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Abstract. We introduce, analyze and demonstrate a recursive hierarchical generalization of the
widely used hidden Markov models, which we name Hierarchical Hidden Markov Models (HHMM).
Our model is motivated by the complex multi-scale structure which appears in many natural
sequences, particularly in language, handwriting and speech. We seek a systematic unsupervised
approach to the modeling of such structures. By extending the standard forward-backward (Baum-
Welch) algorithm, we derive an efficient procedure for estimating the model parameters from
unlabeled data. We then use the trained model for automatic hierarchical parsing of observation
sequences. We describe two applications of our model and its parameter estimation procedure.
In the first application we show how to construct hierarchical models of natural English text. In
these models different levels of the hierarchy correspond to structures on different length scales in
the text. In the second application we demonstrate how HHMMs can be used to automatically
identify repeated strokes that represent combination of letters in cursive handwriting.

1. Introduction

Hidden Markov models (HMMs) have become the method of choice for modeling
stochastic processes and sequences in applications such as speech and handwrit-
ing recognition (Rabiner, 1986), (Nag et al., 1985) and computational molecular
biology (Krogh et al., 1993), (Baldi et al., 1994). Hidden Markov models are also
used for natural language modeling (see e.g. (Jelinek, 1985)). In most of these ap-
plications the model’s topology is determined in advance and the model parameters
are estimated by an EM procedure (Dempster et al., 1977), known as the forward-
backward (or Baum-Welch) algorithm in this context (Baum and Petrie, 1966).
Some recent worked has explored the inference of the model structure as well
(Stolcke and Omohundro, 1994). In most of the above applications, however, there
are difficulties due to the multiplicity of length scales and recursive nature of the
sequences. Some of these difficulties can be overcome using stochastic context free
grammars (SCFG). The parameters of stochastic grammars are difficult to estimate
since typically the likelihood of observed sequences induced by a SCFG varies dra-
matically with small changes in the parameters of the model. Furthermore, the
common algorithm for parameter estimation of SCFGs, called the inside-outside
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algorithm (Lari and Young, 1990), has a cubic time complexity in the length of the
observed sequences.

In this paper we present a hierarchical generalization of the hidden Markov model.
Our primary motivation is to enable better modeling of the different stochastic lev-
els and length scales that are present in the natural language, whether speech,
handwriting, or text. Another important property of such models is the ability to
infer correlated observations over long periods in the observation sequence via the
higher levels of the hierarchy. We show how to efficiently estimate the model param-
eters through an estimation scheme inspired by the inside-outside algorithm. The
structure of the model we propose is fairly general and allows an arbitrary num-
ber of activations of its submodels. This estimation procedure can be efficiently
approximated so that the overall computation time is only quadratic in the length
of the observations. Thus long time correlations can be captured by the model
while keeping the running time reasonable. We demonstrate the applicability of
the model and its estimation procedure by learning a multi-resolution structure
of natural English text. The resulting models exhibit the formation of “temporal
experts” of different time scales, such as punctuation marks, frequent combinations
of letters, and endings of phrases. We also use the learning algorithm of hierar-
chical hidden Markov models for unsupervised learning of repeated strokes that
represent combinations of letters in cursive handwriting. We then use submodels
of the resulting HHMMs to spot new occurrences of the same letters combination
in unlabeled data.

The paper is organized as follows: In Section 2 we introduce and describe the
hierarchical hidden Markov model. In Section 3 we derive the estimation procedure
for the parameters of the hierarchical hidden Markov model. In Section 4 we
describe and demonstrate two applications that utilize the model and its estimation
scheme. Finally, in Section 5 we discuss related work, describe several possible
generalizations of the model, and conclude. In order to keep the presentation
simple, most of the technical details are deferred to the technical appendices. A
summary of the symbols and variables used in the paper is given in Appendix C.

2. Model description

Hierarchical hidden Markov models (HHMM) are structured multi-level stochastic
processes. HHMMs generalize the standard HMMs by making each of the hidden
states an “autonomous” probabilistic model on its own, that is, each state is an
HHMM as well. Therefore, the states of an HHMM emit sequences rather than
a single symbol. An HHMM generates sequences by a recursive activation of one
of the substates of a state. This substate might also be composed of substates
and would thus activate one of its substates, etc. This process of recursive activa-
tions ends when we reach a special state which we term a production state. The
production states are the only states which actually emit output symbols through
the usual HMM state output mechanism: an output symbol emitted in a produc-
tion state is chosen according to a probability distribution over the set of output
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symbols. Hidden states that do not emit observable symbols directly are called
internal states. We term the activation of a substate by an internal state a vertical
transition. Upon the completion of a vertical transition (which may include further
vertical transitions to lower level states), control returns to the state which origi-
nated the recursive activation chain. Then, a state transition within the same level,
which we call a horizontal transition, is performed. The set of states and vertical
transitions induces a tree structure where the root state is the node at the top of
the hierarchy and the leaves are the production states. To simplify notation we
restrict our analysis to HHMMs with a full underlying tree structure, i.e., all the
leaves are at the same distance from the root state. The analysis of HHMMs with a
general structure is a straightforward generalization of the analysis presented here.
The experiments described in this paper were performed with a general topology.

