IV for the following regional site multijects which use
features are probabilistically encoded varies. In general, thisual features aloneky, water, forest, rockendsnow While
multiject might either enjoy only spatial support statically withinthese five site multijects are used in our experiments in the re-
a frame or enjoy spatio-temporal support in an image sequemaainder of this paper, we have developed models for several
or audio frame sequence. We build our multiject models usimgher multijects. Some of them are based on audio features, e.g.,
the Bayes decision theory [18], [19]. Let each observatidruman-speech, mudi22], andhelicopter Others are based on
(image/audio frame) be represented in terms of a feature vedtoange sequence features eaujdoor[23], beach etc. Some
X . We characterize these features through their statistical praphers are based on audio and video featuresexplosion, wa-
erties. We assume that the features are drawn from probabitiéyfall [11]. Through these examples, we have demonstrated that
distribution functions under all possible mutually exclusive hythis framework is scalable. As long as the concepts belonging
potheses. Under each hypothesis, we define a class-conditidnahe three types—obijects, sites, and events—offer some in-
density function for the features and a prior on the hypothesigriance in one or more features and there is a large training set
We assume that, while using the Bayes decision theory to chofmeestimating class-conditional density functions, we can model
among the possible hypotheses, these class-conditional dertsiymultiject and, thus, estimate the probabilistic mapping from
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low-level features to high-level semantics. While the construc-
tion of a large labeled training set can be a tedious procedure,
we have presented some preliminary results in alleviating the
burden of labeling large data-sets [24].

An important aspect of modeling semantics is the interaction </ &)
between semantic concepts, that forms the context. Humans use Iy
their knowledge to enforce context. In Section II-D, we present =z
an elegant computational framework to model context in termg. 4. Simple factor graph with a factorization of(x1, 72, 25) as
of co-occurrence. filze, 22) * fa(@s, v3).

C
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X

{

1

D. Factor Graphs between nodes according to a selected schedule. For a discus-
To model the interaction between multijects in a multinegion on schedules, see Kschischangl.[27]. A message from

we propose using a novédctor graph[25]-[27] framework. a function node to a variable node is the product of all mes-

A factor graph is a bipartite graph that expresses howsages incoming to the function node with the function itself,

global function of many variables factors into a product ofummarized for the variable associated with the variable node.

local functions [26], [27]. Factor graphs subsume many oth@r message from a variable node to a function node is simply

graphical models including Bayesian networks and Markate product of all messages incoming to the variable node from

random fields. Many problems in signal processing ansther functions connected to it.

learning are formulated as minimizing or maximizing a global Consider a message on the edge connecting function node

function f(x) marginalized for a subset of its arguments. The to variable nodev. Let mesg,,_,, denote the message sent

algorithm which allows us to perform this efficiently, thOUgI’hmng the edquf7 U} from variable node; to function node

in most cases only approximately, is called gwm-product ¢ Also, letmesg;_,, denote the message sent along the edge

algorithm. Based on a rule, theum-product algorithnfi27]is ¢ 41 from function nodef to function node. Further, leto(x)

used in factor graphs to compute various marginal functioggnote the set of all the neighbors of nadand let| indicate the

by distributed message-passing. Depending on the structdfgnmary operator. A summary operator summarizes a function

of the global function represented by the factor graph, thg; 5 particular set of variables. For example consider a function

sum—product algorithm can lead to exact or approximale,. '.. ..y then a possible summary operator could be the
computation of the marginal functions. Many algorithms IQummation operator in (5)

various engineering and scientific areas turn out to be examples
of the sum-product algorithm. Famous examples include the flzy,29,23) | 21 = Z flx1, z0,23). (5)
BCJR algorithm [28], the forward—backward algorithm [21], el

Pearl's belief propagation and belief revision algorithm [29\}\/_ ) ) i
operating in a Bayesian network. ith this notation, the message computations performed by the

