
Modeling Freeway Traffic with Coupled HMMs

Jaimyoung Kwon
Department of Statistics
University of California

Berkeley, CA 94720
kwon@stat.berkeley.edu

Kevin Murphy
Department of Computer Science

University of California
Berkeley, CA 94720

murphyk@cs.berkeley.edu

Abstract

We consider the problem of modeling loop detector data collected from
freeways. The data, which is a vector time-series, contains the speed of
vehicles, averaged over a 30 second sampling window, at a number of
sites along the freeway. We assume the measured speed at each location
is generated from a hidden discrete variable, which represents the under-
lying state (e.g., congested or free-flowing) of the traffic at that point in
space and time. We further assume that the hidden variables only depend
on their spatial-temporal neighbors. Such a model is called a coupled
hidden Markov model (CHMM). We can fit the parameters of this model
using EM. However, since exact inference is intractable, we consider two
different approximation schemes: one based on a sequential Monte Carlo
technique (particle filtering), and the other based on the Boyen-Koller
(BK) algorithm. We show that both algorithms perform well, compared
to exact inference, and that the resulting learned model captures many
important features of the data. Such a macroscopic model could prove
useful for fault diagnosis, and in predicting future traffic patterns, partic-
ularly in response to causal interventions.

1 Introduction

Many urban freeways are equipped with induction loop detectors. These detectors can re-
port three kinds of information in real-time [5]: the number of vehicles passing the location
during a given time interval (flow rate), the fraction of time that vehicles are over the detec-
tor (occupancy), and the vehicle velocities averaged over the time interval. Here, we will
restrict ourselves to aggregated velocity data. See Figures 1 and 2 for a sample of the data
we are using, which was collected from I-880 in Oakland, California. For details about this
dataset, see [8].

In Figure 1, we can clearly see onset, propagation and dissipation of traffic congestion;
this appears as the well-known inverted triangular shape [9]. Essentially, traffic gets slower
downstream, this effect propagates upstream, only to eventually disappear. There are var-
ious theories which try to explain this kind of behavior, based on models of fluid flow,

Figure 1: The full data set contains the velocity field for 20 weekdays, 2-7pm, between February 22
and March 19, 1993. The measurements come from 10 loop detectors (0.6 miles apart) in the middle
lane of I-880, with 1 measurement per 30 seconds. Here we plot the first four days, temporally
subsampled by 2. The x-axis corresponds to time, and the y-axis to space. Vehicles travel upward in
this diagram. The darkest gray-scale corresponds to the average velocity of 20 miles per hour (mph)
and the lightest to 70 mph. The isolated dark blob on the right edge of the fourth day is probably due
to a sensor failure.

0

10

20

30

40

50

60

70
location 2

0

10

20

30

40

50

60

70
location 4

0

10

20

30

40

50

60

70
location 6

0

10

20

30

40

50

60

70
location 8

Figure 2: The velocity measurements for day 4 at locations 2, 4, 6 and 8. The x-axis is minutes (0
to 300), the y-axis is mph. The sudden drop from 64 to 10 mph at location 6 (which corresponds to
the dark blob in Figure 1) is probably due to a sensor failure.

cellular automata, and microscopic computer simulations. But all of these approaches have
limitations, particularly the need to tune many parameters specific to each individual free-
way.

In this paper, we try to learn a model of traffic velocities from data. We assume that
there is a hidden variable at each of the � detector locations, which takes on � possible
values, typically two (free flow and congestion), and that the observed velocity is a noisy
representation of the current state. (We use a discrete hidden variable, since the time series
of the average velocity vector is highly nonlinear.)

The most naive model is to assume each hidden state variable evolves independently, re-
sulting in� independent HMMs. However, such a model cannot capture spatial correlation,
and hence is incapable of capturing the global dynamics, such as the inverted triangle shape.
The other extreme is to assume each variable at time � depends on all the other (hidden)
variables at time � � �; this results in a single HMM with a state space of size ��, which
requires ����� � �� parameters just to specify its transition matrix. We therefore adopt
a middle ground, and assume each variable only depends on its local neighbors in space
and time; such a model has been called a coupled HMM [11], and is shown as a dynamic
Bayesian network (DBN) in Figure 3(a). In Section 2, we describe the model in more
detail.

We will estimate the parameters using EM. The M step is straightforward, but the E step is
in general computationally intractable. We therefore need to use approximate inference. In
Section 3, we describe and compare the two approximate inference algorithms that we use,
particle filtering [4, 3] and the Boyen-Koller (BK) algorithm [2, 1]. In Section 4, we give
the results of learning using exact and approximate inference in the E step. In Section 5,
we discuss the adequacy of the model in light of our results.