We would like to note in passing that every HHMM can be represented as a
standard single level HMM. The states of the HMM are the production states of
the corresponding HHMM with a fully connected structure, i.e., there is a non-zero
probability of moving from any of the states to any other state. The equivalent
HMM lacks, however, the multi-level structure which we exploit in the applications
described in Section 4.

We now give a formal description of an HHMM. Let ¥ be a finite alphabet. We
denote by X* the set of all possible strings over 3. An observation sequence is a
finite string from X* denoted by O = 0704 ---op. A state of an HHMM is denoted
by ¢¢ (d € {1,..., D}) where i is the state index and d is the hierarchy index. The
hierarchy index of the root is 1 and of the production states is D. The internal states
need not have the same number of substates. We therefore denote the number of
substates of an internal state ¢¢ by |¢¢|. Whenever it is clear from the context, we
omit the state index and denote a state at level d by ¢?. In addition to its model
structure (topology), an HHMM is characterized by the state transition probability
between the internal states and the output distribution vector of the production
states. That is, for each internal state ¢¢ (d € {1,..., D —1}), there is a state

d

transition probability matrix denoted by AT = (a?j ), where a?; = P(q}i+1|qf+l)
is the probability of making a horizontal transition from the ith state to the jth,
both of which are substates of ¢¢. Similarly, IT?" = {qu(qf“)} = {P(¢!**)¢%)}
is the initial distribution vector over the substates of ¢¢, which is the probability
that state ¢ will initially activate the state qf"’l. If qu'l is in turn an internal
state, then ﬂd(ql‘-“'l) may also be interpreted as the probability of making a vertical

transition: entering substate qf‘H from its parent state ¢¢. Each production state
qP is solely parameterized by its output probability vector B1” = {qu(k)}, where
qu(k) = P(ox|q”) is the probability that the production state ¢” will output the

symbol o € X. The entire set of parameters is denoted by

A= {/\qd}de{le} = {{AQd}dE{l,...,D—l}a {qu}de{l,...,D—l}; (B} .

An illustration of an HHMM with an arbitrary topology and parameters is given
in Figure 1.
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Figure 1. An illustration
of an HHMM of four levels.
Gray and black edges re-
spectively denote vertical
and horizontal transitions.
Dashed thin edges denote
(forced) returns from the
end state of each level to
the level’s parent state.
For simplicity, the pro-
duction states are omitted
from the figure.

To summarize, a string is generated by starting from the root state and choosing
one of the root’s substates at random according to e’ Similarly, for each internal
state ¢ that is entered, one of ¢’s substates is randomly chosen according to ¢’s ini-
tial probability vector II19. The operation proceeds with the chosen substate which
recursively activates one of its substates. These recursive operations are carried out
until a production state, ¢”, is reached at which point a single symbol is gener-
ated according to a state output probability vector, B?” . Then control returns to
the state activated ¢©. Upon the completion of a recursive string generation, the
internal state that started the recursion chooses the next state in the same level
according to the level’s state transition matrix and the newly chosen state starts a
new recursive string generation process. Each level has a terminal state, denoted
qgnd, which is the actual means of terminating the stochastic state activation pro-
cess. When a terminal state is reached, control returns to the parent state of the
whole hierarchy. The generation of the observation sequence is completed when
control of all the recursive activations is returned to the root state. We assume
that all stats can be reached by a finite number of steps from the root state, that
is, the model is strongly connected.

3. Inference and learning

As in the case with HMMs, three natural problems typically arise in applications
that use HHMMs:
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Calculating the likelihood of a sequence: Given an HHMM and its parame-
ter set A = {/\qd}, find the probability P(O|)) of a sequence O to be generated
by the model A.

Finding the most probable state sequence: Given an HHMM, its parameter
set A = {)\qd}, and an observation sequence O, find the single state activation
sequence that is most likely to generate the observation sequence.

Estimating the parameters of a model: Given the structure of an HHMM and
one or more observation sequences {O;}, find the most probable parameter set

X* of the model, X* = argmax, P({0;}|}).

Solutions for the above problems for HHMMs are more involved than for HMMs;,
due to the hierarchical structure and multi-scale properties. For instance, the most
probable state sequence given an observation sequence is a multi-resolution struc-
ture of state activations instead of a simple sequence of indices of the mostly prob-
able states to be reached. We now present the solutions to these problems, starting
with the simplest. We will be using the following terminology: we say that state
q? started its operation at time ¢ if the (possibly empty) sub-sequence o - -0;_;
was generated before ¢¢ was activated by its parent state, and the symbol o; was
generated by one of the production states reached from ¢?. Analogously, we say
that state finished its operation at time ¢ if o, was the last symbol generated by

any of the production states reached from ¢?, and control was returned to ¢? from
d+1
Tend-