Factor graphs were initially successfully applied in the aré&!M-Product algorithm can be expressed as follows in (6) and

of channel-error correction coding [30], [31] and specifically(,7):
iterative decoding [32], [33]. Turbo decoding and other itera-

tive decoding techniques have, in the last few years, proven {0 Bv—s (v) = ' H mesg;—, (V) )
be landmark developments in coding theory. Before explaining jen(v)/Af}
how factor graphs can be used to model global functions we in-
troduce some necessary notation. Most of the notation here folmesg ., (v) = | f(vn(p) H mesgy._, p(k) | | v.
lows Kschischanet al.[27]. Letx = {x1,72,...,2,} be aset ken(f)/{v}
of variables. Consider a functiof(x), with factors as follows: (7
i ; Probability propagation in Bayesian nets [29] is equivalent
f) = 1_[1 fi (X( )> ) to the application of the sum—product algorithm to the corre-

sponding factor graph. If the factor graph is a tree, exact infer-
wherex® is the set of variables, which are the arguments ehce is possible using a single set of forward and backward pas-
the function f;. A factor graph forf is defined as the bipar- sage of messages. For all other cases, inference is approximate
tite graph with two vertex classds; andV,, of sizesm and and the message passing is iterative [27], leading to loopy prob-
n respectively, such that thgh node inV; is connected to ability propagation. This has a direct bearing on our problem
the jth node inV, if and only if z; is an argument of func- because relations between semantic concepts are complicated
tion f;. Fig. 4 shows a simple factor graph representation ghd, in general, contain numerous cycles (e.g., see Fig. 3).
f(@1,22,23) = fi(z1,32) * f2(x2,%3) with function nodes  The single most significant outcome of using a factor graph
f1, f2 and variable nodes, , z2, x. framework for a multinet is that the interaction between se-
_ mantic concepts need not be modeled as a causal entity. The
E. The Sum-Product Algorithm next most significant outcome is that loops and cycles can be
The sum—product algorithm works by computing messagsspported. It must be noted, though, that when the factor graph
at the nodes using a simple rule and then passing the messagest a tree, the marginals computed are approximate.
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Fig. 5. A multinet: accounting for concept dependencies using a function equivalent to the joint mass function of five concepts. (a) PassingebB (hessa
0]X)andP(F; = 1| X) to the variable nodes. (b) Propagating the messages received in (a) to the function node. (c) Propagating the messages from the function
node back to the variable nodes after appropriate marginalization.

F. Factor Graph Multinet at the variable nodes according to the high-level relationship be-

We now describe a frame-level factor graph to model tfween the five concepts. The probability mass function at the

probabilistic relations between various frame-level semaniinction node in Fig. 5 is exponential in the number of concepts
featuresF: defined in () and computational cost may increase quickly. To alleviate
T

) B ) this, we can enforce a factorization of the function in Fig. 6 as a
1, if conceptiis presentin the current frame 5 product of a set of local functions where each local function ac-
0, otherwise counts for the co-occurrence of two variables only. Fig. 6 shows

To capture the co-occurrence relationship between the 98€ iteration of message passing in the multinet with a factored
mantic concepts at the frame level, we define a function notfint mass function.
which is connected to the variable nodes representing the conEach function in Fig. & represents the joint probability mass
cepts, as shown in Fig. 5(a). This function node represents ffghose two variables that are its arguments (and theré'gre
joint-probability mass function of the five semantic concep@Uch functions), thus reducing the complexity. The joint func-
represented at frame level by the binary random varialileise tipn over all the random variables in the factor graph is now
{1,...,N}ie.,P(Fy, F», F3,..., Fy). Thejointfunction over 9Iven by
all the random variables in the factor graph is then given by (837
11 Px1E) ] P, Ey),
i=1 gk

wherej <k and j, ke {l,...,N}.

