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Abstract

We present algorithms for coupling and training
hidden Markov models (HMMs) to model interact-
ing processes, and demonstrate their superiority to
conventional HMMs in a vision task classifying two-
handed actions. HMMs are perhaps the most suc-
cessful framework in perceptual computing for mod-
eling and classifying dynamic behaviors, because they
offer dynamic time warping, a learning algorithm, and
a clear Bayesian semantics. However, the Marko-
vian framework makes strong restrictive assumptions
about the system generating the signal—that it s a
single process having a small number of states and an
ertremely limited state memory. The single-process
model is often inappropriate for vision (and speech)
applications, resulting in low ceilings on model per-
formance. Coupled HMMs provide an efficient way
to resolve many of these problems, and offer superior
training speeds, model lLikelthoods, and robustness to
wnitial conditions.

1 Introduction

Computer vision is turning to problems of per-
ceiving and interpreting action, sparking interest in
models of dynamical behavior used elsewhere in per-
ceptual computing, particularly hidden Markov mod-
els (HMMs). HMMs are presently the most favored
model in speech and vision, mainly because they can
be learned from data and they implicitly handle time-
varying signals. Their clear Bayesian semantics also
makes them well-suited for computing with uncertain-
ties.

An HMM is a quantization of a system’s config-
uration space into a small number of discrete states.
A single finite discrete variable s indexes the current
state of the system. State changes, approximating the
dynamics of the system, are described by a table of
transition probabilities Py(4)—4s(¢t—1)=;j. This represen-
tation succeeds to the degree that the system fits the
Markov condition: Any information about the history
of the process needed for future inferences must be
reflected in the current state. Consequently, HMMs
are ill-suited to systems that have compositional state,
e.g., multiple interacting processes that have structure
in both time and space. For example, in video signals
one might want to model the behavior of players in a
sport, or, more generally, of participants in multi-place
action verbs such as “A gave B the C.” We present al-
gorithms for coupling and training HMMs to model

interactions between processes that may have differ-
ent state structures and degrees of influence on each
other. These problems often occur in vision, speech, or
both—coupled HMMs are well suited to applications
requiring sensor fusion across modalities.

2 HMDMs and the Markov condition
An HMM is a described by a tu-
plex {S, P;j;, P;, Pi(0)}, consisting of a set of discrete
states S = {s1, s9,83,...,5n}, state-to-state transi-
tion probabilities Py(4)=i|s(t—1)=j, 1 < i,j < N, prior
probabilities for the first state PSEO) =1, and output
probabilities for each state Py(;)=;(o(t)). Graphically,

Markov models are often depicted “rolled out in time”
as probabilistic independence networks:

time

Square nodes represent the observations o(t); cir-
cular nodes represent the hidden state variable s(t) €
S; horizontal arcs represent the transition matrix
Py(4)s(¢—1); and parameters associated with the ver-
tical arcs determine the probability of an observation
given the current state Py;)(o(t)), e.g., the parameters
may be means and covariances of multivariate Gaus-
sians. The state variable and the output vary over
time, and at any any time ¢, memory is limited to the
value of state variable s(t — 1).

Conventional extensions to the basic Markov model
are generally limited to increasing the memory of the
system (durational modeling), which give the system
compositional state in time. We are interested in sys-
tems that have compositional state in space, e.g., more
than one simultaneous state variable. Recently, Jor-
dan, Saul, and Ghahramani have developed a vari-
ety of higher-order HMMs, including factorial HM Ms
[4] for independent processes; linked HMMs [7] that
model noncausal (contemporaneous) symmetrical in-
fluences; and hidden Markov decision trees [6] that fea-
ture a cascade of noncausal influences from master to
slave HMMs. The training algorithms are based on an
equivalence between HMMs and a class of Boltzmann



machine architectures with tied weights [8, 9]. The
linked HMM excepted, these algorithms use approxi-
mation methods from mean field theory in physics.

We present an exact algorithm for coupling two
HMMs with causal (temporal), possibly asymmetric
influences. Theoretical and empirical arguments for
this architecture’s advantages can be found in [2]. To
illustrate the difference between causal and noncausal
couplings, imagine modeling opponents in a tennis
match: The noncausal HMM couplings can represent
the fact that it is unlikely to see both players playing
net simultaneousy; the causal HMM coupling can rep-
resent the fact that one player rushing to the net will
drive the other back and restrict the kinds of returns
he attempts.