3.1. Calculating the likelihood of a sequence

Since each of the internal states of an HHMM can be viewed as an autonomous
model which can generate a substring of the observation using its substates, an
efficient likelihood evaluation procedure should be recursive. For each state ¢¢ we
calculate the likelihood of generating a substring w, denoted by P(w|), ¢¢). Assume
for the moment that these probabilities are provided except for the the root state
q'. Let i = (i1,42,...,4;) be the indices of the states at the second level that
were visited during the generation of the observation sequence O = 01,04, ..., 07
of length T. Note that the last state entered at the second level is qgnd, thus
qfl = qgnd. Let 7; be the temporal position of the first symbol generated by state
ql-zj, and let the entire list of these indices be denoted by 7 = (71, 72,..., 7). Since

qz-21 was activated by ¢! at the first time step and qgnd was the last state from the
second level that was activated, we have 7y = 1 and 77 = T'. The likelihood of the
entire sequence given the above information is,

P(O|7,i,A) =
79 (g2) P01+ 0ry_1]g2, Nl P(os, -+ 0r,_1]g%, Nal,

i102 1213
2 q1 2 q1
- Pog_, - '071_1—1|Qi1_2a )\)ail_gil_l P(oy_, - 'Oquiz—N)‘) 4; _Lend



6 S. FINE, Y. SINGER, N. TISHBY

In order to calculate the unconditioned likelihood we need to sum over all possi-
ble switching times 7 and state indices I. Clearly this is not feasible since there
are exponentially many such combinations. Fortunately, the structure of HHMMs
enables us to use dynamic programming to devise a generalized version of the
forward-backward algorithm. The generalized forward probabilities, «(-), are de-

fined to be
a(t,t+k, qfl,qd_l) = P(ot+ - 0tyk, gf finished at t + k | ¢! started at t) .

That is, a(t,t + k, ¢, ¢?=1) is the probability that the partial observation sequence
0; -+ 0r4x Was generated by state ¢?~1 and that ¢ was the last state activated by
gt during the generation of o; - - -0:4,. Note that the operation of each substate
q%~1 does not necessarily end at time ¢+ and that o; - - - 0,41 can be a prefix of a
longer sequence generated by ¢?~'. To calculate the probability that the sequence
0¢ - - - 0¢4x Was generated by ¢9~!, we need to sum over all possible states at level d

ending at qf;dl,
lq4=1] s
P(Ot c 'Ot-l-qud_l) = Z Q(t,t + ka qzda qd_l) a?end
i=1

Finally, the likelihood of the whole observation sequence is obtained by summing
over all possible starting states (called by the root state ¢'),

lq'|
PO\ = a(1,T,¢],q")
i=1
The definition of the generalized « variables for the states at level D — 1, a(¢,t +
k,qP ¢P~1), is equivalent to the definition of the forward variable ayix (i) of an

HMM that consists of only this level and whose output probability vectors are
defined by the production states ¢”. The evaluation of the « variables is done in a
recursive bottom-up manner such that the a values calculated for the substates of
an internal state ¢ are used to determine the a values of g.

In summary, for each internal state ¢ we need to calculate its a value for each
possible subsequence of the observation sequence using a recursive decomposition
of each subsequence based on the a values of ¢’s substates. Therefore the time
complexity of evaluating the a values for all states of an HHMM is O(NT?), where
N is the total number of states and 7" is the length of the observation sequence. In
a similar manner, a generalized backward variable § is defined,

Bt t +k,qf ¢=1) = P(oy - 0orqx| gf started at t, ¢*= finished at t + k)
A detailed description of the calculation of a and £ is provided in Appendix A.

3.2. Finding the most probable state sequence

The most probable state sequence is a multi-scale list of states: if state ¢ had
generated the string o; - - - 0;, then its parent state generated the string oy, - - - 0;, such
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that £ <iand j <[. Thus the string o; - - - 0; is subdivided by the substates of state
¢ to non-overlapping subsequences. This list can be computed efficiently following
the same line of reasoning used to derive the a variables, replacing summation by
maximization. Since the process which finds the most probable state sequence for
HMMs is known as the Viterbi algorithm (Viterbi, 1967), we term the modified
algorithm for HHMMs the generalized Viterbi algorithm.

Similar to the definition of the « variables we define §(t,t + &, ¢¢, g%~ 1) to be the
likelihood of the most probable (hierarchical) state sequence generating oy - - - 0p4x
given that ¢?~! was entered at time ¢, its substate g was the last state to be
activated by ¢¢, and control returned to ¢¢ at time ¢ + k. Since we are interested
in the actual hierarchical parsing of the sequence into states we also maintain two
additional variables: ¥(t,t + k,q¢, q4) is the index of the most probable state to
be activated by ¢?~! before activating ¢, and t' = 7(¢t,t + k,q%,q4) (t < ¥ <
t+k) is the time when qd was activated by ¢?. Given these two variables the
most probable hierarchical state sequence is obtained by scanning the lists i and
7 from the root state to the production states. If a breadth-first-search is used
for scanning then the states are listed by their level index from top to bottom.
If a depth-first-search is used then the states are listed by their activation time.
Since we simply replaced summation with maximization the time complexity of the
generalized Viterbi algorithm is the same as the time of the generalized forward-
backward, namely O(NT?3). The pseudo-code describing this algorithm is given in
Appendix B.