0 5 10
0

10

20

30

40

50

60

70
block 1, mean

0 5 10
0

5

10

15

20

25

30
block 1, std

0 5 10
0

10

20

30

40

50

60

70
block 3, mean

0 5 10
0

5

10

15

20

25

30
block 3, std

100 200 300 400 500 600

1

2

3

4

5

6

7

8

9

10

(a) (b) (c)

Figure 3: (a) A coupled hidden Markov model represented as a dynamic Bayesian network. Square
nodes represent discrete random variables (rv’s) with multinomial distributions, round nodes repre-
sent continuous rv’s with Gaussian distributions. Clear nodes are hidden, shaded nodes are observed.
Here we show � � � chains and � � � timeslices. (b) Maximum likelihood estimates of the mean
and standard deviations of the models for block 1 (2-3 pm) and block 3 (4-5 pm). Crosses refer to the
congested state, circles to free-flow. (c) Data sampled from the learned model for 4-5pm.

2 The model

Assume there are � loop detector stations indexed by � � �� ���� �, from upstream to down-
stream. The observed (aggregated) velocity � ��� (mph) at location � and time � has a distri-
bution that depends only on the underlying state variable � ��� � � � �	�� � � � � 	��. The
simplest model is a binary chain with � � �, where the two states 	� and 	� correspond to
‘congestion’ and ‘free flow’. We initialise the mean for the congested state to be less than
the mean for the free-flow state, although we do not enforce this constraint during learning.

We assume that the hidden process of �� � ������ � � � � ����� � ��� is Markovian and
its transition probability can be decomposed as
 �� ������� �

��

���
 ����������� �
��

���
 ��������������� ����� �������� i.e., the traffic state at a location is affected only by
the previous state of the neighboring locations. The initial distribution on the state is
assumed to decompose as
 ���� �

��

���
 ������� Finally, the observed velocity is
a Gaussian whose mean and variance depends on the underlying state at the location:

 ���������� � 	�� � ������ �

�
����� We need ����� � �� � ����� � �� parameters to

specify the transition model, ��� to specify the observation model. and �� to specify the
initial distributions. If � � �� and � � �, this is a total of ���	���� � �	� parameters.

Because of the non-stationary nature of the data, we split the 5 hour period of each day
into five 1-hour blocks (60 time slices). Then we fit a binary state (� � �) CHMM for
each block separately, considering 20 days as independent replicates of the process. We
use days 1,3,...,19 as the training set and 2,4,...,20 as the test set. Hence we have ��	
�
observations to fit 148 parameters per model. To minimize the chance of overfitting, we
could use cross validation or parameter tieing, although we do not do that here.

3 Inference

The simplest approach to exact inference in DBNs is to convert the model to an HMM
and use the forwards-backwards algorithm; this takes ������� time and space. A more
sophisticated approach, which exploits the conditional independence structure by using the
junction tree algorithm [7], takes ��� �� � ��������� time and space, where � � �
is the maximal fan-in of any node. For � � ��, � � � and � �
�, this is about 2
million operations, which is certainly tractable. However, in the future we hope to scale up
to modeling complex freeway networks with � � ��� detectors and � � � states, so we

will need to use approximate inference. We discuss two different approximate inference
algorithms below.

3.1 Particle filtering

Particle filtering (PF) [4, 3] is a well-known sequential Monte Carlo technique for approx-
imate filtering, where the posterior is approximated with a set of weighted samples, called
“particles”. We use �	 � ��� particles sampled from the optimal proposal distribution,
which takes into account both the previous state and the current evidence. We have found
that increasing the number of particles to 1000 makes little difference, presumably because
the observations are very informative, and the transitions very deterministic (see Section 4).

Note that our samples are complete paths from � � �� � � � � � , so we can easily estimate the
smoothed joint posterior
 ��
����� ��������� �, where � � ����� �� ���� are the parents of
�; we need this quantity to compute the expected sufficient statistics for EM. An alternative
would be to run two particle filters, forwards and backwards, to estimate
 �� ������� and

 ���������� �, and then to combine them [6]. Unfortunately, this takes ���� �

	 � time.

3.2 Boyen-Koller algorithm

The Boyen-Koller algorithm [2] represents the belief state, � � �
 ���������, as a product
of marginals over � “clusters”,
 ���������

��
���
 ������������ where ���� is a subset

of the variables ����� � � �� � � � � �. (The clusters do not need to be disjoint.) Given a
factored prior, ����, we do one step of exact Bayesian updating to compute the posterior,
���. In general, this will not be factored as above, so we need to project to the space of
factored distributions by computing the marginal on each cluster. The product of marginals
then gives the approximate posterior, ��. We can use a similar method for computing
the backward messages, �� �
 ������� ����, in an efficient manner; these can then be
combined to produce an approximate smoothed posterior, � � �
 �������� � [1].

