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ABSTRACT 
We consider the problem of learning a mapping function from 
low-level feature space to high-level semantic space. Under the 
assumption that the data lie on a submanifold embedded in a high 
dimensional Euclidean space, we propose a relevance feedback 
scheme which is naturally conducted only on the image manifold 
in question rather than the total ambient space. While images are 
typically represented by feature vectors in Rn, the natural distance 
is often different from the distance induced by the ambient space 
Rn. The geodesic distances on manifold are used to measure the 
similarities between images. However, when the number of data 
points is small, it is hard to discover the intrinsic manifold struc-
ture. Based on user interactions in a relevance feedback driven 
query-by-example system, the intrinsic similarities between im-
ages can be accurately estimated. We then develop an algorithmic 
framework to approximate the optimal mapping function by a 
Radial Basis Function (RBF) neural network. The semantics of a 
new image can be inferred by the RBF neural network. Experi-
mental results show that our approach is effective in improving 
the performance of content-based image retrieval systems. 

Categories and Subject Descriptors 
H.3.1 [Information Storage and Retrieval]: Content Analysis 
and Indexing – Algorithms, Indexing methods. 

General Terms 
Algorithms, Management, Performance, Experimentation. 

Keywords 
Image Retrieval, Semantic Space, Manifold Learning, Dimension-
ality Reduction, Riemannian Structure 

1. INTRODUCTION 
Content-Based Image Retrieval (CBIR) [3][9][12][14][21] is a 
long standing research problem in computer vision and informa-
tion retrieval. Most of previous image retrieval techniques build 
on the assumption that the image space is Euclidean. However, in 
many cases, the image space might be a non-linear sub-manifold 
which is embedded in the ambient space. Intrinsically, there are 
two fundamental problems in image retrieval: 1) How do we rep-

resent an image? 2) How do we judge similarity? 

One possible solution to these two problems is to learn a mapping 
function from the low-level feature space to the high-level seman-
tic space. The former is not always consistent with human percep-
tion while the latter is what image retrieval system desires to have. 
Specifically, if two images are semantically similar, then they are 
close to each other in semantic space. In this paper, our approach 
is to recover semantic structures hidden in the image feature space 
such as color, texture, etc. 

In recent years, much has been written about relevance feedback 
in content-based image retrieval from the perspective of machine 
learning [16][17][18][19][20], yet most learning methods only 
take into account current query session and the knowledge ob-
tained from the past user interactions with the system is forgotten. 
To compare the effects of different learning techniques, a useful 
distinction can be made between short-term learning within a 
single query session and long-term learning over the course of 
many query sessions [6]. Both short- and long-term learning proc-
esses are necessary for an image retrieval system though the for-
mer has been the primary focus of research so far. We present a 
long-term learning method which learns a radial basis function 
neural net-work for mapping the low-level image features to high-
level semantic features, based on user interactions in a relevance 
feedback driven query-by-example system.  

As we point out, the choice of the similarity measure is a deep 
question that lies at the core of image retrieval. In recent years, 
manifold learning [1][4][11][13][15] has received lots of attention 
and been applied to face recognition [7], graphics [10], document 
representation [5], etc. These research efforts show that manifold 
structure is more powerful than Euclidean structure for data repre-
sentation, even though there is no convincing evidence that such 
manifold structure is accurately present. Based on the assumption 
that the images reside on a low-dimensional submanifold, a geo-
metrically motivated relevance feedback scheme is proposed for 
image ranking, which is naturally conducted only on the image 
manifold in question rather than the total ambient space.  

It is worthwhile to highlight several aspects of the framework of 
analysis presented here: 

(1) Throughout this paper, we denote by image space the set of 
all the images. Different from most of previous geometry-
based works which assume that the image space is a Euclid-
ean space [8][12], in this paper, we make a much weaker as-
sumption that the image space is a Riemannian manifold em-
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bedded in the feature space. Particularly, we call it image 
manifold. Generally, the image manifold has a lower dimen-
sionality than the feature space. The metric structure of the 
image manifold is induced but different from the metric 
structure of the feature space. Thus, a new algorithm for im-
age retrieval which takes into account the intrinsic metric 
structure of the image manifold is needed.  

