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ABSTRACT

To date, almost all research work in the Content-Based Image
Retrieval (CBIR) community uses Minkowski-like functions
to measure similarity between images. In this paper, we first
present a non-metric distance function, dynamic partial func-
tion (DPF), which works significantly better than Minkowski-
like functions for measuring perceptual similarity; and we ex-
plain DPF’s link to similarity theories in cognitive science.
We then propose DynDex, an indexing method that deals with
both the dynamic and non-metric aspects of the distance func-
tion. DynDex employs statistical methods including distance-
based classification and bagging to enable efficient indexing
with DPF. In addition to its efficiency for conducting simi-
larity searches in very high-dimensional spaces, we show that
DynDex remains quite effective when features are weighted
dynamically for supporting personalized searches.

Keywords: high-dimensional index, non-metric distance func-
tion, similarity search.

1. INTRODUCTION

Similarity is one of the central theoretical constructs in infor-
mation retrieval. To find objects that are similar to a query
object, an information retrieval system must quantify similar-
ity accurately and retrieve similar objects efficiently. This pa-
per addresses the central issues of quantifying perceptual sim-
ilarity and indezxing objects in perceptual (non-metric) spaces.

Some important work in the cognitive psychology community
has provided ample evidence that similarity is both dynamic
and non-metric [19, 26]. Most recently, Goldstone [18] shows
that similarity perception is the process that determines the
respects (i.e., features, or attributes) for measuring similar-
ity. More precisely, a similarity function for measuring a pair
of objects is formulated only after the objects are compared,
not before the comparison is made; and the respects for the
comparison are dynamically activated in this formulation pro-
cess. Let us use a simple example to explain. Suppose we are

asked to name two places that are similar to England. Among
several possibilities, Scotland and New England could be two
reasonable answers. However, the respects in which England
is similar to Scotland differ from those in which England is
similar to New England. If we use the shared attributes of
England and Scotland to compare England and New Eng-
land, the latter pair might not seem similar, and vice versa.
Thus, a distance function using a fixed set of respects (e.g.,
the traditional weighted Minkowski function) cannot capture
objects that are similar in different sets of respects.

In this paper, we first present a non-metric distance function,
dynamic partial function (DPF), which works significantly
better than Minkowski-like functions for measuring percep-
tual similarity. Using our results from extensive image-data
mining, together with similarity theories in cognitive science,
we explain how DPF works and why it works well. Unfor-
tunately, since DPF is a non-metric distance function, tradi-
tional indexing schemes that require metric-space properties
[6, 16, 27] cannot work with DPF. Furthermore, since the
respects for measuring similarity by DPF are determined in
a pairwise fashion, and the feature space in which different
object-pairs are compared can be different, coordinate-based
indexing structures (e.g., tree-like structures [7, 14], hash-
based structures [11]) cannot work with DPF for conducting
similarity searches either.

We thus propose DynDex (DYnamic Non-metric-space inDEXer)
to work with DPF. DynDex uses a statistical approach, which
works in two steps. First, DynDex performs pairwise distance-
based clustering to group similar objects together. To max-
imize IO efficiency, each cluster is stored in a sequential file.
Second, DynDex models similarity searches as a classification
problem. Given a query object g, DynDex predicts ¢’s class
membership and yields C' most probable classes (i.e., clus-
ters). DynDex then finds the objects that have the shortest
pairwise distance with respect to g, using pairwise respects
that are dynamically instantiated. We show that DynDex can
achieve very high similarity search accuracy by probing just
a small fraction of the dataset. We also show that DynDex
scales well with data dimensionality and dataset size, and
that DynDex holds quite well when features are dynamically
weighted to support context-based (or personalized) similar-
ity searches.

In summary, the contributions of this paper are as follows:

1. We present DPF to set up the context for proposing
DynDex. While doing so, we present the link between



DPF and the similarity theories in cognitive science. We
explain the need for DynDex and the design challenges
it presents.

2. We propose DynDex, which employs statistical methods
including distance-based classification and bagging to
enable efficient indexing in non-metric spaces. Through
extensive empirical studies with both high-dimensional
data and very large datasets, we show that DynDex is
both accurate and efficient.

The remainder of the paper is organized as follows: Section 2
presents DPF. Section 3 presents DynDex, showing how it
clusters data in non-metric spaces. We also explain how a
similarity search is conducted by DynDex through classifica-
tion. Section 4 presents our empirical results. Finally, we
provide our concluding remarks in Section 5.

2. DPF— DYNAMIC PARTIAL FUNCTION

Using some results of our extensive image-data mining [15],
we explain how DPF is formulated and why DPF works effec-
tively. We also discuss the link between DPF and similarity
theories in cognitive psychology.

2.1 Visual Data Mining Results

To ensure that sound inferences could be drawn from our
mining results, we carefully constructed our mining dataset
as follows: First, we prepared for a dataset that was compre-
hensive enough to cover a diversified set of images. To achieve
this goal, we collected 60,000 JPEG images from Corel CDs
and from the Internet. Second, we defined “similarity” in a
slightly restrictive way so that individuals’ subjectivity could
be excluded. For each image in the 60, 000-image set, we per-
formed 24 transformations (including down-sampling, crop-
ping, rotation, scaling, and format transformation), and hence
formed 60, 000 similar-image sets. The total number of images
in our testbed was 1.5 million.