We have also devised a heuristic that finds an approximation to the most probable
state sequence in O(NT?) time. This heuristic assumes that the distributions
over sequences induced by the different states are substantially different from each
other. Hence the influence of the horizontal transitions on finding the most probable
state sequence is negligible. We therefore conduct an approximated search that
ignores the transition probabilities. In other words, we treat each state ¢¢ of the
HHMM as an autonomous model ignoring the influence of the neighboring states
of ¢ at level d. Therefore, only one maximization operation is performed at each
internal node, reducing the overall running time to O(NT?). Although there is
no theoretical justification for this approximation, we found in our experiments
that the most probable state sequence found by the approximated search greatly
resembles the state sequence found by the exact generalized Viterbi algorithm (see
the experiments described in Section 4).

3.3. Estimating the parameters of an HHMM

The maximum-likelihood parameter estimation procedure for HHMMs is a general-
ization of the forward-backward algorithms since we also need to consider stochastic
vertical transitions which recursively generate observations. Therefore, in addi-
tion to the path variables a and # which correspond to ‘forward’ and ‘backward’
transitions, we add additional path variables which correspond to ‘downward’ and
‘upward’ transitions. The variables used in the expectation step are as follows:
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&(t, g4, qg, q9=1) is the probability of performing a horizontal transition from ¢¢ to
qf, both substates of ¢¢=!, at time ¢ after the production of o; and before the
production of 041,

g(taqz{iaq‘?:qd_l) :P(Ol"'ota qzd —>Q;i; Ot41 - 0T | )\) .

Based on ¢ we define two auxiliary variables v;, and v, which simplify the re-
estimation step:

Yin(t,q¢,q%"1) is the probability of performing a horizontal transition to state g

before o, was generated. 7;, is calculated using & by summing over all substates
of ¢4~ which can perform a horizontal transition to ¢¢,

lg?="

Yin(t, g g ) = Y €t =14, 98 4")
k=1

Yout (t, q¢,q9~1) is the probability of leaving state q¢ by performing a horizontal
transition to any of the states in the same level d after the generation of o;.
Analogous to vin, Yout 18 calculated using ¢ by summing over all substates of

q%~1 that can be reached from ¢ by a single horizontal transition,

lg®~ 1

Yout (taf ¢ ) = Y &t qf i 4*)
k=1

The path variable used to estimate the probability of a vertical transition is x.

x(t, g4, g% 1) is the probability that state ¢! was entered at time ¢ before o; was
generated and initially chose to activate state ¢,

qd—l

Xt gl ¢* )y =Plor---0ic1, 4, 00-or | A) .
d
q;

Based on the above path variables and given the current set of parameters, the
following expectations are calculated:

ZtT:_ll (t,q2, q}i, q?~1): the expected number of horizontal transitions from ¢¢ to
qf, both are substates of the ¢?=!.

T - =l T -
D oi=a Yin(t, qfl, q° b= qul ! Yo &t —1, qg, qz‘»i, q? 1): the expected number of
horizontal transitions to state ¢¢ from any of the states in level d.

T-1 - - T-1 -
Yoiq Your(t, qd ¢4 = qul | Yoo &Lt qd, ¢% q9~1): the expected number of hor-
izontal transition out of state ¢¢ to any of the states in level d.
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Zthl x(t, g4, g% 1): the expected number of vertical transitions from ¢4~ to ¢Z.

d—1
Zi.qzl ! ZtT:_ll x(t, g4, g% 1): the expected number of vertical transitions from ¢4~

to any of its substates in level d.

T - T - T-1 -
i Xt gl dP T s vin (taP a7 ) = 5 Your(t, g, qP ) the expected
number of vertical transitions to the production state ¢P from state ¢”~1.

1

A complete derivation of &, vin, Yout, and x is given in Appendix A. After the
above expectations are calculated from the current parameters, a new set of pa-
rameters is re-estimated as follows:

~ 1
7 (¢f) = x(t,4f,q") (1)
T d ,d—1
gi-1 Dz Xt gl g
L (qzd) = |qd—1t| L T - 4 d-1 (2<d< D), (2)
i=1 Zt:l X(t,qi,q )
T _ T _
&qd_l _ Zt:lg(taq;’i:q?:qd 1) _ Zt:lg(taq;’iaq}i:qd 1) (3)
ij = a1 = _ ) *
I et g a0 i Your(t g ¢4
D _D-1 X D _D-1
qu—l(vk) _ Zotzvk X(t¢qz’ 14 )+Zt>1,otzvk %n(t¢qz’ 1 q ) . (4)

T T
Yoo Xt gl P + 30 g vin(t 0P, ¢PY)

In order to find a good set of parameters we iterate of the expectation step that
calculates 7, x, and the auxiliary path variables, and then we use Equ. (1)-(4) to
find a new estimate of the parameters. Although tedious, it is fairly simple to verify
that the above steps in this iterative procedure correspond to the Expectation and
Maximization steps of the EM algorithm. Hence, this procedure is guaranteed
to converge to a stationary point (typically a local maximum) of the likelihood
function.