(2) Given enough images, it is possible to recover the image 
manifold. However, if the number of images is too small, 
then any algorithm can hardly discover the intrinsic metric 
structure of the image manifold. Fortunately, in image re-
trieval, we can make use of user provided information to 
learn a semantic space that is locally isometric to the image 
manifold. This semantic space is Euclidean and hence the 
geodesic distances on the image manifold can be approxi-
mated by the Euclidean distances in this semantic space. This 
intuition will be strengthened in our experiments.  

(3) There are two key algorithms in this framework. One is the 
retrieval algorithm on image manifold, and the other is an 
algorithm for learning a mapping function from feature space 
(color, texture, etc.) to high-level semantic space. The learn-
ing algorithm will gradually “flat” the image manifold, and 
make it better consistent with human perception. That is, if 
two images are close (in the sense of Euclidean metric) to 
each other, they are semantically similar to each other. Here, 
by “flat” we mean that the image manifold will be ultimately 
equipped with a flat Riemannian metric defined on it, at 
which time we call it semantic space. 

The rest of this paper is organized as follows: Section 2 describes 
the proposed retrieval algorithm on image manifold. Section 3 
describes the proposed framework for learning a semantic space to 
represent the underlying image manifold. The experimental results 
are shown in Section 4. We give concluding remarks in Section 5. 

2. RELEVANCE FEEDBACK ON IMAGE 
MANIFOLD 
In many cases, images may be visualized as points drawn on a 
low-dimensional manifold embedded in a high-dimensional 
Euclidean space. In this paper, our objective is to discover the 
image manifold by a locality-preserving mapping for image re-
trieval. We propose a geometrically motivated relevance feedback 
scheme for image ranking, which is conducted on the image mani-
fold, rather than the total ambient space. 

2.1 The Algorithm 
Let Ω denote the image database and R denote the set of query 
images and relevant images provided by the user. Our algorithm 
can be described as follows: 
1. Candidate generation.  For each image xi ∈ R, we find its k-

nearest neighbors Ci = {y1, y2, …, yk}, yj∈Ω (those images in 
R are excluded from selection). Let C = C1 ∪ C2 ∪ …∪ C|R|. 
We call C candidate image set. Note that R ∩ C = ∅. 

2. Construct subgraph. Construct a graph G(V), where 
V=R∪C. The distance between any two images xi, xj ∈ V is 
measured as follows: 
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where ε is a suitable constant. The choice of ε reflects our 
definition of locality. We put an edge between xi and xj if 
dist(xi, xj) ≠ ∞. Since the images in R are supposed to have 
some common semantics, we set their distances to zero. That 
is, dist(xi, xj) = 0, ∀xi, xj ∈ R. The constructed graph models 
the local geometrical structure of the image manifold. 

3. Distance measure on image manifold. To model the geo-
desic distances between all pairs of image points on the im-
age manifold M, we find the shortest-path distances in the 
graph G. The length of a path in G is defined to be the sum 
of link weights along that path. We then compute the geo-
desic distance distG(xi, xj) (i.e. the shortest path length) be-
tween all pairs of vertices of i and j in G, using Floyd’s 
O(|V|3) algorithm.  

4. Retrieval based on geodesic distance.  To retrieve the im-
ages most similar to the query, we simply sort them accord-
ing to their geodesic distances to the query. The top N images 
are presented to the user. 

5. Update query example set.  Add the relevant images pro-
vided by the user into R. Go back to step 1 until the user is 
satisfied. 

2.2 Geometrical Justification 
Our algorithm deals with finite data sets of points in Rn which are 
assumed to lie on a smooth submanifold M with low dimensional-
ity. The algorithm attempts to recover M given only the data 
points. A crucial stage in the algorithm involves estimating the 
unknown geodesic distance in M between data points in terms of 
the graph distance with respect to some graph G constructed on 
the data points. 