We examined two popular distance functions used for mea-
suring image similarity and found some of their assumptions
questionable.

e Minkowski metric. The Minkowski metric is widely used for
measuring similarity between objects (e.g., images). Sup-
pose two objects X and Y are represented by two p dimen-
sional vectors (z1,z2, -+ ,%p) and (yi,y2, - ,Yp), respec-
tively. The Minkowski metric d(X,Y") is defined as

AX,Y) = () Joi = wil) " M

where r is the Minkowski factor for the norm. Particularly,
when r is set as 2, it is the well known Euclidean distance;
when r is 1, it is the Manhattan distance (or L; distance).
An object located close to a query object is deemed more
similar to the query object. Measuring similarity by the
Minkowski metric is based on one assumption: that similar
objects should resemble the query object in all dimensions.
e Weighted Minkowski function. A variant of the Minkowski
function, the weighted Minkowski distance function, has also
been applied to measure image similarity. The basic idea
is to apply weighting to prioritize important features. By

assigning each feature a weighting coefficient w; (i =1---p),
the weighted Minkowski distance function is defined as:

du(X,Y) = (3 wilai —il")™. (2)

By applying a static weighting vector for measuring similar-
ity, the weighted Minkowski distance function assumes that
similar images resemble the query images in the same set
of features. For example, the important features for finding
a scaled image are presumed to be the same as those for
finding a cropped image.

We questioned the above assumptions upon observing how
similar objects are located in the feature space. To better
discuss our findings, we introduce a term we have found useful
in our data mining work. We define the feature distance on
the " feature as 6; = |z; — y;|, where i = 1,--- , p.
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Figure 1: The Distributions of Feature Distances.

In our mining work, we first tallied the feature distances, d,
between similar images. Since we normalized feature values
to be between zero and one, the range of § is between zero
and one. Figure 1 presents the distributions of § between
similar images. The z-axis shows the possible value of 4,
from zero to one. The y-axis (in logarithmic scale) shows
the percentage of the features at different ¢ values. We can
see from the figure that a moderate portion of ¢ is in the
high value range (> 0.5), which indicates that similar images
may be quite dissimilar in many features. This observation
suggests that the assumption of the Minkowski metric is not
always accurate. Similar images are not necessarily similar in
all features.

Next, we examined whether similar images resemble the query
images in the same way. We tallied the feature distance (§)
of the 144 features® for different kinds of image transforma-
tions. Figure 2 presents four representative transformations:
GIF, cropped, rotated, and scaled. The z-axis of the figure
depicts the feature numbers, from 1 to 144. The first 108
features are various color features, and the last 36 are tex-
ture features. The figure shows that various similar images
can resemble the query images in very different ways. GIF
images have larger 0 in color features (the first 108 features)

'For characterizing an image, we extracted a set of 144 im-
age features. These features include color histograms, color
means, color variances, color spreadness, color-blob elonga-
tion, and texture features in three orientations (vertical, hor-
izontal, and diagonal) and three resolutions (coarse, medium,
and fine) [25].
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Figure 2: The Average Feature Distances.

than in texture features (the last 36 features). In contrast,
cropped images have larger § in texture features than in color
features. For rotated images, the ¢ in colors comes close to
zero, although its texture feature distance is much greater. A
similar pattern appears in the scaled and the rotated images.
However, the magnitude of the ¢ of scaled images is very dif-
ferent from that of rotated images. This observation suggests
that the assumption of the weighted Minkowski metric is also
questionable. Images similar to the query images can be sim-
ilar in differing features. (This observation runs counter to
the assumption recently made in [30], that similar images are
similar in the same way.)

2.2 Cognitive Science Interpretation

Using the above mining results, together with theories and
examples from cognitive psychology, we discuss the progress
of the following three similarity paradigms in cognitive science
in the last few decades. At the end of the discussion, we
present our dynamic partial function (DPF).

1. Similarity is a measure of all respects. As we discussed
in Section 2.1, a Minkowski-like metric accounts for all
respects (i.e., all features) when it is employed to mea-
sure similarity between two objects. Our mining re-
sult shown in Figure 1 is just one of a large number of
counter-examples demonstrating that the key assump-
tion of the Minkowski-like metric is questionable. The
psychology studies of [18, 26] present many examples
showing that the Minkowski model appears inadequate
to describe human similarity judgments. (Please consult
the references for the examples.)

2. Similarity is a measure of a fized set of respects. Sub-
stantial work on similarity has been carried out by cogni-
tive psychologists. The most influential work is perhaps
that of Tversky [26], who suggests that similarity is de-
termined by matching features of compared objects, and
integrating these features by the formula

S(A,B) =0f(ANB) —af(A—-B) - Bf(B—A4). (3)

The similarity of A to B, S(A, B), is expressed as a
linear combination of the common and distinct features.
The term (AN B) represents the common features of A
and B. (A— B) represents the features that A has but B
does not; (B — A) represents the features that B has but
A does not. The terms 6, a, and S reflect the weights
given to the common and distinctive components, and
function f is often assumed to be additive [18].