The accuracy of the algorithm depends on the size of the clusters that we use to approximate
the belief state. Exact inference corresponds to using a single cluster, containing all the
hidden variables in a time-slice. The most aggressive approximation corresponds to using
� clusters, one per variable; we call this the “fully factorized” approximation, and is the
version we use in this paper.

The exact update step uses the junction tree algorithm, and relies on the assumption that
updating a factored prior is efficient; in other words, it assumes that the sizes of the cliques
in the triangulated graph of the two-slice DBN are small. For the CHMM model, this is
indeed the case, since the cliques just correspond to the families (nodes and their parents).
Hence the algorithm takes ��������� time, where � � � is the maximal fan-in of any
node. (When even one step of exact updating is intractable, the algorithm in [10] can be
used.)

3.3 Comparing the inference algorithms

To compare the accuracy of PF and BK relative to exact inference, we computed the
smoothed posterior marginal estimates
 ���������� � using each of the methods on each of
the test sequences, and using the estimated parameters. BK yields posterior estimates that
are indistinguishable from exact inference to at least three decimal places. PF yields a nois-
ier estimate, but it is still very accurate: define ���� to be the �� difference of the estimates

computed using exact and PF; then the empirical mean of this quantity is ������� ������
for 100 particles, and ������� ������ for 1000 particles. We see that using more particles
slightly increases the accuracy and reduces the variance, but it seems that 100 particles is
sufficient. The reason for this is the near-deterministic nature of the transitions (see below)
and the informativeness of the observations.

Since the inference algorithms perform similarly, we expect the estimated parameters to be
similar, too. This is indeed the case for the and � parameters of the observation model,
where the differences are not statistically significant (even using only 100 particles). PF
does a poorer job at estimating the transition parameters, however, due to the fact that it
only counts 100 sample paths per sequence. The total normalized L1 error is 4.9 for BK and
8.0 for PF. Using more particles would obviously help. See Section 4 for a more detailed
discussion of the estimated parameters.

In addition to accuracy, speed is a major concern. A single E step takes about 1 second/slice
using exact inference, about 1.3 s/slice using BK, and about 0.1 s/slice using PF with 100
particles.� The reason that BK is slower than exact (in this case) is because of the high
constant factors, due to the complexity of the algorithm, and especially the need to perform
the projection (marginalisation) step. Of course, the asymptotic complexity of BK is linear
in �, while exact inference is exponential in �, so it is clear that for larger models, BK will
rapidly become faster than exact.

4 Learning results

To aid interpretability of the parameters, we initialised the means for state 0 (congestion)
to be 40 mph, and for state 1 (free flow) to be 60 mph. All other parameters were initialised
randomly. We ran EM until the change in log-likelihood was less than ����, which usually
took 10–20 iterations. Some of the learned and � values (using exact inference) are
shown in Figure 3(b). The parameters for the models for 3-4pm, 4-5pm and 5-6pm are all
very similar; we call this the “rush-hour” model. The parameters for the models for 2-3pm
and 6-7pm are also very similar; we call this the “offpeak” model.

It is clear that when the traffic is slow, the variance is high, but when the traffic is fast,
the variance is low. It is also clear that congestion gets worse as one approaches location
10, which corresponds to the part of I-880 that is near the San Mateo Bridge, a notorious
bottleneck. Thus the learned and � values seem sensible. The estimated parameter values
are very insensitive to the initialisation and the inference algorithm used in the E step.

Interpretation of the transition parameters is harder. We might hope to estimate the speed
with which congestion propagates and clears, as illustrated below.

0 0 0 0 0 0
1 0 0 0 0 1
1 1 0 0 1 1

(1)

Here we show a hypothetical example of the hidden state of the traffic at three neighboring
locations (traffic flows upwards) evolving over time. 0 means congestion, 1 means free
flow. On the left, we see congestion backing up, and on the right, we see it clearing. Thus,
let
� �
 ����� � ���������� � �� ������ � �� �������� � �� be the probability with

�The first author implemented PF in S-Plus on a 400 MHz PC. The second author implemented
exact inference and BK in Matlab on a Sun Ultra. The latter code is part of the Bayes Net Toolbox, and
can be downloaded from www.cs.berkeley.edu/ �murphyk/Bayes/bnt.html. These
times were measured using sequences of length � � ��.