F=

=N

[ Px | F)P(F, ..., Fy). ©
=1

(10)
Each entry in the joint mass function table tells us about tide factor graph is no longer a tree and exact inference be-
numerical viability of the configuration of th& random vari- comes hard as the number of loops grows. We then apply it-
ables. For example, if there are only two conceptsdoor( ) erative message passing based on the sum-product algorithm to
andhelicopter(F5), the entry corresponding to the configuraovercome this. Each iteration involves a set of messages passed
tion F; = 1,F, = 0 tells us how likely it is to be outdoor, from variable nodes to function nodes and a set of messages
without seeing or hearing a helicopter given our model of tHassed from the function nodes back to the variable nodes. Ap-
world (context), while the entry corresponding to the configurroximate marginals are obtained after a few iterations of mes-
ration F; = 0, F, = 1 tells us how likely it is to hear or see asage passing. The most significant achievement of the factor-
helicopter in an indoor scene. Clearly, one would imagine thiged multinet is that it makes the computational model of con-
it is more likely to see a helicopter while in an outdoor sceri€xt scalable. Estimating entries at each local function is highly
(Fy = 1, Fy = 1) than in an indoor scend’ = 0, F, = 1). efficient computationally and estimating all the entries for the
Another observation is that if we are presented with very strofég’ functions is quadratic in the number of concepts. This is
evidence of having heard or seen a helicopter, this should boastgnificant improvement computationally, as compared to the
out belief of being in an outdoor scene. It is through intuitivestimation for the global function, which was exponential in the
interactions like the ones mentioned in this example that thegmber of concepts. The second most significant achievement
multinet fuses context with evidence. is the ability to model causal as well as noncausal interactions.
The function nodes below the five variable nodes in Fig. 5 d&-is this ability that makes factor graphs an elegant framework
note the frame-level soft decisions for the binary random vatP implement the multinet as against causal probabilistic graph-
ablesF; given the image feature®,i.e., P(F; = 0|X) and ical networks like the Bayesian networks [29], [34].
P(F, =1|X). These are then propagated to the function node. ) ) ]
At the function node, the messages are multiplied by the fur@: Pynamic Multinets: Extending the Dependence Temporally
tion, which is estimated from the co-occurrence of the conceptsin addition to the inter-conceptual intra-frame dependencies,
in the training set. The function node then sends back messagescan also model the inter-frame, intra-conceptual dependen-
summarized for each variable. This modifies the soft decisiongs. Since processing is temporally localized to frames within
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Factoring the joint mass function of 5 Factoring the joint mass function of § Factoring the joint mass function of 5
semantic concepts semantic concepts semantic concepts
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Messages from iﬁ;‘l“e l;‘l’:l decisions to Messages from variable nodes to Marginals from function nodes passed back to
variable n S function nodes variable nodes
(@) (b) ©

Fig. 6. Replacing the unfactored function in Fig. 5 by a product of ten local functions. Each local function now accounts for the co-occurrence®f only t
variables. (a) Passing the messages computed in (15) to the variable nodes. (b) Propagating the messages received in (a) to the functionagatexddherop
messages from the function node back to the variable nodes after appropriate marginalization.

A dynamic multinet with unfactored global

i i ith factored global
distribution for each frame A dynamic multinet with factored globa

distribution for each frame
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Accounting for temporal dependency using a Markov chain Accounting for temporal dependency using a Markov chain

(@) (b)

Fig. 7. (a) Replicating the multinet in Fig. 5 for each frame in a shot and introducing temporal dependencies between the binary random vaeabiegrepres
identical concepts at frame level in consecutive frames. The function node that appears below each variable node represents the message omputed in (
(b) Repeating this for Fig. 6.

a shot, there is low probability of a concept appearing in a frantien. Accounting for temporal dependencies thus leads to tem-
and disappearing in the next frame. Modeling this temporal deeral smoothing of the soft decisions within each shot.
pendency for each concept can lead to smoothing of the soft de-
cisions within each shot. These dependencies can be modeldtl EXPERIMENTAL SETUP, PREPROCESSINGAND FEATURE
by extending the multinets in Figs. 5 and 6, as shown in Fig. 7. EXTRACTION

