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ABSTRACT

We aim at detecting moving objects in color image se-
quences acquired with a mobile camera. This issue is
of key importance in many application �elds. To ac-
curately recover motion boundaries, we exploit a �ne
spatial image partition supplied by a MRF-based color
segmentation algorithm. We introduce a region-level
graph modeling embedded in a Markovian framework
to detect moving objects in the scene viewed by a mo-
bile camera. This is stated as the binary segmentation
into regions conforming or not conforming to the dom-
inant image motion assumed to be due to the camera
movement. The method is validated on real image se-
quences.

1. PROBLEM STATEMENT

Extracting moving objects from image sequences is of
major interest in numerous applications : target track-
ing, video surveillance, vehicle navigation, video index-
ing, ... A complete motion-based segmentation is often
not required, but only the extraction of some meaning-
ful moving entities. Motion detection remains an im-
portant and di�cult task to cope with when the camera
is itself mobile.

Motion detection techniques usually rely on pixel-
level classi�cation schemes exploiting local motion-
related information (typically, the DFD, Displaced
Frame Di�erence, or the normal ow). The classi�-
cation step is achieved either using thresholding tech-
niques, [6, 7, 13], or a Bayesian framework, [11, 14].
Besides, as far as motion-based segmentation is con-
cerned, pixel-level and region-level labeling are often
exploited, [1, 4, 15, 9, 16, 17]. The computation of
a primary layer of spatial regions is processed either

relying on motion-based criterion, [16, 17], or on in-
tensity, texture and color information, [1, 4, 15]. The
second type of techniques usually supplies a better lo-
calization of motion boundaries, likely to correspond
to intensity, texture or color contours. In fact, starting
from this initial spatial partition, a 2d parametric mo-
tion model, generally an a�ne one, is attached to each
spatial region, and spatial regions are merged accord-
ing to motion properties. To this end, usual techniques
rely either on clustering schemes in motion parameter
space, [15], or on MDL criterion, [17], or on Markovian
graph labeling approach, [4]. The major drawback of
these approaches is that they prevent from processing
a very �ne spatial segmentation, since parametric mo-
tion estimators generally require a signi�ciently large
estimation support to be reliable. Thus, it may result
in the loss of motion boundaries.

In this paper, we describe a region-level approach
with a view to directly detecting moving objects in the
scene from a color image sequence acquired by a mo-
bile camera. As in [4], we determine a primary spatial
color-based partition. Nevertheless, our method does
not require to attach a parametric motion model to
each extracted region. We only compute an estimation
of the dominant image motion, and we bene�t from the
integration of local motion-related measures to deter-
mine the relevance of the estimated dominant motion
in each spatial region.

Thus, our motion detection scheme involves three
steps. First, we compute the 2d a�ne motion model
accounting for the dominant image motion, (which is
usually the case). Second, a spatial graph, whose nodes
correspond to spatial regions, is derived from the color-
based segmentation ; third, a Markovian framework is
introduced to assign to each node of the graph a bi-



nary label stating if a region is conform or not to the
dominant motion. If the latter is due to camera mo-
tion, the set of regions labeled as non-conform includes
moving objects in the scene. We design an appropri-
ate energy function to tackle this issue : it involves
the integration of local motion-related measures in the
compensated sequence. Moreover, it enables to make
use of a very �ne spatial partition in order to accurately
recover motion boundaries.

The sequel is organized as follows. In Section 2, the
principle of our region-level Markovian graph labeling
approach is introduced. Section 3 describes the di�er-
ent steps of our motion detection method. Finally, we
report experimental results in Section 4, and Section 5
provides concluding remarks.

2. REGION-LEVEL GRAPH LABELING

Assuming that an initial �ne spatial partition of the im-
age has been determined, we aim at grouping regions
based on color or motion criteria. To this end, we con-
sider a Markovian labeling approach applied to the ad-
jacency graph G = (N ;A) where N refers to the set of
regions of the partition, and A to the set of arcs which
relate two neighboring connected regions, [4]. We de-
�ne a region-level MRF model the sites of which are
the nodes of the graph. A two-site clique neighborhood
system is then straightforwardly derived from the set of
arcs relating two nodes. Adopting a MAP criterion and
using the equivalence between Markovian and Gibbsian
�elds, [5], the grouping procedure comes to determine
the label �eld ê which veri�es :

ê = argmin
e

U(e; o) (1)

where U(e; o) = Ua(e; o) + U b(e), with o the set of
observations attached to each node of the graph, Ua

the data-driven energy term, and U b the regularization
term. Both energy terms are split in the sum of local
potentials V a and V b :8>>>><

>>>>:

Ua(e; o) =
X
N2N

V a(eN ; oN )

U b(e) =
X

(N1;N2)2A

V b(eN1
; eN2

)

(2)

The regularization potential V b tends to favor identical
labels for two neighboring regions. It takes into account
their \degree" of adjacency through the computation
of two geometrical features. It is expressed as follows :

V b(eN1
; eN2

) = ��
�N1N2

�N1N2
+DN1N2

�(eN1
� eN2

) (3)

where � is a pre-set constant, �N1N2
is the length of

the common border of regions N1 and N2, and DN1N2

the Euclidean distance between the gravity centers of
the two regions.