4. Applications

In this section we discuss and give two examples of the use of HHMMs and their
parameter estimation for the following complex sequence modeling tasks: building
a multi-level structure for English text, and unsupervised identification of repeated
strokes in cursive handwriting.

4.1. A multi-level structure for English text

One of the primary goals in stochastic analysis of complex sequences such as natural
text is to design a model that captures correlations between events appearing far
apart in the sequence. Observable Markov models have been widely used for such
tasks (see for instance (Ron et al., 1996) and the references therein). Since the
states of these models are constructed based on observable sub-sequences, however,
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they cannot capture implicit long-distance statistical correlations. Here we suggest
an alternative approach based on HHMMs and give some experimental evidence
that this approach is able to partly overcome the above difficulty.

We built two HHMMs and trained them on natural text consisting of classical
English stories. The observation alphabet included the lower and upper case letters,
blanks, and punctuation marks. For training we used approximately 5000 sentences
of an average length of 50 characters. We trained the two HHMMSs on exactly the
same text. The HHMMs were as follows:

¢ A shallow HHMM consisting of two levels. The root state of this HHMM had 4
substates. Each of the states at the second level had 7 substates which were all
production states. Thus, all the production states were at the same level. The
structure of this HHMM is shown at the top part of Figure 3.

e An unbalanced HHMM consisting of three levels. This HHMM had a variable
number of substates at each internal state. The structure of this HHMM was
unbalanced as it had production states at all levels. Illustrations of the second
HHMM are given in Figure 2 and the bottom part of Figure 3.

We applied the generalized forward-backward parameter estimation procedure to
the above HHMMs. We found that after training the distributions over strings
induced by the substates of the first HHMM greatly resembled the distribution in-
duced by a standard HMM trained on the same data. In contrast, the distribution
induced by the second HHMM was substantially different and revealed several in-
teresting phenomena. First, the distribution induced by the second HHMM greatly
varied across its different substates. The sets of strings which are most probable to
be produced by the each of the states turned to have very little overlap. Second, we
observed a multi-scale behavior of the states. Specifically, we found that the most
probable strings to be produced by the deep states roughly correspond to phonetic
units, namely, strings such as ing, th, wh, and ou. Going up the hierarchy, the
states at the second and third level produce strings which are frequent words and
phrases such as: is not, will and where. Finally, at the top of the hierarchy, the
root state induced a distribution that corresponds to a sentence scale. For instance,
the strings produced by the root state (and hence the entire HHMM) are likely to
end with a punctuation mark. We also found that the horizontal transition prob-
abilities at the end of training of the unbalanced HHMM got highly peaked. This
reflects strong Markov dependencies between states at the same level. Thus, not
only is the distribution induced by each state highly concentrated on few strings,
but also the set of strings that can be generated by recursive activations of the deep
HHMM is strongly biased towards syntactic structures that frequently appear in
natural texts. As we demonstrate in the next application, the trained HHMM or
any of its submodels can be now used as a building block in more complex tasks such
as text classification. These highly biased distributions are illustrated in Figures 2
and 3. In Figure 2 we give the horizontal transition probabilities at the beginning
and the end of the training. In Figure 3 we list the most probable strings produced
by each substate of the two HHMMs: the deep unbalanced HHMM at the bottom
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and the shallow balanced HHMM at the top. It is clear from the figure that the
richer model developed a much larger variety of strings which include whole words
and fragments of sentences.

4.2. Unsupervised learning of cursive handwriting

In (Singer and Tishby, 1994), a dynamic encoding scheme for cursive handwriting
based on an oscillatory model of handwriting was proposed and analyzed. This
scheme performs an inverse mapping from continuous pen trajectories to strings
over a discrete set of symbols which efficiently encode cursive handwriting. These
symbols are named motor control commands. The motor control commands can
be transformed back into pen trajectories using a generative model, and the hand-
writing can be reconstructed without the noise that is eliminated by the dynamic
encoding scheme. Each possible control command is composed of a Cartesian prod-
uct of the form x x y where x,y € {0,1,2,3,4,5}, hence the alphabet consists of
36 different symbols. These symbols represent quantized horizontal and vertical
amplitude modulation and their phase-lags.