The coupling algorithm is based on projections be-
tween component HMMs and a joint HMM; in prin-
cipal it i1s also possible to derive an approximation
algorithm in the mean field framework or an exact al-
gorithm using junction-tree representations [5]. We
sketch the algorithm here; a detailed exposition in-
cluding convergence properties and performance anal-
ysis can be found in [2].

3 Coupling and Factoring HMMs

We obtain a joint HMM C' from two component
HMMs A, B by taking the Cartesian product of their
states and transition parameters.

{¢t = {A}x{B} (1)
cij = ai/\b]' (2)

= Pa,|ajpbk|bz (3)

Exploiting the sum-to-one property of probabilities,
linear projections will factor the joint HMM back into
its components.

Pa,|aj = ZPIH Epclklcjz (4)
1 k

Pyje, = EPajZPc,k|Cﬂ (5)
i [

where Py, = 1/|{B}|and P,, = 1/|{A}|in the absence
of any posterior probabilities.

This projections factors the (|[{A}] - |{B}|)
dimensional transition table of the joint HMM into
[{A}|?>~ and |{B}|?>-dimensional transition tables
which parameterize two component HMMs. Note
that we may just as easily define a projection which

factors out the interaction between the component
HMMs:

P
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Pal|bl = ZPGjZPCzklcjl (6)
; %

Pbk|aj = Z sz E Pczklcjl (7)
1 7

whose Inverse 1s

Pc,k|c]'1 == Pa,|bzpbk|aj (8)

This is the basis of an algorithm in which a joint
HMM is trained via standard HMM methods but con-
strained to factor consistently along both projections.
As each reestimation propels it up through likelihood
space, we factor and reconstitute it, thus simultane-
ously training the component HMMs. Here we formu-
late the algorithm with factoring after reestimation
of the joint HMM; factoring can also be done after
forward-backward analysis, so that reestimation can
occur in the component HMMs, e.g.:

Po()=ia(t-1)=j10 =

E E Ciri-1 - Pixpju Pc(t)_zk(o(t)) C’th
P(0O)

Py=i(o(t)
~ (I)J(O) = ZC“‘ tz Jit=1 'sz|jl) (10)
~ % (chk ) (chm_l) (11)

where C' and C’ are the forward and backward vari-
ables for the joint HMM. Eqns. 10,11 are approxi-
mations that allow substantial speed-ups but sacrifice
some information.

In principle, factoring and reconstitution can vio-
late the conditions under which convergence is guar-
anteed, also, eqns. 3 and 8 may not be consistent; in
[2] we develop conditioning steps which restore the
convergence property. In practice, the algorithm ap-
pears to perform nearly as well without the condition-
ing steps, and in either case it works more robustly
than a single HMM.

Note that we do not take the Cartesian product of
the output parameters. They are reestimated directly
in the component HMMs using posterior component
state probabilities. This has three advantages: (1)
O(2N) output parameters are reestimated instead of
O(N?); (2) the statistics are more robust; (3) forward-
backward analysis and run-time Viterbi analysis are
considerably faster, since the bulk of computation isin
computing multivariate Gaussians and this is reduced
by O(N). E.g., recognition with a CHMM can be
considerably faster than with an HMM with the same
number of states.

(9)

4 Experiments

T’ai Chi Ch’uan is a Chinese martial art and med-
itative exercise, consisting of stylized full-body and
upper-body gestures. most signals generated by hu-
man activity, gestures included, are the result of mul-
tiple interacting processes. In gesture, the arms are
neither independent nor wholly mutually determined;
some form of interactional modeling is appropriate.

Visually, a simple way to decompose upper-body
gestures is to treat each arm as a process. Using a
self-calibrating stereo blob tracker [1], we obtained 3D



hand tracking data for three T’ai Chi gestures involv-
ing arm-motions: the left! single whip, the left cobra,
and the left brush knee. Figure 4 illustrates the ges-
tures, the blob-tracking, and the feature vectors.