The multinets in Figs. 5 and 6 represent a single slice orvidgo
frame. We replicate the slice of factor graphs in Figs. 5 or 6 as
many times as the number of frames within a single video shot.We have digitized movies of different genres including ac-
Between the nodes in consecutive slices, representing identié@{l, adventure, romance, and drama to create a database of a
concepts, we now introduce a function which captures the dgWw hours of video. Data from eight movies has been used for
namics of this concept across frames. For a conBepett —1  the experiments. Fig. 8 shows a random collection of shots from
andt represent consecutive frames. Then the function represet@§e of the movies in the database and should convince the

Experimental Setup

the transition matrix4; as rea_lder of the tremendous variability in the data and represen-
- . tative nature of the databdaserhe MPEG streams of data are

4 = | PUE =0]F" =0) P(F =0|F~ =1) decompressed to perform shot-boundary detection, spatio-tem-

T PF=1|FT =1) PF=1FT T =1) | | video-regi i -

i i i i poral video-region segmentation and subsequent feature extrac

tign. For all the experiments reported in this paper, segments

Fig. 7(a) and (b) show two consecutive time slices and exte o
A . . . rom over 1800 frames are used for training and segments from
the models in Figs. 5 and 6, respectively. The horizontal links In . .
. ; another 9400 frames are used for testing. These images are ob-
Fig. 7(a) and (b) connect the variable node for each conceptin . . . .
) . . : . . tained by downsampling the videos temporally, in order to avoid
a time slice to the corresponding variable node in the next time . ; - .
. . X . o redundant images in the training set. In effect we are using a
slice through a function modeling the transition probability. This

framework now becomes a dynamic probabilistic network. IWe have made an attempt to represent several genres of movies in the data-

For inference messages are iteratively passed IocaIIy witHigse making it a collection of videos with significant variability. Unfortunately
' no standard databases are available to us for the purpose of benchmarking. We

e?-Ch Sll'ce' Thisis fO“QWEd_ by message .passmg across th? tmﬁe that with increasing interest of the multimedia retrieval community in se-
slices in the forward direction and then in the backward direaantic indexing, a benchmark database will emerge.
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Fig. 8. Random collection of shots from some of the movies in the database.

training set of 18000 frames and a test set of 94000 frame! ™
Each frame in the video is of the size 1X@12 pixels. For
each concept, the model for the true hypothesis has five comp:
nents in the Gaussian mixture. For each concept, the model fi
the null hypothesis has ten components in the gaussian mixtur
The reason for having more components for the model for th
null hypothesis is that the null hypothesis is expected to cover a

lot more variations than the true hypothesis. We model the fifé®. 9. Spatio-temporal segmentation applied to each shot. (a) Frame from the
site multijectsrocksrepresenting rocky terraiskyrepresenting Seduence- (b) Segmented version of the sequence.

the sky,snowrepresenting snow-covered grounehter repre-
senting water-bodies like lakes, rivers, oceans etc.,farebt
representing vegetation and greenery.

Some multijects exist at the region levé¢e, while others
exist at the global or frame levebtdood. To build multiject
models, we need to extract features at regional and global le
from the visual stream and features from the audio stream
well.

mogeneous in color and motion. Depending on the genre of the
movie and the story line, shots may range from a few frames to
a few hundred frames. For large shots, artificial cuts are intro-
duced every 2 s. This ensures, that the spatio-temporal tracking
QQP segmentation does not break down due to appearance and
délﬁappearance of regions. The segmentation and tracking algo-
rithm uses color, edge, and motion to perform segmentation
and computes the optical flow for motion estimation. Fig. 9
shows a video frame and its segmented version with six domi-
nant segments. These segments are labeled manually to create

The video clips are segmented into shots using the algorithhe ground truth. Since they are tracked within each shot using
by Naphadet al.[10]. We then use the spatio-temporal segmeroptical flow, the labels can be propagated to instances of the seg-
tation in [2] applied separately to each shot to obtain regions hoents in all the frames within the shot.