Different Roman letters map to different sequences over the above symbols. More-
over, since there are different writing styles and due to the existence of noise in the
human motor system, the same cursive letter can be written in many different ways.
This results in different encodings that represent the same cursively written word.
A desirable first step in a system that analyzes and recognizes cursive scripts is to
build stochastic models that approximate the distribution of the sequences that cor-
respond to complete cursive pen-trajectories. We used the motor control commands
as the observation alphabet and built HHMMs corresponding to different cursive
words in the training set. For example, we used 60 examples of the word maintain
to estimate the parameters of an HHMM which had five levels. This HHMM had
an unbalanced structure and it had production states at all levels. In the design
of the topology of the HHMMSs we took into account additional knowledge such as
repetitions of letters and combination of letters in cursively written words. The
structure of the HHMM used for the word maintain is shown in Figure 4. We
used the generalized forward-backward algorithm to estimate the parameters of
the HHMM. We then used the trained HHMM to identify repeated strokes that
represent combination of letters in cursive handwriting.

In order to verify that the resulting HHMMs indeed learned the distribution and
the internal structure of the words, we used the generalized Viterbi algorithm for
HHMMSs to perform multi-scale segmentation of the motor control sequences. An
example result of such a segmentation is given in Figure 5. In the figure the cursive
word maintain, reconstructed from the motor control commands, is shown together
with its hierarchical segmentation. We used the trained HHMM of depth five whose
structure is shown in Figure 4 to segment the word.

In Figure 5 we show the temporal segmentation into states from the first two
hierarchies of the HHMM. It is clear from the figure that the gerneralized Viterbi
algorithm assigned different states of the HHMM to different cursive strokes. Fur-
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Figure 2. The transition distribution at the beginning (top) and the end of the training for an
unbalanced HHMM of depth 3 that was trained on English texts. While the initial distribution is
almost uniform, the final distribution is sharply peaked around different states at different levels.
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Figure 4. The HHMM used in the cursive handwriting spotting experiments. The full model
was trained on complete words. The submodel denoted by a dotted line was used to locate the
occurrences of the letter combination ai.

thermore, the same state is consistently used to generate strokes that represent the
same letter combination. For instance, state 3 in the first hierarchy is responsible
for producing the combination ai. Its substates further split the letters ai into
sub-strokes: the first substate, denoted by 31, generates the first part of the cursive
letter a, the second, 33, generates the middle part (the articulated stroke connecting
the letters a and i), and the third, 33, generates the letter i. Similar phenomena
can also be observed in other states of the HHMM.

A common question that arises in stochastic modeling of sequences such as speech
signals and handwritten text is what are the ‘natural’ units that constitute the se-
quences. A widely used approach is to manually define these units, e.g. phonemes
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Figure 5. Hierarchical segmentation of the word maintain obtained by the Viterbi algorithm for
HHMMs. The temporal segmentation according to the first two levels of the HHMM is shown.
The word was reconstructed from its encoded dynamical representation.

in spoken language, letters in written text, etc. There are several drawbacks to
this approach: it requires a manual segmentation and it does not take into account
the temporal interaction (such as co-articulation in speech) between consecutive
‘units’. We now propose and briefly demonstrate an alternative approach that uses
the substates of a trained HHMM to provide a partial answer to the above ques-
tion. Due to the self-similar structure of HHMMs we can use each substate as
an autonomous model. We used the substates at the second level of the HHMM
described above and calculated the probabilities they induce for each sub-sequence
of an observation sequence. We also defined a simple HMM that induce a uniform
distribution over all the possible symbols. This simple model, denoted by U, serves
as a null hypothesis and competes against submodels that were pulled out from the
full HHMM. The probability of a subsequence O to be generated by a submodel M
compared to the null hypothesis (assuming an equal prior for the alternatives) is,

P(M|0) = P(%W?-fl-—]g(%' High values of P(M|0) indicate the occurrence of the
letters that correspond to the pulled-out model M. Hence, thresholding this value
can be used to identify the locations of combination of letters in unsegmented data.
An example result of letter combination spotting using an HHMM is given in Fig-
ure 6. In the figure we show the logarithm of the conditional probability P(M|O)
normalized by the length of the string |O|. This probability was calculated over
all possible start locations. The submodel M corresponding to the combination
ai, that is, the submodel rooted at state 3, denoted by a dotted line in Figure 4,
was pulled out from the HHMM which was constructed for the word maintain.
Clearly, all the occurrences of the letters ai were correctly located. The combina-
tion of letters oi in the word pointers also received a high likelihood. This and
other ambiguities can be resolved by further refining the set of submodels and by
employing a higher level stochastic language model.
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Figure 6. Spotting the occurrences of the letters ai in the sentence we maintained a chain of
pointers. The submodel corresponding to this combination of letters was pulled out from the
HHMM shown in Figure 5 which was built for the word maintain. Occurrences of the letters are
found by letting the model compete against a null hypothesis that induces a uniform distribution
over all possible symbols.

5. Conclusions

Hierarchical hidden Markov models are a generalization of HMMs which provide
a partial answer to two fundamental problems that arise in complex sequence
modeling. First, HHMMs are able to correlate structures accuring relatively far
apart in observation sequences, while maintaining the simplicity and computational
tractability of simple Markov processes. Second, they are able to handle statistical
inhomogeneities common in speech and natural language. The maximum likelihood
parameter estimation procedure and the Viterbi most probable state decoding, are
both naturally generalized to this richer structure. However, there is still a missing
component: HHMMs lack the ability to adapt their topology, that is, to allow for
self-organized merging and growth of the submodels. There are also several natural
generalization of HHMMs. For instance, using the framework introduced by Bengio
and Frasconi (1995) for input-output HMMs, hierarchical HMMs can be generalized
to describe input-output mappings between strings over two different alphabets.