The natural Riemannian structure on M (induced from the Euclid-
ean metric on Rn) gives rise to a manifold metric dM defined by: 

)}({inf),( rlengthd rM =yx  

where r varies over the set of (piecewise) smooth arcs connecting 
x to y in M. Note that dM (x, y) is generally different from the 
Euclidean distance ||x-y||. Our algorithm makes use of a graph G 
on the data points. Given such a graph we can define a metric, just 
on the set of data points. Let x, y belong to the set {xi}. We de-
fine: 

dG (x, y) = the length of the shortest path between x and y 

Given the data points and graph G, one can compute dG without 
knowledge of the manifold M. Bernstein et al. [2] show that the 
two distance metrics (dM and dG) approximate each other arbitrar-
ily closely, as the density of data points tends to infinity. 

Here, we give a simple example to show the advantage of geo-
desic distances on manifold over Euclidean distance, and the ad-
vantage of semantic space over low-level image feature space. 
Figure 1 shows a spiral on a plane. Consider that the images of 
our concern are sampled from the spiral. Clearly, it is a one-
dimensional manifold. Figure 1(a) shows the Euclidean distance 
between data points A and B. Figure 1(b) shows the geodesic dis-
tance along the spiral. In this example, the intrinsic geometrical 
structure can only be characterized by the geodesic distance.  

In many real world applications, one is often confronted with the 
problem that the number of sample points is too small to describe 
the underlying topology of the data. In this case, the geodesic 



distance on the image manifold can not be accurately estimated, 
as can be seen from Figure 1(c). Fortunately, in image retrieval, 
the user provided information can help us recover the underlying 
structure of the image manifold. In the next section, we will de-
scribe how to learn a continuous function which maps the data 
points (images) into a semantic space in which the Euclidean 
distances between images are consistent with human perception, 
as illustrated in Figure 1(d). The nonlinear Riemannian structure 
of the manifold (Figure 1(c)) can be inferred from the linear 
Euclidean structure of the semantic space (Figure 1(d)).  

It might be more interesting to consider this example in image 
retrieval domain. Suppose the point A is the query image and the 
other six points denote the images in database. If we conduct the 
retrieval in the low-level feature space (Figure 1(c)), the point B 
will be selected as relevant image, no matter what distance metric 
we use, Euclidean or geodesic. This is because the intrinsic Rie-
mannian structure of the image manifold can not be accurately 
detected due to the lack of sufficient sample points. However, if 
the retrieval is conducted in the semantic space (Figure 1(d)), the 
point B will never be selected as relevant image. This is because 
that, by incorporating user provided information, the intrinsic 
Riemannian structure of the image manifold can be accurately 
detected. Clearly, the retrieval in semantic space is more consis-
tent with human perception. 

3. USING MANIFOLD STRUCTURE FOR 
IMAGE REPRESENTATION 
In the previous section, we have described an algorithm to retrieve 
the user desired images by modeling the underlying geometrical 
structure of the image manifold. One problem of this algorithm is 
that, if the number of sample images is very small, then it is diffi-
cult to recover the image manifold. In this case, we propose a 
long-term learning approach to discover the true topology of the 
image manifold using user interactions. To be specific, we aim at 

mapping each image into a semantic space in which the distances 
between the images are consistent with human perception.  

The problem we are going to solve can be simply stated below: 

 
Our proposed solution consists of three steps: 

1. Inferring a semantic matrix Bm×m from user interactions, 
whose entries are the distances between pairs of images in 
semantic space T . m is the number of images in database. 

2. Find m points {z1, z2,…, zm}⊂ Rk which preserve pairwise 
distances specified in Bm×m. Laplacian eigenmaps [1] is used 
to find such an embedding. The space in which the m points 
{z1, z2,…, zm} are embedded is called LE semantic space in 
the rest of the paper. The user provided information is incor-
porated into the LE semantic space. Note that, the LE seman-
tic space is only defined on the image database. In other 
words, for a new image outside the database, it is unclear 
how to evaluate its coordinates in the LE semantic space. 

3. Given m pair vectors, (xi , zi) (i = 1,2,…,m), where xi is the 
image representation in low-level feature space, and zi is the 
image representation in LE semantic space, train a radial ba-
sis function (RBF) neural network f that accurately predicts 
future z value given x. Hence f(x) is a semantic representa-
tion of x. The space obtained by f is called RBFNN semantic 
space. Note that, f(xi) ≈ zi. That is, RBFNN semantic space is 
an approximation of the LE semantic space. However, 
RBFNN semantic space is defined everywhere. That is, for 
any image (either inside or outside the database), its semantic 
representation can be obtained from the mapping function. 