B. Preprocessing and Feature Extraction
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Each region is then processed to extract a set of features chatn all, 98 features are extracted to represent the visual proper-
acterizing the visual properties including the color, texture, mties of the region, of which 84 features (color, texture, structure
tion. and structure of each region. We extract the following sahd moments) are used for sites. For objects and events, all 98
of feature<. features are used. A similar set/subset of features can also be

1) Color: A normalized, linearized 3-channelH SV his- obtained at the global level without segmentation and also on
togram is used, with 12 bins each, for hu¢), saturationS), difference frames obtained using successive consecutive frames
and intensity V). The invariance to size, shape, intra-frame md41].
tion. and their relative insensitivity to noise makes color his- Semantic concepts likexplosion, helicopter-flying, man-
tograms the most popular features for color content descriptidalking, etc. are heavily dependent on the audio features. In this

2) Texture: Texture is a spatial property. A 2-D dependencpaper, we will deal with multijects which only use visual fea-
matrix, which captures the spatial dependence of gray-levates. Details about audio feature extraction and audio models
values contributing to the perception of texture, is callefdr concepts likeexplosion[11], music[22], etc. are not pre-

a gray-level co-occurrence matrix (GLCM). A GLCM is asented here. Some semantic concepts enjoy local or regional
statistical measure extensively used in texture analysis. dapport in the image sequence. Examples include siteshike

general, we denote or water-body Some others enjoy global support (over the en-
o tire frame). Examples includeutdooror beach If a concept

p(i,j,d,0) = P4, d.0) (11) enjoys_ regional support, the probability that aconcept occurs in

N(d,#) a particular frame given the features for all the regions in the

here P(.) is the GLCM for the disol drand frame is a function of the probabilities, with which it occurs in
where .( ) )9 IS td?\f ; hor the |?p_ace;ment vect rl?n h these regions. To obtain a single frame-level/global measure of
orientationt and V( -) is the normalizing factor to make t €confidence, we therefore need to integrate region-level soft de-

left-hand side of (11f) 2 protr)]abilin{ distribution. In lour Yvork’dw%isions (confidence measures). The multinet exists at the frame
compute GLCMs of thé” channel using 32 gray levels and afy 0| 4nq yses these frame-level soft decisions to model context.
four orientations, corresponding #bvalues of 6, 45°, 90°, and

135 degrees, respectively. For all four GLCMs, we consideF Integrating Regional Multijects to the Frame Level
pixels which are at a distance of 1 unit from the current pixel re-
spectively(d = 1). For each of the four matrices (correspondin
to a fixedd and®), six statistical features of the GLCMs are€
computed. The features are Contrast, Energy, Entropy, Ho
geneity, Correlation, and Inverse Difference Moment [35].

A static multinet models the interaction between multijects
t the frame-level. To obtain frame-level features, we need to
se the region-level features. The strategy for fusing region-
level multijects to obtain frame-level semantic features must

3) Structure: To capture the structure within each region, E‘ke into account the unavqidable imperfection§ in segmenta-
Sobel operator with a 8 3 window is applied to each regiontlon. We tune the segmentation algorithm to obtain coarse, large
and the edge map is obtained. Using this edge map an 18-fggions. This can lead to the existence of multiple semantic con-
histogram of edge directions is obtained as in [36]. The ed gPts in a single segment or region. We address this problem

direction histogram is supposed to be a robust representatio 'checking _each region or s_egment for_ each cqncept indepen-
shape [37]. dently. By doing this, we avoid a loss of information that could

4) Shape: Moment invariants as in Dudaeit al. [38] are have occurred if we used classes which were mutually exclusive
used to describe shape of each region. For a binary image m chose one class (concept) for each region. For the binary
the central moments are given by classification of each concept in each region, we define binary

random variableg?;; here

N . . . .
1 _ _ 1, if concepti is present in region
—_ P Pl q L= 7
Hre = ;(% 2)"(¥i —7) (12) Rij 0, otherwise. (13)

7

. i Using the Bayes'’ rule, we then obtain (14), shown at the bottom
where, y are the image coordinates,andy are the mean .t the page, wherét,; denotes the feature vector for regign
values of ther andy coordinates, respectively, and the ordefne myitiiects used here are region-level semantic-detectors.
of the central moment,,, isp + ¢. _ To integrate them at the frame-level we define frame-level se-