The experiments with HHMMs described in this paper are an initial step to-
wards a better understanding of hierarchical stochastic models for natural com-
plex sequences. There are other models, such as factorial hidden Markov models
(Ghahramani and Jordan, 1997) and alternative parameter estimation techniques
(Singer and Warmuth, 1997) that can be used. Understanding the connections be-
tween these different approaches and conducting a formal analysis of hierarchical
stochastic modeling is an important research direction that is now in progress.
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Appendix A

Generalized forward-backward algorithm

To remind the reader, we calculate four path variables in the expectation step:
a, 3,x, and &, which informally correspond to ‘forward’,‘backward’, ‘downward’,
and ‘upward’ stochastic transitions in the given HHMM. The variables o and (3 are
calculated in a bottom-up manner since the probability induced by a state ¢ depends
only on the substates that belong to the tree (submodel) rooted at ¢. Given the
variables a and 3, the variables x and & are calculated in a top-down manner. To
simplify the derivation of the path variables, we also define two auxiliary variables,
Nin and 7Myy:. We now give a detailed derivation of these variables.

Definition:

alt,t+k,qf ¢ = P(os---0iqr, ¢ finished at t + k | %=1 started at ¢)

Estimation:

1

D—-1 D—
a(t,t,ql, ¢ = 777 (¢P) b5 (o)

lgP
D-—1 D—-1
alt,t+k g’ ¢"7) = | Y altt+k—1,¢0,¢°" ) ady | b5 (0r4k)
j:l
- lgf| B
aft,t,qf,q"h) = 77 (gf) aft,t, ¢t qf)al,,
s=1
k=1 [lg*7" s
alt,t+kqf ¢ = > alt,t+1,qf,¢°7 ") al;
=0 _j:l
[l4?] .
doalt+l+ 1t +k gt qf)al,,
_s:l
d—1 |<1?| d
+ 77 () | Y altt+ kg )l
s=1

Definition:
Bt,t +k, qf ¢ = P(og---ouqr| qf started at ¢, ¢! finished at ¢ + k)

Estimation:
D—1 D—-1

6(t:taQiDan_1) = b (Ot) a?end

1

D—
Bltt+ kgl q” ) = b5 (o) | Y el Blt+ Lt 4k qP ¢"7)
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la?]

d d
Blt,t, gl g™ = | D7 (gt Bt ai 0f) | ol
s=1
k-1 [lad] )
Bt t+k, gl g™ = Y| D o a (g Bt + 1, gt qf)
=0 _8_1
(g s
dooal Blt+l+1t+k g, ¢")
L j=1
lqf | ) s
+ mh (gt Bt t+ ki gf) | af g
s=1
Definition:
mn(t,qz‘-i,qd_l) = P(oy--0t_1, q;j started at | A)
Estimation:
1
nin(l,4f,q') = 70 (q})
lq'| )
Uin(t;qizaql) = Za(lat_laq‘?aql) a?i (1<t)
j=1
_ _ _ d—1
nin(Laf a1 = min(L g1 ") 7% ()
d—1
t—1 lar =1 a1
in(t g g™ = Y it g 9" alt' t=1,q4f, 47" aj}
t'=1 j=1
d—1
+ minlt g g TN (gf) (1<)
Definition:
nout(t,qg,qd_l) = P(q;j finished at ¢, 0¢41 - -or| A)
Estimation:
lq*| )
Nout(t,47,4") = D af; Bt +1,T,q7,4") (¢ <T)
j=1
7 [l

nour(taf g ™) = D0 | Do alt B+ 1k gl g7 | nowr(k gf ™ ")

g Noue(tgf " ) (< T)

gt d-1 d-2)

d_l) = a?lend nout(Ta 49 9

nout(T; qzd; Ql
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Definition:
(t,qf, qf, ¢%1) = P(qf finished at ¢, q;-i started at t + 1| A, O)
— P(Ol © O, qzd — q‘;ia Ot+1 "'OT|)‘JO)

Estimation:

o(1,T,¢2,¢") al,
(T, qi,q;.q") = - :
P(O|A)
1 ¢ d—1
‘f(t qzaq]:qld 1) = }D(Tl)\) Znin(saqld_laqd_z) a(s t qzand 1)] a?‘;
s=1
T
> B+ 1,6,q§-i,qld_1)nout(e,q,‘i_l,qd"z)l (t<T)
e=t+1
£t qf dbpar i) = OIA an (s,qf ™" q" %) als,t,qf g 1)]
d—1
jendnout(t qld 1’qd—2) (t < T)