0 50

15

20

25

30

35

40

45

50

55

60

65

site 7

0 50

15

20

25

30

35

40

45

50

55

60

65

site 8

0 50

15

20

25

30

35

40

45

50

55

60

65

site 9

0 50

15

20

25

30

35

40

45

50

55

60

65

site 10

Figure 4: 20 minute-ahead predictions. Solid is the truth, dotted is the naive prediction, dashed (in
the middle of the error bars) uses the model.

which site � becomes congested (enters state 0) given that it was previously uncongested
(state 1), but that the downstream site � � � was previously congested. Similar, let
 �

 ����� � ���������� � �� ������ � �� �������� � �� denote the probability with which
site � becomes uncongested. Unfortunately, the estimated values of these quantities do not
seem to reveal any meaningful pattern.

One of the advantages of a generative model is that we can simulate future traffic patterns.
A typical sample drawn from this model is shown in Figure 3. We see that this resembles
the training data; in particular, the model is capable of generating the triangular shape.

Finally, we can use the model to do online prediction. For exact inference, we just compute
������ �
 ����������� � ������, where � is the transition matrix, and then compute

 �����������, which is a mixture of Gaussians with ������ as the mixing weights. See
Figure 4 for an example. We compared these predictions to the naive approach of predicting
that the future is the same as the present, ����� � ��, for leads up to 20 minutes ahead.
For the sequence in Figure 4, the rms error is 10.83 for the naive method and 9.76 for
the model-based method. (We are ignoring the predicted �, i.e., the confidence in the
prediction, which is only available for the model-based approach.) Other sequences give
similar results. It is clear from these numbers, and from the figure, that our predictions are
not very accurate. We discuss ways to improve the model in the next section.

5 Discussion

Perhaps the most serious problem with our approach is that we have learned a separate
model for each 1 hour period between 2-7pm, making it tricky to predict across bound-
aries. One approach would be to use the posterior from the previous model as the prior for
the next. Alternatively, we could fit a single (mixture) model, by adding an extra hidden
variable to each time slice to represent the current regime; all the other variables could then
be conditioned on this. (In this case, the fully factorized version of BK takes ����� 	�,
since the maximum clique size is 5.) Such a switching model could capture periodic non-
stationarities. The number of regimes could be chosen using cross validation, although our
results suggest that two might be sufficient, corresponding to rush-hour and off-peak.

We could also choose the number of hidden states for each location based on cross-
validation. However, it is clear that � � � is inadequate, since it is incapable of distin-
guishing whether congestion is increasing or decreasing. To see this, consider the ��� �� �� �

column in Equation 1. This has two possible successor configurations, depending on the
previous configuration, and thus the model is not Markov, i.e., the future is not independent
of the past given that the present state is ��� �� ��. It would be straightforward to use� � �,
or to make the model second-order Markov by adding longer distance dependencies, or to
add extra variables to represent the (sign of the) derivative of the speed.

A third weakness is our assumption of Gaussian noise on the observations. Sensor failures,
such as those shown in Figure 1, clearly invalidate this assumption. We can use a mixture
of Gaussians as the noise model to handle this.

In the future, we plan to try using � � � with the switching model. We will also include
a deterministic node that encodes the current time; thus predictions will be based both on
historical patterns (using the time node) and the current state of the system (using the other
hidden nodes). Ultimately, our goal is to predict travel time, rather than just velocity. We
plan to build a model that can take as input the belief state about the current conditions, and
combine it with historical (supervised) data, to provide a real-time travel forecast engine.

Acknowledgments

We would like to thank Peter Bickel, Michael Jordan, John Rice and Stuart Russell for their
helpful comments.

References

[1] X. Boyen and D. Koller. Approximate learning of dynamic models. In NIPS-11, 1998.

[2] X. Boyen and D. Koller. Tractable inference for complex stochastic processes. In UAI, 1998.

[3] A. Doucet, N. de Freitas, and N. J. Gordon. Sequential Monte Carlo Methods in Practice.
Springer Verlag, 2000. Forthcoming.

[4] N. Gordon. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Pro-
ceedings (F), 140(2):107–113, 1993.

[5] F. L. Hall. Traffic stream characteristics. In N. Gartner, C. Messer, and A. Rathi, editors, Traffic
Flow Theory. US Federal Highway Administration, 1996.

[6] M. Isard and A. Blake. A smoothing filter for condensation. In Proc. European Conf. on
Computer Vision, volume 1, pages 767–781, 1998.

[7] U. Kjaerulff. A computational scheme for reasoning in dynamic probabilistic networks. In
UAI-8, 1992.

[8] J. Kwon, B. Coifman, and P. Bickel. Day-to-day travel time trends and travel time prediction
from loop detector data. Transportation Research Record, (1554), 2000. To appear.

[9] A. D. May. Traffic Flow Fundamentals. Prentice Hall, 1990.

[10] K. Murphy and Y. Weiss. The factored frontier algorithm for approximate inference in DBNs.
Submitted to NIPS-12.

[11] L. Saul and M. Jordan. Boltzmann chains and hidden Markov models. In NIPS-7, 1995.