The weighted Minkowski function [23] and the quadratic-
form distances [9, 12] are the two representative dis-
tance functions that match the spirit of Equation 3.
The weights of the distance functions can be learned
via techniques such as relevance feedback [22, 23, 24],
principal component analysis, and discriminative analy-
sis [30]. Given some similar and some dissimilar objects,
the weights can be adjusted so that similar objects can
be better distinguished from other objects.

However, the assumption made by these distance func-
tions, that all similar objects are similar in the same
respects [30], is also questionable. As we have shown
in Figure 2, GIF, cropped, rotated, and scaled images
are all similar to the original images, but in differing
features.

. Similarity perception is a process that provides respects

for measuring similarity. Murphy and Medin [19] pro-
vide early insights into how similarity works in human
perception: “The explanatory work is on the level of
determining which attributes will be selected, with sim-
ilarity being at least as much a consequence as a cause of
a concept coherence.” The result presented in Figure 2
echos this statement—that is, objects can be similar to
the query object in different respects. A distance func-
tion using a fixed set of respects cannot capture objects
that are similar in different sets of respects. A distance
function for measuring a pair of objects is formulated
only after the objects are compared, not before the com-
parison is made. The respects for the comparison are
activated in this formulation process. The activated re-



spects are more likely to be those that can support co-
herence between the compared objects. The England,
Scotland, and New England example presented in Sec-
tion 1, and our mining result presented in Figure 2, both
confirm this dynamic activation similarity paradigm.

These points lead to the design of the dynamic partial distance
function. Let §; = |z; — ys|, for ¢ = 1,--- ,p. We first define
sets A, as

Am = {The smallest m &'s of (01,...,6p)}.

The first approximation of a desired perceptual function looks
like

dopr(X,Y)=( Y 67). (4)

8; €A,

The above formulation shows that DPF activates different
features for different object pairs. The activated features are
those with minimum differences—those which provide coher-
ence between the objects. If coherence can be maintained
(because a sufficient number of features are similar), then the
objects paired are perceived as similar. The empirical stud-
ies in image retrieval [15] and in shot-boundary detection [28]
show that DPF performs significantly better than Minkowski-
like functions.

3. DYNDEX-THEDYNAMICNON-METRIC
SPACE INDEXER

DPF is designed to model perceptual similarity more accu-
rately. At the same time, it poses new challenges to the in-
dexing process due to these special properties:

1. DPF compares different pairs of objects in different fea-
ture subspaces. That is, features are dynamically activated
while comparing the similarity between objects.

2. DPF is a non-metric distance function. Notably, it does
not satisfy the triangle inequality (see proof in Appendix A),
on which many traditional indexing methods are founded.

The various traditional indexing structures proposed for in-
dexing high-dimensional data can be broadly classified into
two categories:

1. Coordinate-based methods. The coordinate-based
methods work on objects residing in a vector space. These
objects are usually described by a D-dimensional feature
vector, and the similarity between any two of them is mea-
sured by the distance between their coordinates in the vec-
tor space. Most methods divide the feature space into parti-
tions (e.g., R*-tree [2], SR-tree [14], TV-tree [17], and X-tree
[3]). The partitioning is designed so that similar objects can
be found by visiting a minimal number of partitions. By
carrying out vector operations in the coordinate space, the
schemes implicitly employ a metric function (Euclidean dis-
tance) as the measuring function for similarity. Besides,
coordinate-based methods treat objects as vectors in a fixed
feature space, which does not allow them to model the dy-
namic nature of quantifying similarity between objects. For
these reasons, coordinate-based methods are unable to in-
dex DPF effectively. In Section 4.1, our empirical study
further confirms that coordinate-based methods cannot be
transplanted to index DPF effectively.

2. Distance-based methods. The distance-based meth-
ods index objects based on pairwise distances. Most distance-
based indexing structures for a metric space are variations
of the basic m—ary search tree (e.g., MVP-tree [4] and M-
tree [7]). They mainly differ in their methods for deter-
mining equivalent classes among the objects, either by pivot
or Voronoi partitioning. However, they all take advantage
of the triangle inequality to prune their search trees, which
limits their usage to indexing data in a metric space.

To overcome the difficulties plaguing traditional indexing meth-
ods, we designed DynDex to meet the following two critical
DPF indexing requirements:

1. It must be able to work in a dynamic and non-metric
feature space where only the pairwise-distances between ob-
jects are given.

2. It should support high-dimensional indexing efficiently.

To fulfill the above requirements, DynDex adopts a statisti-
cal approach that is able to support approximate similarity
searches. Our hypothesis is that if a query object’s class pre-
diction yields C' probable classes, then the probability is high
that its nearest neighbors can be found in these C' classes.
Therefore, by searching for the most likely classes into which
the query object might be classified, we can harvest most of
the similar objects. DynDex consists of two steps:

1. Cluster similar objects on disk to minimize disk latency
for retrieving similar objects. Similarity is measured by the
DPF pairwise-distance between the objects. (Section 3.1)
2. Use classification methods to model a similarity search.
First, DynDex identifies the top—C' clusters to which the
query object most likely belongs. Then from these clus-
ters, DynDex searches for k nearest objects, commonly called
top—k nearest neighbors (k—NNs), to the query object. (Sec-
tion 3.2)

In the remainder of this section, we will first describe the
clustering algorithm we use (Section 3.1). Second, we present
the four query-object classification schemes (Section 3.2). We
then discuss how we conduct a similarity search when pre-
sented with a query object (Section 3.3). We also show that
our scheme can be adapted to include dynamic feature weight-
ing used in context-based DPF (Section 3.4). Finally, we
present an error-reduction method that improves classifica-
tion accuracy and achieves better search results. (Section 3.5).