5) Motl_on: The inter-frame affme_ motion parameters fo_?nantic featured’;, i € {1,..., N} defined in (8). To fuse the
each region tracked by the spatio-temporal segmentatiQfyion-level concepts we use the operator. Let the number

algorithm are used as .motion_features. of regions in the frame ba/. Using the compact notatioti =
6) Color Moments:The first-order moments and the X.,..., X}, theor operation is as defined as
second-order central moments are computed for each of the

three channel#, S, and V. M -
P(F; = 0] X) = [[ P(Ri; = 0] X))
j=1

20ur aim is to work with a set of reasonable features. There is no claim to the P(F-=11X)=1—-P(F. =0l X 15
optimality of this set of features and it is definitely endorsed that better features ( ¢ | ) ( ¢ | ) ( )

will lead to better performance. If we extract features at the frame-level (globally), then the mul-

3A linearized histogram of multiple channels is obtained by concatenatin b d hf . he f | | and th
the histogram of each channel. This avoids dealing with multi-dimensional hHIJIECtS based on such features exist at the frame level and there

tograms. is no need for fusion across regions.
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TABLE |
MAXIMUM LIKELIHOOD BINARY CLASSIFICATION PERFORMANCE
OVER SEGMENTED REGIONS FORSTE MULTIJECTS USING GAUSSIAN
MIXTURE CLASS CONDITIONAL DENSITY FUNCTIONS FOR THE
TRUE AND NULL HYPOTHESES FOREACH MULTIJECT

multiject | Accurate Detection | False Alarm

rocks 7% 24.1% j

sky 81.8% 11.9% 3

snow 81.5% 12.9% e

water 79.4% 15.6%

forest 85.1% 14.9%

Overall 80.96% 15.88%

|
IV. RESULTS 3 L'F., e — st
The detection performance of the figge multijects over the T L R L

test-set is given in Table I. The results in Table | are based on

a maximum likelihood binary classification strategy using thgg. 10. ROC curves for overall performance using the multijects for isolated
GMMs for the true and null hypotheses for each multiject.  detection, the factor graph in Fig. 5, and the graph in Fig. 6.

A. Using the Factor Graph Multinet for Enhancing DEteCtlonfalse alarm at 2000 threshold values to obtain the curves. To ob-

We use the soft decisions of the multijects in the frames frogain overall performance, the performance across all the multi-
the training setto train the multinet. To evaluate the performangets is averaged. This represents the best possible detection per-
of the system over the frames in the test-set, we propose to cdgtmance using the multijects obtained in Section II-C. This is
pare the detection performance over the test-set using thetffen compared against the ROC curve obtained by the likelihood
ceiver operating characteristics (ROC) curves. An ROC curvgtio test using soft decisions after a forward and backward pass
is one of the most explicit methods of performance evaluati@i messages in the multinet of Fig. 5(c). The third ROC curve
for binary classification. An ROC curve is a parametric plot gk obtained by using the soft decisions after several iterations of
the probability of detection plotted against the probability dbopy probability propagation through message passing in the
false alarms obtained at different values of the parameter (#hgitinet of Fig. 6.
threshold in our case). A false alarm occurs, when a concept isig. 10 demonstrates excellentimprovement in detection per-
detected by the scheme, while it is not present. Detection is dgrmance by using the multinets in Fig. 5 over the isolated de-
fined as detecting a concept when it is is actually present. Agttion using frame level multiject-based features of (15). Inter-
point on the ROC curve thus corresponds to the best possible gétingly, detection based on the factorized function (Fig. 6) per-
tection performance using the likelihood ratio test [18] subjefdrms better than the the one based on the unfactorized function
to the particular false alarm rate using that detection schenigig. 5). This may suggest that the factorized function of Fig. 6
Operating at various probabilities of false alarms, one cleailya better representative for the concept dependencies than the
wants to attain the highest probability of detection possible. one shown in Fig. 5 due to the fact that the factorized function