We describe the detail of these steps in the following. 

3.1 Inferring a Distance Matrix in Semantic 
Space from User Interactions 
In this section, we describe how to infer a distance matrix in se-
mantic space from user interactions. Some previous work could be 
found in [6]. Here, we present a simple method to update the dis-
tance matrix gradually. 

Let B denote the distance matrix, Bij = ||xi − xj||. Intuitively, the 
images marked by the user as positive examples in a query session 
share some common semantics. Therefore, we can shorten the 
distances between them. Let S denote the set of positive examples, 
S = {s1, s2, …, sk}. We can adjust the distance matrix as follows: 
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where α is a suitable constant greater than 1. Similarly, we can 
lengthen the distances between the positive examples and negative 
examples, as follows: 
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(a) 

(c) (d) 

Figure 1. (a) Euclidean distance between data points 
A and B. (b) Geodesic distance between data points A 
and B. (c) Seven data points sampled from the spiral. 
The geodesic distances between them can not be accu-
rately estimated. (d) 1-D representation of the spiral.  

(b) 

Let S denote the low-level feature space, and T 
denote the semantic space. Learn a nonlinear 
mapping function from S to T,  

),(           : TS ∈∈→ zx zxf  

which preserves the local Riemannian structure 
of the low-level feature space. 



where T = {t1, t2, …, tk} is the set of negative examples, and β is a 
suitable constant greater than 1. As the user interacts with the 
retrieval system, the distance matrix will gradually reflect the 
distances between the images in semantic space which is consis-
tent with human perception.  

3.2 Using Manifold Structure for Image Rep-
resentation 
In the above subsection, we have obtained a distance matrix in 
semantic space. In this subsection, we discuss how to find the 
semantic representation for each image in database, while the 
distances are preserved. Recently, there has been some renewed 
interest [1][15][11] in the problem of developing low dimensional 
representations when data arises from sampling a probability dis-
tribution on a manifold. To choose a proper mapping algorithm, 
the following two requirements should be satisfied: 

1) Since the image distribution in feature space is highly ir-
regular and inconsistent with human perception, the map-
ping algorithm must have the locality preserving property. 

2) The mapping algorithm should explicitly take into account 
the manifold structure. 

Based on these two considerations, we use Laplacian Eigenmaps 
[1] to find such a mapping. We first compute the similarity matrix 
as follows: 
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where t and ε is a suitable constant, and B is the distance matrix 
obtained in the previous subsection. Note that, the weight matrix 
has locality preserving property, which is the key feature of Lap-
laican Eigenmaps.  

Suppose y={y1, y2, …, ym} is a one-dimensional map of {x1, x2, 
…, xm} in the LE semantic space. A reasonable criterion for 
choosing a “good” map is to minimize the following objective 
function under appropriate constraints: 
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The objective function with our choice of weights Wij incurs a 
heavy penalty if neighboring points xi and xj are mapped far apart. 
Therefore, minimizing it is an attempt to ensure that if xi and xj 
are “close” then yi and yj are close as well. To minimize this ob-
jective function, it is equivalent to solve the following eigenvector 
problem: 

yy DL λ=  

where D is a diagonal matrix, whose entry is column sum (also 
row sum, since W is symmetric) of matrix W, Dii = Σ jWji . L is 
called Laplacian matrix, L = D – W. Let y(0), y(1), …, y(n) be the 
solutions of the above eigenvector problem, ordered according to 
their eigenvalues, λ0 ≤ λ1 ≤…≤ λn. It is easy to show that λ0 = 0, 
and y(0) = (1,…1). We leave out y0 and use the next k eigenvectors 
for embedding in k-dimensional Euclidean space. 
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where )( j
iy  is the ith entry of the eigenvector y(j). zi is a k-

dimensional map of image xi in the LE semantic space.  