3.1 Clustering Phase

Clustering is the process of partitioning objects into groups
(clusters), so that similar objects fall into the same group.
Data clustering has been extensively studied in statistics, ma-
chine learning, and pattern recognition. Several algorithms
(e.g., BIRCH [29], CLIQUE [1], and TSVQ [10]) have been
developed to cluster data in coordinate space. However, these
methods all implicitly employ metric function as the measure
for similarity, since they rely on vector operations in a coor-
dinate space.

A number of pairwise distance-based clustering algorithms
have been proposed to cluster data in distance space, in which
the only operation possible on data objects is the computation
of distance. Among those, CLARANS [20] is a representative



one, based on randomized search. Since this existing algo-
rithm would serve our purposes, we adopted CLARANS. We
chose CLARANS for the following reasons:

1. CLARANS is a pairwise medoid-based algorithm, which
only requires a distance matrix to do clustering. This prop-
erty makes it appropriate for clustering in the non-metric
DPF space.

2. CLARANS has been shown to be relatively efficient and
effective” in clustering with a large dataset.

The formal description of the CLARANS algorithm can be
found in Appendix B.

3.2 Classification Phase

Let q denote the query object. The classifier’s mission is to
find the top C clusters to which ¢ most likely belongs. Typ-
ically, a cluster in a metric space is characterized by its cen-
troid, its standard deviation of the cluster’s data objects, and
its covariance, which models the orientation of the cluster.
These parameters are combined to form a cluster prediction.
However, these traditional parameters are not directly appli-
cable when we are dealing with the non-metric DPF. Instead,
we select a subset of the cluster’s objects to form a represen-
tative set R for that cluster. By computing the distance from
q to the objects in R, we can estimate the closeness of g to
the cluster. The distance from ¢ to R determines the cluster
membership of g.

In the following, we present four methods that are used to
create the set of representative data objects for the clusters.
The four schemes are as follows:

1. Medoid Scheme. The most centrally-located object of the
cluster is used.

2. Random Scheme. We randomly select some objects from
each cluster to represent it.

3. Atypical Scheme. We pick objects that are far from all
other objects within the cluster.

4. Correlation Scheme. We choose objects that are the least
correlated with each other within the cluster.

The notations used to describe the schemes are given in Ta-
ble 1. Each scheme chooses a set R; for each cluster C;. Once
R; is formed for all clusters, we can compute the clusters’
ranks (see Section 3.3) to process a query.

3.2.1 Medoid Scheme

Each cluster C; generated by CLARANS is associated with
a medoid m;, the most central object in the cluster. In this
scheme, the representative set R; of C; consists of only the
medoid. The clusters are then ranked by the proximity of
their medoids to the query object ¢ using dppr(q,m;) of
Equation 4. The scheme is analogous to traditional meth-
ods for predicting cluster membership. The closer g is to m;,
the higher the cluster C;’s ranking.

3.2.2 Random Scheme

20f late, techniques [8] have been proposed to improve the
10 efficiency of CLARANS. However, most of them rely on
vector operations and thus limit their usage to a coordinate
space.

D Dimensionality of the data space

C; Cluster j of dataset

R; Representative set of points C;

Ncj Size of cluster C;

Ngj Size of set R;

dppr(z,y) | DPF distance between objects z and y
(see Equation 4)

corr(z,y) Correlation between objects z and y
(see Equation 5)

dmaz Maximum distance of an object in
cluster C; to all objects in R;

Cmaz The object in cluster C; which gives dmaa

COTTmin Minimum correlation of an object in
cluster C; to all objects in R;

Cmin The object in cluster C; which gives corrmin

Table 1: Notations for the Classification Schemes.

In this scheme, we randomly sample a percentage of objects
from each cluster to form cluster C;’s representative set R;.
Out of Ng; objects in the set R;, we pick the one with the
minimum distance to the query object g to estimate the ¢’s
proximity to cluster C;. A smaller distance implies that the
cluster rank is higher.

3.2.3 Atypical Scheme

An atypical object is one which is dissimilar to other objects
in the cluster. Figure 3 shows an example where using atyp-
ical points to determine closeness to a cluster is important.
Suppose both cluster A and B are represented only by their
medoids ap and bp and the query object is as shown. In this
case cluster A will be ranked higher and hence retrieved first
even though cluster B has objects that are located closer to
the query object. If we also use atypical objects to represent
cluster B, the object b: will be added since it is the farthest
from bp. The distance from b; to the query will rank cluster
B higher. Therefore, the retrieval of cluster B will precede
that of cluster A, and hence more NNs will be returned after
the first 10.

Cluster B

Cluster A

Figure 3: Importance of using Atypical Objects to
Represent a Cluster Instead of Medoids Alone.