In fact, we will exploit this approach twice, to achieve
region grouping with respect to color information (sub-
section 3.2) and to perform moving object detection
(subsection 3.3).

3. MOVING OBJECT DETECTION

3.1. Motion estimation

The �rst step of our motion detection scheme consists
in computing the dominant inter-frame motion repre-
sented by a 2d a�ne model. We assume that it is due to
the camera movement. The velocity w�(s), at a pixel
s, related to the a�ne motion model parameterized by
� is given by :

w�(s) =

�
a1 + a2x+ a3y

a4 + a5x+ a6y

�
(4)

with s = (x; y) and � = [a1 a2 a3 a4 a5 a6]. The
computation is achieved with the gradient-based multi-
resolution incremental estimation method described in
[10]. The following minimization problem is solved :

b� = argmin
�

X
s

� (DFD(s;�)) (5)

where DFD(s;�) = It+1(s + w�(s)) � It(s) and �()
is Tukey's biweight function. The use of a robust esti-
mator ensures the motion estimation not to be sensi-
tive to secondary motions due to mobile objects in the
scene. Criterion (5) is minimized by means of an it-
erative reweighted least-square technique embedded in
a multiresolution framework and involving appropriate
successive linearizations of the DFD expression.

3.2. Color-based spatial partitioning

Color information is an appropriate cue to recover ac-
curate object boundaries in real dynamic scenes. As in
[1, 4], stating that motion boundaries refer also to color
contours, we �rst aim at determining an initial color-
based partition of the image. We introduce a Marko-
vian framework associated with a Gaussian modeling of
the color distribution in each region. After a �rst stage
involving a usual pixel-level segmentation, [8], we ap-
ply a region grouping step with a view to suppressing
redundancies between color distributions.

The considered pixel-level procedure consists in it-
eratively estimating the Gaussian model attached to
each label, standing for region number, by using the



empirical moments, and in updating the label �eld by
means of a Markovian regularization. We make use
of a MAP criterion, and we de�ne local potentials va

and vb relative respectively to the data-driven energy
term and the regularization term. At each site s, the
observation is supplied by the color component c ex-
pressed in the space described in [12]. It is given by
c = (c1; c2; c2), where c1 = r � v, c2 = 2b� r � g and
c3 = r+ g+ b, with (r; g; b) the color coordinates in the
(red, green, blue) color space. Then, the data-driven
potential va at each site s is de�ned by :

va(es; c(s)) = �s(Mes ;�es) (6)

where c(s) is the color vector at site s, (Mes ;�es) the
Gaussian model attached to label es, and �s() the Gaus-
sian error evaluated at site s and expressed by :

�s(Mes ;�es) = (c(s)�Mes)
t
��1es

(c(s)�Mes) (7)

On the other hand, the term vb favors the spatial ho-
mogeneity of the region partition :

vb(er; es) = �(1� �(er � es)) (8)

where � is positive constant, (er; es) forms a second-
order clique and � is the Kronecker symbol.

In a second step, the approach described in Section
2 is exploited with a view to grouping regions which
present similarities in terms of color distributions. Let
us introduce the set of labels �, which initially refer to
the di�erent region numbers, and the associate Gaus-
sian models (M�;��)�2�. Then, considering a given
node graph N , the data-driven potential V a

coul com-
puted at N quanti�es the ability of a Gaussian model,
associated to label �, to describe the color distribution
relative to N . If N is also labeled �, the potential V a

coul

is expressed as :

V a
coul(eN = �; oN ) =

X
s2RN

�s(M�;��) (9)

where �s() is the Gaussian error at site s introduced in
equation (7). When evaluating a new label �0 at site
N currently labeled by �, we compute in fact the loss
of information when considering the model (M�0 ;��0)
instead of the model (M�;��). Besides, we introduce
an additional information in the regularization term.
It consists in favoring identical labels for neighboring
regions which present a weak color contrast on their
common boundary. We weigh the regularization po-
tential (equation 3) by a coe�cient related to this color
contrast. Finally, when visiting a given node N , we
only take into account the labels present in its neigh-
borhood, and after assigning N with the best current
label �̂, the model associated to �̂ is re-estimated.

The color-based segmentation procedure is embed-
ded in a multiscale framework. We �rst assign a dif-
ferent label to each block at the coarsest scale of the
pyramid. Hence, performing a coarse-to-�ne strategy,
we iterate at each scale the pixel-level regularization
stage and the region grouping step. In both cases, the
minimization is driven using the HCF algorithm [2].
Since we put no a priori on the number of color re-
gions, our algorithm is unsupervised, which enables to
handle a large variety of real situations. Besides, in
order to reliably and accurately extract all the motion
boundaries, which are assumed to correspond to color
contours, we deal with a very �ne spatial partition (typ-
ically, down to 50 pixels per region).