In summary, our goal is to find a vector representation (map) in 
semantic space for each image in database. Dimensionality reduc-
tion itself is not our goal, though we can make the dimensionality 
of the LE semantic space much lower than the feature space.  

3.3 Learning the Optimal Mapping Function 
In the above section, every image in database is mapped into the 
semantic space. Now, the problem is that, for a new image outside 
the image database, it is unclear how to evaluate its map in the LE 
semantic space, since we don’t have a mapping function. Here we 
present an approach that applies neural network to approximate 
the optimal mapping function, which intrinsically distinguishes 
our framework from previous work [6]. The optimal mapping 
function f* is given by minimizing the following cost function: 
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where m is the number of images in database. Clearly, this is a 
multivariate nonparametric regression problem, since there is no a 
priori knowledge about the form of the true mapping function 
which is being estimated. 

In this work, we use radial basis function (RBF) networks, and the 
standard gradient descent is used as a search technique. The map-
ping function learned by RBF networks can be represented by 
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where h is the number of hidden layer neurons, ωij ∈ R are the 
weights. Gi is the radial function defined as follows: 
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where ci is the center for Gi, and σi is the basis function width. 
The k-dimensional mapping in semantic space can be represented 
as follows: 
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where f = [f1, f2, …, fk] is the mapping function. Since the map-
ping function is approximated by the RBFNN (radial basis func-
tion neural network), we call this semantic space RBFNN seman-
tic space. 

In summary, the RBF neural network approximates the optimal 
mapping function from low-level feature space to semantic space. 
It is trained off-line with the training samples {xi , zi}. The compu-
tational complexity in retrieval process will be reduced as the 
dimensionality of the semantic space is reduced. The image repre-
sentation f(xi) in RBFNN semantic space is an approximation of 
image representation zi in LE semantic space, i.e., f(xi) ≈ zi. For a 
new image previously unseen, it can be simply mapped into the 
RBFNN semantic space by the mapping function f.  

4. EXPERIMENTAL RESULTS 
In this paper, we focus on image retrieval based on user’s rele-
vance feedback to improve the system’s short-term and long-term 
performances. The user can submit a query image either inside or 
outside the database. The system first computes low-level features 
of the query image and then maps it into semantic space using the 
learned mapping function. The system retrieves and ranks the 



images in the database. Then, the user provides his judgment of 
the relevance of retrieval. With the user’s relevance feedback, the 
system refines the search result iteratively until the user is satis-
fied. The accumulated relevance feedbacks are used to construct 
and update the semantic space, as described in Section 3. 

We performed several experiments to evaluate the effectiveness of 
our proposed approaches over a large image dataset. The image 
dataset we use consists of 3,000 images of 30 semantic categories 
from the Corel dataset. Each semantic category contains 100 im-
ages. The 3,000 images are divided into two subsets. The first 
subset consists of 2,700 images, and each semantic category con-
tains 90 images. The second subset consists of 300 images, and 
each semantic category contains 10 images. The first subset is 
used as training set for learning the optimal mapping function. 
The second subset is for evaluating the generalization capability 
of our learning framework. A retrieved image is considered cor-
rect if it belongs to the same category of the query image. Three 
types of color features (color histogram, color moment, color 
coherence) and three types of texture features (tamura coarseness 
histogram, tamura directionary, pyramid wavelet texture) are used 
in our system. The combined feature vector is 435-dimensional. 

We designed an automatic feedback scheme to model the short-
term retrieval process. We only require the user to provide posi-
tive examples. At each iteration, the system selects at most 5 cor-
rect images as positive examples (positive examples in the previ-
ous iterations are excluded from the selection). These automatic 
generated feedbacks are used as training data to perform short-
term learning. To model the long-term learning, we randomly 
select images from each category as the queries. For each query, a 
short-term learning process is performed and the feedbacks are 
used to construct the semantic space. The retrieval accuracy is 
defined as follows: 

N
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Four experiments are conducted. The experiment with the new 
retrieval algorithm on image manifold is discussed in Section 4.1. 
In Section 4.2, we show the image retrieval performance in the 
learned semantic spaces. The generalization capability is also 
evaluated. In Section 4.3 we further test the system’s performance 
in semantic space with different dimensionalities. We compare 

our new algorithm with Rui’s algorithm [12] in semantic space in 
Section 4.4. 