To find the set of atypical objects, we first choose an initial
object randomly from the cluster C; to insert into R;. The
second object to be added will be the object in C; that is
farthest away from the first object chosen. Subsequent objects
are chosen if they are far away from all existing objects in R;.
Figure 4 shows the pseudo code for the algorithm.

3.2.4 Corrédation Scheme

In this scheme, we want to form a representative set with
objects that are uncorrelated with each other. Before we de-
fine what we mean by uncorrelated, we need to introduce the
concept of redundancy. Jacobs et. al [13] stipulate that a
suitable measure of whether an object is a good substitute



compute_atypical (C;, N¢j, R;, Ngj)
initialize R; to be an empty set
randomly pick an object from C; and insert into R;
count :=1
while (count ! = Ng;) do
dmaz =0
for i :=1to N¢g; do

. count :
dist :== Y dppr( Cjli],R;[k] )
k=1
if (dmae < dist) then dmaz := dist, cmax = C;li]
end do

insert ¢mqz into R; and increment count by 1
end do

Figure 4: Atypical Scheme for Choosing Atypical Ob-
jects to Represent a Cluster.

for another should be based on redundancy instead of dis-
tance alone. The redundancy between two objects x and y
is defined as the probability that z and y have similar dis-
tances to other objects in the data set. Having two objects
that are interchangeable in the representative set does not add
useful information for performing cluster ranking. Thus, the
set should consist of objects that are non-redundant to one
another. A good estimator of redundancy is the correlation
between the distance vectors of the objects.

Given two data objects z and y and their corresponding dis-
tance vectors x and y, where x (y) is the vector of distances
from z (y) to all other objects in the cluster, the correlation
between z and y is measured by:

X—Ha Y — Hy (5)

Oz oy

corr(z,y) =

where p, denotes the mean of x, and p, the mean of y. Sim-
ilarly, o, and o, denote the standard deviations of x and y.
The vector distances are computed using DPF from Equa-
tion 4.

We want to choose a set of objects from each cluster that are
not redundant to each other, that is, the correlation value is
low. The algorithm to select uncorrelated objects is similar
to that for atypical objects. The distance computation is
replaced by Equation 5, and we choose the objects that are
least correlated with objects in R. Figure 5 shows the details
of the correlation scheme.

compute_correlate (Cj, N¢;, Rj, Nrj)
initialize R; to be an empty set
randomly pick an object from C; and insert into R;
count :=1
while (count ! = Ng;) do
COTTmin ‘= a very large real number
for i :=1to N¢g; do

count

totcorr := 3 corr( C;[i], R;[k] )
k=1

if (corry,in > totcorr) then
COTTmin = totcorr, cmaz = Cji]
end do
insert c¢maz into R; and increment count by 1
end do

Figure 5: Correlation Scheme for Choosing Uncorre-
lated Objects to Represent a Cluster.

3.3 Similarity Search
Given a query object g, the clusters C;s and their representa-
tive set Rjs, a similarity search proceeds in two steps:

1. Compute the ranks of the clusters with respect to g us-
ing the algorithm compute_cluster_rank in Figure 6. A
highly ranked cluster is considered “closer” to the query ob-
ject and hence more likely to contain similar objects that
we call nearest neighbors (NNs). For each query object, a
cluster-list is formed, and the clusters are sorted by their
ranks in descending order.

2. Read the “nearest” cluster from disk into memory and
perform a sequential scan on the cluster to find the top-k
NNs. If a higher recall rate is desired, we read the next
nearest cluster on the cluster-list.

compute_cluster_rank (R;, Ngj, q)
mindist := a very large real number
for i := 1 to Ng; do
dist := dDPF( q, Rj [7,] );
if (dist < mindist ) then mindist := dist
end do
return (mindist)

Figure 6: Algorithm to Compute a Cluster’s Rank

3.4 Context-based DPF

To take subjectivity into consideration, a distance function
should allow features to be weighted differently by different
users and in different search contexts. Cognitive study [18]
has shown that perceptual similarity can be context-based.
To best capture the context of a query, many relevance feed-
back schemes formulate a similarity function through weight-
ing features based on their relevance to the query concept
[21]. We thus propose the weighted DPF as

dopr—w(X,Y) = (3 widi")™. (6)

8; €A,

where w; is the weight value of feature ¢. The value of w;
can be obtain by introducing relevance feedback during the
retrieval process.

A weighted similarity search is conducted in the same manner
as when no weights are used. We replace the distance function
dppr( q,R;[i] ) in the compute_cluster_rank algorithm of
Figure 6 with the Equation 6.

3.5 Bagging for Classification Error-Reduction
Bagging [6] has been applied to ensemble classification schemes.
Bagging smoothes the variability of non-linear components

within a classifier and thus reduces its classification error.

When the errors made by different bags are independent, the

overall error produced by an ensemble scheme will be smaller

than that made by the bags separately. Since our NN-search

is modeled as a classification problem, having lower classifi-

cation errors can be beneficial. First, we need to construct

several bags using the same dataset. During the classifica-

tion phase, majority voting is conducted among the bags to

achieve the smoothing effect.