3.3. Motion detection

The motion detection stage consists in determining a
binary labeling of the color-based partition in terms of
regions conforming or not to the estimated dominant
motion model b�. To this end, we exploit the graph
labeling approach presented in Section 2.

This scheme �rst requires to de�ne a data-driven
potential V a

mvt in order to quantify the relevance of

the estimated dominant motion model b� in a given re-
gion. We consider local motion-related measurements
in the compensated image sequence. In that context,
the DFD and the normal ow have been broadly used
in order to detect outliers to the dominant motion dis-
tribution. Nevertheless, these quantities reveal really
sensitive to the noise attached to the computation of
the spatio-temporal derivatives of the intensity func-
tion. As a consequence, we prefer to consider a more
robust local motion-related measurement, already used
in [7, 11], which remains straightforwardly derived from
intensity gradients.

The region-level observation oN is a set (�s)s2RN of
pixel-level motion-related measurements while we still
take into account color information. At each site s,
the observation is given by a vector �s = (�is), whose
components are :

�is =

X
p2W(s)

jDFDi(p; b�)j � krI i(p)k
max

0
@G2

m;
X

p2W(s)

krI i(p)k2

1
A

(10)

where i refers to the color component ci, W(s) is a
3� 3 window centered on s and Gm a prede�ned con-
stant which prevents from dividing by zero in regions
poorly textured and accounts for noise level. The quan-
tity DFDi is the DFD for the color component ci. In
[11], lower and upper interpretation bounds ls and Ls



have been derived from the local spatial intensity gra-
dient distribution to evaluate the information provided
by this measurement w.r.t. a minimal residual motion
magnitude � to be detected. This can be extended to
color image as follows :8<
:

if �is < lis(�) then kw(s)� wb�(s)k < �

if �is > Li
s(�) then kw(s)� wb�(s)k > �

(11)

where w(s) is the real (unknown) motion at site s. By
exploiting these bounds, the data-driven potential V a

mvt

for the region RN corresponding to a node N in the
graph is expressed by :8>>>>>>><
>>>>>>>:

V a
mvt(conf) =

X
s2RN

max
i

�
A(�is; l

i
s(�))

�
jRN j

V a
mvt(nconf) =

X
s2RN

max
i

�
1�A(�is; L

i
s(�))

�
jRN j

(12)

where � is a constant, conf and nconf respectively
refer to \conform" and \non-conform" labels, and the
function A() is a smooth version of a step.

Since the number of nodes is small (compared to
the size of the image), the minimization procedure can
be e�ciently and properly achieved using a HCF algo-
rithm, [2], which consists in visiting nodes of the graph
according to their rank in an unstability stack. This
unstability at a given node refers to the di�erence of
the potentials computed when considering each of the
two binary labels. The initial detection map is obtained
by considering only the data-driven term.

4. EXPERIMENTAL RESULTS

For all experiments carried out, the parameters of the
algorithm were set as follows. For the MRF-based color
segmentation, � = 0:045, �coul = 0:1. For the motion
detection stage, Gm = 15:0, � = 200:0, � = 100:0 and
� = 1:0. Factor � is typically a user-de�ned parameter,
and has obviously a great importance in the number of
regions detected as non-conform to the dominant mo-
tion. Since it has a straightforward physical meaning,
it is easy to set it according to the application at hand.
Besides, it is explicitly taken into account in a well
posed manner in the method (potential V a

mvt), and it
confers an attractive exible feature to the proposed
method.

Satisfactory results have been obtained. In the �rst
example, reported in Fig.4(a � b), the camera moves
to the top right corner and the car is driven forward
while turning to the right. The use of color information

a b

c d

Figure 1: Results of our motion detection method on
the sequences \Car" (a-b) \Stefan" (c-d) : color-based
spatial boundaries (a-c), contours in white of the de-
tected moving regions (b-d).

allows us to extract quite relevant and accurate motion
boundaries in spite of illumination e�ects. The second
example, reported in Fig.4(c�d), is a complex dynamic
scene : the camera tracks a tennis player during the
game. Thus, it involves large non-rigid motions which
are di�cult to handle. Again, the motion boundaries
of the body are accurately recovered.

The computational time associated to the color-
based segmentation stage is about one minute for a
512�512 image, whereas the region-level motion detec-
tion stage requires a few seconds for a graph containing
about one hundred spatial regions (for a Sun Creator
workstation 360MHZ).

5. CONCLUSION

We have presented in this paper a method to detect
moving objects in color image sequences acquired with
a mobile camera. We achieve an appropriate labeling
of the adjacency graph of regions resulting from a spa-
tial partition of the image based on a color criterion.
Thus labeling separates regions conforming or not to
the dominant image motion, represented by a 2d para-
metric motion model.

The use of a color-based criterion improves the ac-
curacy of the localization of motion boundaries. Thanks
to region-level approach, we can exploit contextual in-
formation at a higher-level than in classical pixel-level



techniques, which enables us to be closer to the notion
of \object" as demonstrated in the reported results.

In future work, in order to take into account per-
spective e�ects not handled by the 2d dominant image
motion model, we aim at computing this method with
recent developments described in [3].
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