4.1 Retrieval on Image Manifold 
We compare the performance of our proposed retrieval algorithm 
on image manifold with the relevance feedback approach de-
scribed in Rui [12]. We didn’t compare it to other image retrieval 
methods because our primary purpose is to analyze the geometri-
cal structure of the image space. Specifically, we aim at compar-
ing the Euclidean structure and manifold structure for data repre-
sentation in image retrieval. The comparison was made in the low-
level feature space with no semantic information involved. Figure 
2 shows the experimental result by looking at the top 20 retriev-
als. As can be seen, our algorithm outperforms Rui’s approach. 
One reason is that the image manifold is possibly highly nonlin-
ear, while Rui’s approach can only discover the linear structure.  

4.2 Retrieval in Semantic Space 

4.2.1  Query Image Inside the Database 
As we discussed in Section 3, there are two different semantic 
spaces, LE semantic space and RBFNN semantic space. One limi-
tation of the LE semantic space is that, it only contains those im-
ages in database, i.e., training set. It is unclear how to evaluate the 
map in the LE semantic space for new test data. To overcome this 
limitation, a mapping function f from low-level feature space to 
high-level semantic space (LE semantic space) is learned by a 
RBF neural network. That is, the image representation in LE se-
mantic space, zi, is approximated by f(xi) which is the image rep-
resentation in RBFNN semantic space. Intuitively, the retrieval 
performance in RBFNN semantic space should not be better than 
that in LE semantic space, since RBFNN semantic space is an 
approximation of LE semantic space. 

Figure 3 shows the retrieval performance in low-level feature 
space, LE semantic space and RBFNN semantic space. Our new 
retrieval algorithm on image manifold is used. We use the training 
set (2700 images) as the image database. We first conduct the 
experiment in low-level feature space. As the previous experiment 
in Section 4.1, we randomly choose 20% of images in each se-
mantic class as queries to perform the retrieval. The user’s rele-
vance feedbacks are used to learn a LE semantic space, a RBFNN 
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Figure 3. Image retrieval performance in low-
level feature space, RBFNN semantic space and 
LE semantic space. The query images are from 
the image database (training set). 

Figure 2. Comparison of retrieval on im-
age manifold with Rui’s algorithm. 
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semantic space, as well as a mapping function from 435-
dimensional low-level feature space to 30-dimensional high-level 
semantic space. We will discuss how to determine the intrinsic 
dimensionality of the semantic space in the next section. As can 
be seen, the retrieval performance in semantic spaces is much 
better than that in low-level feature space. The performance dif-
ference is especially significant at the 0th retrieval when no user’s 
relevance feedback is provided, which is our primary goal. That 
is, the semantic representation of the query image can be learned 
by the RBF neural network f which is trained by previous users’ 
interactions with the system. In fact, in the real world, if the initial 
retrieval result is too bad, the user might lose his interest to pro-
vide feedbacks.  

Another observation is that, the retrieval performances in LE se-
mantic space and RBFNN semantic space are almost the same. 
This means that the optimal mapping function f* can be accurately 
approximated by the RBF neural network f.  

4.2.2  Query Image outside the Database --- Gener-
alization Capability Evaluation 
While using RBF neural network to solve the regression problem, 
a key issue is its generalization capability. Generalization refers to 
the neural network producing reasonable outputs for inputs not 
encountered during training. To evaluate the generalization capa-
bility of our model, the 300 images (testing set) are used as que-
ries outside the image database (training set) for testing. These 
images have no semantic representations in LE semantic space, 
but we can obtain their semantic representations in RBFNN se-
mantic space by the mapping function f. Since our intention is to 
evaluate the generalization capability of our model, the initial 
retrieval result is especially important when no feedbacks are 
provided. The precision-scope curves are shown in Figure 4. As 
can be seen, the retrieval in RBFNN semantic space outperforms 
that in low-level feature space. This means that the semantic rep-
resentation of the previously unseen images can be accurately 
learned by the RBF neural network. 