We perform bagging by first using CLARANS to generate
different sets of clusters, each created with a different set of
seeding objects at the start of clustering. We then treat each



set of clusters as one bag. We find the top clusters of a query
object to form each bag’s cluster list. The final top clusters
will be aggregated from the lists of all bags. Suppose we have
two bags with cluster lists bag 1 = {C1,C,...,Cs0} and
bag 2 = {D1,Ds,...,D30}. To form the final top—30 cluster
list, we compare the entries in each bag’s cluster list and pick
the cluster that is closest to the query object. For example, if
C, is closer to the query than D;, we select C as the top—1
cluster. And if D5 is closer to the query than C5, then D,
will be the top—2 cluster.

4. EMPIRICAL STUDY

Given a query, we perform a similarity search to return the k
most similar objects, or k nearest neighbors (k—NN). We first
establish a benchmark by scanning the entire dataset to find
the top-k NNs for each query; this constitutes the “golden”
results set. The metric we use to measure the search result
is recall. In other words, we are interested in knowing what
fraction of top-k golden results are retrieved after X IO0s. We
do not use precison, which is the fraction of retrieved objects
that are among the top-k golden results. In our environment,
we believe that precision is not the most useful metric since
the main overhead is IOs, not the number of non-golden ob-
jects that are seen.

Our experiment involves the following evaluations:

1. k—NN Query Evaluation (Section 4.1). We evaluate
the medoid, the random, the atypical, and the correla-
tion schemes for a k—NN query. The accumulated recall
for up to 30 IOs is used as the metric. The best scheme
is that which achieves the highest recall given a fixed
number of 10s.

2. Cluster Size Evaluation (Section 4.2). We investi-
gate the effect of cluster size on recall and IO time.

3. Context-based DPF Evaluation (Section 4.3). We
test the feasibility of using dynamic feature weighting
from relevance feedback on the medoid scheme.

4. Error-reduction Method Evaluation (Section 4.4).
Using bagging, we evaluate the effect of classification
accuracy on recall of k—NN queries.

5. Scalability Evaluation (Section 4.5). Finally, we test
the scalability of our indexing scheme by performing
k—NN queries on a very large dataset.

The studies in [15] have shown that m = 114 and r = 2
can model perceptual similarity in images well, we use these
values for the DPF distance function of Equation 4.

The two datasets we use for our experiments are:

e 51K-image dataset. From Corel Image CDs, we select
51,000 images to cluster. Images from this collection are
widely used by the research communities dealing with com-
puter vision and image processing. We then randomly select
an additional 1, 830 separate images from the CDs to be used
as the query set.

e 0.5M-image dataset. The second set is generated from a
base of 70,000 images that include images from Corel CDs
and the Internet. We perform 24 transformations on these

images. The transformations include rotation, cropping,
scaling up and down, down-sampling and GIF-to-JPEG con-
version. We then randomly select 0.5 million images to clus-
ter, and from the remaining ones, choose 1,000 images to be
used as query images.

Note that query images are not indexed. The first four parts
of the experiment are done using the 51K-image dataset and
the scalability test is done using the 0.5M-image dataset. Im-
ages in both sets have 144 features: 108 for colors and 36 for
textures [25].

4.1 kNN Query Evaluation

We evaluate the recall performance of the medoid, random,
atypical, and correlation ranking schemes for 10—NN and
20—NN queries. We sample 1% of image objects from each
cluster for the latter three ranking schemes. The accumulated
recall is computed for the top—30 clusters into which a query
image may be classified. Figure 7(a,b) shows the query re-
sults for the four schemes. The x-axis shows the number of
IOs that are performed to achieve a particular recall, and the
y-axis shows the accumulated recall. The “golden” results are
also plotted for comparison. Of the four schemes, the medoid
scheme performs best with more than 45% recall when only
one cluster is retrieved. The other schemes reach recalls of
31% (random), 17% (atypical) and 17% (correlated). How-
ever, all schemes lags the “golden” results by at least 10%. As
the medoid scheme performs best, we use it for all subsequent
evaluations.

As the cluster sizes are not uniform, we also plot the 10—NN
and 20—NN recalls against the percentage of data read (see
Figure 7(c,d)). The trend is similar to that of recall versus
number of clusters, with the medoid scheme outperforming
all the others.

The good performance of the medoid scheme can be attributed
to the central role that medoids play in the clustering al-
gorithm. The cluster membership is determined by the dis-
tance between an image and the cluster medoid. Hence, when
we classify the query image during a similarity query using
medoids, the image will be placed in the same cluster as if
the image had been present during the clustering phase.

In order to explain why the performance of the random scheme
is superior to that of more complex ones like atypical and
correlated, we first note that the query images are sampled
randomly from the dataset and thus have similar distribu-
tion. The random scheme will tend to pick points that mir-
ror the cluster distribution whereas the atypical or correlated
schemes will pick points which are outliers within a cluster.
Consequently, the random scheme can classify the query im-
age into the cluster where it most likely belongs to. Besides,
the curse of dimensionality could render all images atypical,
making the heuristic less effective.