Fig. 10 shows the ROC curve for the overall performangg estimated more reliably (it has less coefficients to estimate).
across all the five multijects. There is also the possibility that local interactions within subsets

The ROC curve for multiject based detection performanced$ concepts are stronger and are better characterized than global
obtained by using the likelihood ratio test in (16) with the sofhteractions. Improvement in detectioR,) is more than 22%
decisions at the frame level obtained in (15) for a range of thresholds corresponding to small probability of

P(X|F =1) false alarmg P;). To compare the joint detection performance

L >70<7< 00, i€{l,....,N} (16) of the system with and without the multinet, we also plot prob-

P(X|F; =0) o

ability of error curves. In order to accommodate all possitiie

whereNV is the number of multijects. The different points on thaypotheses (corresponding to every possible configuration of
ROC curve are obtained by changing the threshold vafuem thelV binary random variables), we view each configuration as a
one extreme# = 0 corresponding to the coordinates (1, 1) imypothesis and then use the one-zero cost functionin (3). Fig. 11
the graph) to the other (= oo corresponding to the coordinatesshows that. irrespective of our choice of threshold, classification
(0, 0)inthe graph.). We evaluate the probability of detection ardror is least for the multinet with factorized joint mass.

P(R;=1|X)) = —— - (14)
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ROC curve for Overall partormance

Wil b | gk
e i =P o |

Reference system
: : ' : l -~ Reterence systern with smoothi
1 L i

[ 0.1 0.2 03 04 05 0.6 07 08 [} 1
Probability of False Aiarms

Bowbd y : Fig.13. Comparing the baseline performance of the reference system with and
without temporal smoothing.

Fig. 11. Probability of error curves for the baseline system, the multinet with
the unfactored global function and the multinet with the factorized global
function. The multinet with factorized form results in the lowest error for any
threshold value.

ROC curve for Overall performance
T

o 0.1 02 03 04 05 08 07 08 08 1
| Probabilty of Faise Alarms
| r Fig. 14. Comparing the performance of the multinet with unfactored global
remy Ay b distribution (Fig. 5) with the dynamic multinet using unfactored global distribu-
s e, 1 tion and temporal smoothing [Fig. 7(a)].

! T T T

Fig. 12. ROC curves for overall performance using temporal smoothing. The
curves correspond to performance using multijects for isolated detection, the
factor graph in Fig. 7(a) and the graph in Fig. 7(b).

09

B. Using the Dynamic Multinet to Model Spatio-Temporal
Context

The baseline performance is now obtained by using the
frame-level multiject features obtained in (15) followed by
temporal smoothing using the forward backward propagation
within frames in a shot. This is then compared to the perfor-
mance obtained by using the dynamic multinets in Fig. 7(a) and
(b). Once again, the performance of the multinet with factored i e ; SR o SRR PO N
global distribution and temporal smoothing is superior tothe | = | [Z Satioeon, 10 tcatond) v
other configurations. Also, the performance of the multinet ~ © ot 02 o3 os ' o5 o
with unfactored gIOb.al distribution and temporal SmOOth'.ng '|§g. 15. Comparing the performance of the multinet with factored global
better than the baseline. To compare the performance with afhibution (Fig. 6) with the dynamic multinet using factored global distribution
without temporal smoothing, we compare the three configurapd temporal smoothing [Fig. 7(b)].
tions individually. The comparison can be seen in Figs. 13-15.

From Figs. 13-15, the benefit of temporal smoothing is ololetection performance by using the multinet to model the depen-
vious. For each configuration, there is further improvement stencies between intra-frame concepts (Fig. 7) and inter-frame

07 08 09 1
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| Incoming Video data |
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Labeted regional and global
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A labeling using Video clips with metadats
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Unlabeled regional and
global feature
Segs ion, Feature £

| Incoming Video data I

Fig. 16. Block diagram of the entire system.
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Fig. 17. Four clips retrieved when searched using the keywakgandwater.