4.3 Retrieval in Semantic Space with Different 
Dimensionalities 

One issue of learning a semantic space is how to estimate its in-
trinsic dimensionality. Even though the dimensionality of low-
level feature space is normally very high, the dimensionality of 
semantic space is much lower.  

In this section, we evaluate the retrieval performance in semantic 
spaces with different dimensionality. As before, the 300 images 
outside the image databases are used as the query images. Both 
the images in database and the query images are mapped into 
RBFNN semantic space by the mapping function. Figure 5 shows 
the results. As can be seen, the optimal dimensionality is closely 
related to the number of semantic classes in the database. This 
observation coincides with that obtained in [6]. If the image data-
base administrator has a prior knowledge about this number, it 
can be used as a guideline to control the dimensionality of the 
semantic space. The system reaches the best performance (in 
terms of accuracy and efficiency) when the dimensionality of the 
semantic space is close to the number of semantic classes. Further 
compression of the semantic space will start to cause information 
loss and decrease the retrieval accuracy. 

4.4 Comparing Different Retrieval Algorithms 
in Semantic Space 
In previous two subsections, we have evaluated the retrieval per-
formance in semantic space using our retrieval algorithm. It is 
interesting to see how Rui’s algorithm [12] performs in semantic 
space. Figure 6 shows the retrieval results using our retrieval algo-
rithm and Rui’s algorithm. We use the same image database and 
the same query images as in Section 4.2.1. The retrieval is con-
ducted in RBFNN semantic space rather than the feature space. 
As can be seen, Rui’s algorithm works almost the same as our 
algorithm. It is important to note that the baseline performance in 
semantic space is much higher than that in low-level feature 
space. This observation confirms our previous intuition that the 
semantic space gets more and more “regular” (flat and linear) as 
the user’s relevance feedback is incorporated. To be specific, in 
the semantic space, the geodesic distances are almost equal to the 
Euclidean distances (see Figure 1(d)). Hence the Riemannian 
structure of the image manifold can be inferred from the Euclid-
ean structure of the semantic space. 

5. CONCLUSIONS  
In this paper, under the assumption that the data lie on a submani-
fold hidden in a high dimensional feature space, we developed an 

Figure 4. Image retrieval performance in low-
level feature space and RBFNN semantic space. 
The query images are outside the database.  

 

Figure 5. The initial retrieval accuracy (no 
feedback is provided) in RBFNN semantic 
space with different dimensionalities. 
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algorithmic framework to learn the mapping between low-level 
image features and high-level semantics. It utilizes relevance 
feedback to enhance the performance of image retrieval system 
from both short- and long-term perspectives. This framework 
gives a solution to the two fundamental problems in image re-
trieval: how to judge similarity and how to represent an image.  

To solve the first problem, the proposed retrieval algorithm on 
image manifold uses the geodesic distance rather than Euclidean 
distance as the similarity measure between images. It takes into 
account the Riemannian structure of the image manifold on which 
the data may possibly reside.  

To solve the second problem, two semantic spaces, LE semantic 
space and RBFNN semantic space, are learned from user’s rele-
vance feedback. A mapping function is approximated by a RBF 
neural network. The semantic space gives a Euclidean representa-
tion of the Riemannian image manifold.  

Several questions remain unclear: 

1. We do not know how often and in which particular empirical 
contexts, the manifold properties are crucial to account for 
the underlying topology of image data. While the results in 
this paper provide some indirect evidence for this, there still 
seems to be no convincing proof that such manifold struc-
tures are actually present. 

2. Secondly, and most intriguingly, while the notion of seman-
tic space is a very appealing one, the properties of the true 
mapping from low-level feature space to high-level semantic 
space remains unclear. It is unclear whether the true mapping 
is one-to-one, or many-to-one, since intuitively two different 
images might have totally the same semantics. The mapping 
function is learned in a statistical sense. Though the experi-
ments show its strong generalization capability, it still re-
mains unclear in theory. 
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Figure 6. The comparison of our retrieval algorithm 
with Rui’s algorithm in semantic space. The per-
formances of these two algorithms are very close. It 
shows that the semantic space is Euclidean (flat). 
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