Next, we compare recall performance of CLARANS with the
TSVQ clustering algorithm. TSVQ forms clusters with Voronoi
partitioning and the metric Euclidean distance. During re-
trieval, the distance between the query image and the TSVQ
cluster centroid is used for classification. In Figure 8, TSVQ
method 1 uses Euclidean distance to classify the query im-
age, and TSVQ method 2 uses DPF. The CLARANS results
shown use the medoid scheme for classification. For both
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Figure 8: Comparison of Recall using CLARANS and TSVQ for Clustering.

10—NN and 20—NN queries, CLARANS outperforms both
TSVQ methods by more than 15%. This shows that an al-
gorithm optimized for a metric space cannot be applied to a
non-metric space without degradation in performance.

4.2 Cluster Size Evaluation

Next, we evaluate the effect of cluster size on recall rate. As
CLARANS is a k—medoid clustering algorithm, we produce
different numbers of clusters by altering the value of k. Having
more clusters effectively reduces the size of each cluster. For
our evaluation, we vary the value of k from 100 to 400, and
Figure 9(a) shows the 10—NN recall results for the medoid
and random schemes when different cluster sizes are used.
The figure shows that having a larger cluster size (smaller k)
achieves a better recall rate. By decreasing k from 400 to 100,
the recall improves by at least 10%. This is due to the higher
probability that a large cluster will enclose more NNs.

Usually, the drawback in using larger cluster sizes is in IO
time. We use a quantitative model to compute IO time. Let
C be the cluster size in bytes, N be the number of 10s, TR
be the transfer rate, and Tscer be the average disk seek time.

The IO time is estimated as

CxNx8

T =N X Tseer, + TR (7)

Assuming a transfer rate TR of 130Mbps, and a seek time
Tseer of 14ms, the IO times for each value of k are plotted in
Figure 9(b). The estimated IO time is valid as we find that it
matches closely to the wall-clock run time of our experiments.
When a low recall (60%) is required, we see that all cluster
sizes perform equally well in terms of retrieval speed (or IO
time). However, we see that when higher recall is desired, a
larger cluster size (smaller k) can give us a higher recall while
retrieving fewer clusters. This means that reducing seek over-
head causes the IO time to be lesser. We observe that having
k = 100 gives us a good balance between recall performance
and IO cost.

4.3 Context-based DPF Evaluation

To simulate a more realistic query environment, we test DynDex
with dynamic weights learned through relevance feedback rather
than just randomly assigning them. For each query image, we
first retrieve 20 images and randomly assign a positive or neg-
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ative label to each image. Next, we refine the feature weights
using the relevance feedback method presented in [24]. Each
query image will then possess a unique set of weight values
for each of its features. The weight values are incorporated
into DPF function as shown in Equation 6. Figure 10 shows
the 10—NN and 20—NN recall of up to 20 clusters. We also
plotted the golden results when dynamic feature weighting is
employed.

First, we observe that the weighted golden results for the
initial 20 clusters retrieved are about 10% lower than those
when no weights are used (compare with Figure 7). This ob-
servation suggests that DynDex will suffer some performance
degradation when dynamic weighting is used. However, the
recall results are still reasonable, especially when more clus-
ters are retrieved. After retrieving three clusters, we can ob-
tain a recall rate of 50% and by the tenth cluster, the recall
is 80%.

—%—10-NN weighted golden results
—&—10-NN with weights
—— 20-NN weighted golden results

#— 20-NN with weights

1 3 5 15 17 19

7 8 1" 13
Number of Clusters
Figure 10: 10—NN and 20—NN Recall when Feature
Weighting is Used.

4.4 Error-Reduction Method Evaluation

Figure 11 shows the bagging results using different sets of
clusters for &k = 400. We evaluate the effect on recall for up to
three bags, as past studies have shown that the greatest gain
is achieved with the first few bags. In this setting, we observe
that bagging improves recall by about 3% with two bags and
5% with three bags for the first 20 retrieved clusters. The
recall gain tapers off as more clusters are retrieved. Under
some circumstances in which data replication is required, or
when only a small number of IOs is permitted, the use of
bagging can boost the initial recall results moderately.

4.5 Scalability Evaluation

We index a 0.5M-image dataset and test for changes in recall
rate and query time. We create 100 clusters for this dataset
and conduct 10—NN and 20—NN queries on them. Figure 12

—=— 1 bag

—a—2 bags

10-NN Recall (%)

—e—3 bags

1 5 9 13 17 21 25 29
Number of Clusters

Figure 11: Recall of 10NN Query Using Bagging.

shows the recall results and the IO time required. Despite
using a dataset 10 times larger, the indexing scheme is still
able to deliver good recall performance. After retrieving 10
clusters, recalls of both types of query are more than 90%.
Since the cluster size is large, the IO cost incurred for the first
few retrieved clusters is high compared to the recall gain. For
recall of up to 80%, the IO time for the 0.5M-image dataset
is about twice that of the 51K-image dataset. But as more
clusters are retrieved, the IO cost to achieve a desired recall
matches the cost of the smaller dataset. Again, this is due to
the higher likelihood that the large clusters will enclose more
NNs.

5. CONCLUSIONS

We introduced a distance function DPF discovered through
extensive data mining work. And we also showed its effec-
tiveness in measuring perceptual similarity and its connection
with theories of modern cognitive psychology.