Definition:

x(t,qd q% 1) = P(qf started at t| A, O)

qd—l
:P(01...0t_1, i ’Ot"'OTl/\,O)
d
q;
(g2} B(1,T,q2,q*
X(laqiz,ql) = T (ql) ﬁ(,’ ’QzaQ)
P(O]A)
d—1
X(t q qd 1) — Uzn(t qld 1aq(i_2) 74 (qzd)
o P(OY)

T
> Bt e al,af ) nowsle qf a7 (2<d)
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Appendix B
Generalized Viterbi algorithm

d

To remind the reader, for each pair of states (¢!, ¢%) we keep three variables:

o J(t,t+k,qf g9 1) is the likelihood of the most probable state sequence gener-
ating o; - - - oty assuming it was solely generated by a recursive activation that
started at time step ¢ from state ¢?~! and ended at ¢f which returned to ¢9~*
at time step t + k.

o U(t,t+ k,q¥ g% 1) is the index of the most probable state to be activated by
q%~! before ¢¢. If such a state does not exist (o; - --op4x was solely generated

by qf) we set ¥(t,t + k, qf, ¢%71) def

o T(t,t+k, g% g% 1) is the time step at which ¢¢ was most probable to be called
by q4=1. If q¢ generated the entire subsequence we set ¥(¢,t + k, ¢, ¢4=1) = ¢.

To simplify our notation, we define the functional MAX whose parameters are
a function f and a finite set S,

MAZies (10} (a0}, aremact 7))

The generalized Viterbi algorithm starts from the production states and calculate
d,%, and 7 in a bottom up manner as follows.

Production states:

1. Initialization:

1

D— D
5(t,t,qP,q" ) =77 (¢P) b5 (o) Y(t,t,qP,q"7) =0 T(t,t,qP,¢°7h) =t

2. Recursion:
((t,t+k,q”, ¢, vt t+ kg, ¢" ) =
-1 D
MAX1 < j < |qD—1| {5(tat+k_ 17quJqD_1) a?i qu (Ot‘l'k)}
Tt t+ kg, ") =t+k

Internal states:

1. Initialization:
d

_ d—1
0(t.tqf q"Y) = max {Wq (¢f) 8(t,t,q% qf) a4
1<j <lqgfl

Yt t gl ¢ =0 T(ttql g =t
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2. Recursion:

(A) Fort' =t+1,...,t+k set:

_ / d+1 _dy 4f
k= {5(15 kg ’Qi)arend}
d—1
(AW@), (1) = MAX gjqpgon {608 = 1gf ") ol R}
(B) For ? set:

1 d

At) = md’ (¢%) max {(5(t,t+k,qf+1,qf) aZ’end}
1<r<]g; 77|

U(t) = 0

(C) Find the most probable switching time:
(6(t=t + k; qzd= qd_l)a T(tat+ k; qzda qd_1 ) = MAXtSt’St-[-k A(t/)
Gt t+ kgl ") = Wt + kg ¢

Finally, the probability of the most probable state sequence is found as follows,
(P*’ qfast) = M'A‘qu {(5(1,T, %’2: ql)} )

and the most probable states sequence itself is found by scanning the lists ¢ and 7
starting from (1,7, qlzast’ q') and (1,7, q12ast’ 7).
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Appendix C

Table C.1. List of symbols and variables

Symbol Definition Section
% finite alphabet 2
O =o0102...07 (0; €X) observation sequence 2
de{1,...,D} hierarchy depth 2
qfl the sth substate at level d 2
ne’ = {Wd(qg-l'l)} initial substate distribution 2
= {P(g{*" |9}
d
Ad? = {a } substate transition probabilities 2
_ d41) d+1
={P(¢;" 1a; )}
D D .. L
B = {b% (k)} output probability distribution 2
= {P(oxla])}
A= {{Aqd}{qu}{BqD}} HHMM'’s set of parameters 2
oz(t,t—}—k,qfl,qd_l) P(ot - otqk, qfl finished at ¢ + & | 3.1
q?~! started at t)
ﬁ(t,t—l—k,q?,qd_l) P(ot~~~ot+k|qfl started at t, 3.1
q9=1 finished at ¢ + k)
&(t,af,qdq% ) P(oi---ot, ¢ff = qff, ot41 07 | N) 3
d—1
Yin(t, q¢,¢%71) Yin(t, 9, ¢%71) = qul Le(t—1,q9%,99,q971) 3
d—1
Yout (t,9¢,9971) Yout(t, 98, 9%71) = qul Le(t,99, 92, g9 1) 3
qd—l
x(t,q¢,q471) P(oy---0i—1, 4, 0t---07|}) 3
9/
mn(t,qfl, g1 P(o1 -+ 041, qfl started at ¢| \) A
nout(t,qfl, q?-1) P(qfl finished at ¢, ogq1---0or| A)
§(t,t+ k, qfl, g1 value (§), state-list (¢), transition times (7)
Y(t,t + k, qfl, g4 of the most probable generation of o¢ - -- 044k

T(t,t + k, qg, q?=1) started by ¢¢=! at t and ended by qfl at t+ k
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