temporal dependencies across video frames and by performiagtion. This observation holds true irrespective of the nature of
smoothing using the forward backward algorithm. The improv#ie video. The gain in detection is directly related to the amount
ment in performance is upto 9% in Fig. 13, 12% in Fig. 14, aref inter-dependence between concepts and greater gains in de-
9% in Fig. 15. Maximum improvement occurs at very low falstection are predicted with greater inter-dependence.

alarm rates i.e., in the range 0f< Py < 0.05. o ) ) )

The spatio-temporal context modeled by the multinet, efe- Filtering and Semantic Indexing Using the Framework
ploits the mutual information among the multijects to enhance The block diagram for the system using the multijects and
detection performance. If the concepts are independent, themaltinet for semantic video indexing is shown in Fig. 16.
will be no gains by modeling the context. On the other hand, asMe have presented a probabilistic framework of multijects
often observed, if there is mutual interaction between concepisid multinet for semantic video indexing. This framework is
the multinet will then enforce this interaction and improve dedesigned to handle a large number of multijects. Since the soft
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decisions are available the user can vary the threshold for easipect that needs to be modeled together with co-occurrence for
multiject to tune the filter. Similarly, multijects for conceptsbetter modeling of context.

like explosion, gunshotstc. can be used to block access to
all those video clips on the net which have graphic depiction
of violence. Another example is smart televisions and video
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recorders, which can scan the available channels, and recordn€ authors thank D. Zhong and Dr. S. F. Chang for the
all possible video clips, with &eachor ball-game Semantic SPatio-temporal segmentation and tracking algorithm [2].

indexing can also provide keyword search and bring video clips
at par with text-databases. Popular internet search engines can
definitely be enhanced if they support keyword based videoy)
search. Fig. 17 shows four clips retrieved when searched using
the keywordssky andwater. Keywords such asky, greenery, 2]
and explosionthat are used for querying represent high-level
concepts and the system fetches clips, which contain these
concepts with the required degree of confidence, that a usel!
desires. Since we provide the confidence measures, thresholds
can be personalized for the individual user. Since the actual4]
processing is done at the server hosting the video clips or at the
search engine through crawlers, the problem of computationajs
cost is not daunting. In fact, once the video clips are automati-
cally annotated using the multijects and multinets, video searc
reduces to text-search using the keywords. Used in conjunctio
with the query-by-example paradigm, this can prove to be a
powerful tool for content-based multimedia access.

6]

(7]
V. FUTURE RESEARCH AND CONCLUSIONS ]
In this paper, we have presented a novel probabilistic frame-
work for semantic video indexing. The framework is based on
multijects and multinets. We have presented a framework to
obtain multiject models for various objects sites and events in
audio and video. The procedure remains identical for a IargIé10
variety of multijects. To discover the relationship and interac-
tion between multiject models, we have presented a factor graph
multinet and described how it is automatically learnt. Using th
multinet to explicitly model the interaction between multijects,
we have demonstrated a substantial improvement in detecti 512]
performance and also facilitated detection of concepts, whic
may not be directly observed in the media features. We have
also extended the multinet to account for temporal dependeftS]
cies within concepts across consecutive video frames within
shots. This has lead to further performance improvement. Wg4]
have proposed and demonstrated an open ended and flexible ar-
chitecture for semantic video indexing. In addition to the novel;s;
probabilistic framework for semantic indexing, we have also
used an objective quantitative evaluation strategy in the fornh'6!
of ROC curves and have demonstrated the superior detectiggy)
performance of the proposed scheme using these curves. Fu-
ture research aims at demonstrating the ability of the multinet
to seamlessly integrate multiple media simultaneously and suptsg]
port inference of those concepts which may not be observable in
the multimedia features. The multinet architecture does not im*®
pose any conditions on the multiject architecture except that it beo)
probabilistic. We can, therefore, experiment with more sophis-
ticated class-conditional density functions for modeling multi- 21
jects. This will lead to an improvement in the baseline perfor-
mance, as well as system performance. In the future, we will alsi3?]
attempt to model characteristics of the interaction between se-
mantic concepts other than co-occurrence. Spatial layout is one
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