To support fast retrieval speed for high-dimensional data in
a non-metric and dynamic space, we proposed a clustering
and classification combined approach, DynDex, to index data.
Our approach can support efficient similarity searches as well
as context-based searches via relevance feedback.

We demonstrated the effectiveness of DynDex with the follow-
ing findings:

¢ k—NN Query. With our clustering and medoid classifica-
tion scheme, we showed that DynDex can index DPF com-
petently. We also showed that DynDex outperforms TSVQ
(an indexing method designed for metric spaces) by a large
margin.

e Context-based DPF. DynDex is able to support dynamic
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feature weightings for context-based searches with a small
degradation in recall.

e Error-reduction Method. Bagging can help improve recall
when a moderate number of bags are used. When data must
be replicated for improving reliability and load-balancing,
bagging can be employed to achieve these goals, as well as
to improve search accuracy.

e Scalability. We also showed that DynDex is scalable to very
large datasets, with little degradation in recall. We attained
more than 95% of the 20-NN in less than one second on a
dataset containing half million images.

Our future work extends in two main directions. First, we
plan to improve the clustering algorithm to be more IO ef-
ficient and more scalable to very large datasets. Second, we
plan to improve the performance of DynDex to better support
context-based DPF with more effective query classification
methods.
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Appendix A. Proof of DPF as Non-Metric Dis-
tance Functions.

A distance function, d(i1,i2), is metric [13] when for any three
objects i1, i2, and ¢3:

11,12

S8

(i1,12)
(1,42)
(i1,12)
(i1,13)

.
v

iff. i1 = io.
i1, o

0

0

d(i2,i1) (symmetry).

d(i1,i2) + d(i2,43) (the triangle inequality).

BW N

11,13

For DPF functions as:
1
dppr(X,Y)=( > &7,
8, EA,

where

Am = {The smallest m &'s of (01,...,6p)}.

Obviously, when m < p, condition (2) will not be satisfied
since two different objects i1 (0,0, ...,0) and ¢» (1,0, ...,0) will
have zero distance.

Furthermore, we proceed to prove that condition (4), the tri-
angle inequality, will not hold when 0 < m < p:

First, when p/2 < m < p, consider the following points:
A:(1,..,1,0,...,0),
——

B:(0,..,0,1,..,1)
——
and
C:(0,..,0).

It is easy to see that dppr(A,C) =0, and also dppr(B,C) =
0. However, dppr(A,B) = (p — m)%7 thus dppr(A, B) >
dppr(A,C)+dppr(B,C). Therefore, the triangle inequality
does not hold.

On the other hand, when 0 < m < p/2, consider the following
points:

A : (17 71)’
B:(0,...,0)
and
c:(0,..0,1,..,1).
———
lp/2]

we have dppr(A,C) =dppr(B,C) =0, whiledppr(A, B) =
1 .

(m)?. Agaln, dDPF(A,B) > dDPF(A,C) =+ dDPF(B,C).

Hence, the triangle inequality does not hold too.

So for any 0 < m < p, triangle inequality does not hold for
dppF.

To conclude, it is proven that for any 0 < m < p, condition
(2) and (4) does not hold for dppr. And thus dppr is a

11

non-metric distance function when 0 < m < p. Besides, when
m = 0, condition (2) does not hold. In this case, DPF is also
non-metric. O

Appendix B: CLARANS Algorithm

CLARANS first chooses k seeding objects as medoids and
then proceeds to associate other objects with the medoid clos-
est to them to form clusters. The goodness of a set of k
medoids is measured by the average minimal distance from
each object to its medoid. We can view the process of finding
k medoids as searching through a graph (denoted by Gy, ) of
all possible combinations of finding k objects given a total of
n objects. A node in the graph represents a set of k objects
Om,, ..., Om,, where Om]. is a selected medoid. Two nodes are
neighbors if and only if they differ by a single object.

In the algorithm, CLARANS will search for numlocal local
minimals in the graph starting with a random node (Step 2).

In each iteration, it tests a number of its neighbors (maxneighbor)

and check if the neighbor yields a lower cost. If it does, the
current node is moved to this neighbor (Step 4 and 5). A
local minimal is found when none of the neighbors yield a
lower cost. Next, the costs of all the local minimals are com-
pared, and the one that yields the lowest cost is selected as
the medoid set to generate clusters (Step 7 and 8).

The formal description of the CLARANS algorithm is as fol-
lows:

e Inputs: numlocal, maxneighbor, G, i;

e Qutput: bestnode;

e Variables:
mincost, minimum cost of clustering;
current, current node to consider from the graph G, i;
S, randomly selected neighbor of current;
i, J, counters;

e Algorithm CLARANS:
1: Initialization:
o ¢+ 1;
e mincost <+ MAX_DOUBLE;

: current < arbitrary_node(G, 1);

J< L

: S « random_neighbor(current);

: if ( Cost(S) < Cost(current) ) then

current < S;

S N )

goto step 3;
selse j < (5 +1);
: if (j < maxneighbor) goto step 4;
8: else if (Cost(current) < mincost)

N O

mincost < Cost(current);
bestnode < current;

9: i+ (i+1);

10: while (i < numlocal) goto step 2;