4.1 Details of data collection

We collected 52 sequences, roughly 17 of each ges-
ture. The extracted feature vector consisted of the 3D
(z,y, z) centroid (mean position) of each of the blobs
that characterize the hands. All the gestures were per-
formed by the same person, seated in a swivel chair
and moving her upper body and hands. Each gesture
began with both hands in a rest or neutral position
and ended with the hands in a gesture-specific final
position or returning to neutral position. The experi-
ments were oriented to a single word recognition task;
the extension to continuous gesture trains is the same
as with conventional HMMs. The main sources of
noise were blob instabilities, variations in the perfor-
mance of each gesture, and variations in initial body
rotation and position from sequence to sequence. The
extracted feature vector, being simple (z,y, z) posi-
tions, reflects this noise directly.

4.2 Data preprocessing

The frame rate of the vision system varied from 15-
30 Hz. We resampled the data using time-stamped
frames and cubic spline interpolation to produce a
30Hz signal, then low-pass filtered with a 3Hz cut-
off. Similar preprocessing is used by Campbell et al.
[3], who go on to convert the feature vector to head-
centered cylindrical coordinates velocities (dr, df, dz)
for rotation and shift invariance; we remain with raw
3D (z,y, z) coordinates.

4.3 Results of training different architec-
tures of HMMs

Three HMM architectures, reflecting different in-
dependence structures between hidden states, were
trained and tested:

O—0O—-0—-0-0

1. Conventional HMMs: HMMs ranging in com-
plexity from 2 to 7 states were trained and tested
on the data. The best performing models were
kept for comparison: 2-state HMMs for cobra
and single whip; a b-state HMM for brush knee.

2. Linked HMMs (a simplification of CHMMs with
symmetric noncausal joint probabilities between
chains): 2 and 3 per-HMM state LHMMSs were
similarly evaluated, yielding 242-state LHMMs
for the cobra and single whip, and a 3+3-state
LHMM for the brush knee.

IMany T’ai Chi forms have mirror-image counterparts.

3. Coupled HMMs: Similarly, testing with a small
range of CHMMs yielded good models with 34-3-
state CHMMSs for cobra and brush knee, and a
3+2-state CHMM (a 3-state chain coupled with
a 2-state chain) for the single whip gesture. This
latter configuration can intuitively be explained
because in the single whip gesture one hand moves
back and forth while the other hand is mostly
stationary, 1.e. the complexity of the temporal
structure of each hand is different.

Once the apropriate state counts were established,
each model was trained 50 times on 5 randomly se-
lected instances of gesture, and the best (highest-
likelihood) models were kept for comparison. We did
this because HMMs are known to produce models of
varying quality, even when trained repeatedly with the
same data.

We expected the CHMMs to outperform the
LHMM because the coordinate constraints between
the arms are asymmetric and temporally mediated.
Similarly, we expected both higher-order HMMs to
outperform the conventional HMMs because the arms
are not perfectly coordinated; any such variation must
simply be represented as noise in the single HMM.

4.4 Results of classification test

To compare the performance of the three previ-
ously described architectures in a classification task,
we computed the maximum likelihood model for each
of the models and for each of the 52 sequences, i.e.,
for each sequence and for each architecture, we se-
lected the gesture whose likelihood was the highest.
Figure 2 shows the per-sequence likelihoods for each
of the models. The classification accuracies are:

Single Linked Coupled

HMMs HMMs HMMs
accuracy 69.2308% | 36.5385%* | 94.2308%
# params || 254304180 | 27418436 | 36+18+36

The bottom row shows the number of degrees of free-
dom in the largest best-scoring model: state-to-state
probabilities 4+ output means + output covariances.

We were surprised by the low accuracy (*) of the
LHMM in classifying all the sequences. This is be-
cause the LHMM model of the cobra did not not cor-
rectly recover the temporal structure; having a very
low discrimination power, 1t claimed all sequences with
a high likelihood. In fact, the LHMM performed sig-
nificantly better than the HMM on the other two ges-
tures.

We note that Campbell et al. [3] were able train
conventional HMMs with (27, i, z1, 2y, yr, zr) feature
vectors to classify 18 different T’ai Chi gestures using
with accuracies as high as 94%. The HMMs had care-
fully tuned transition topologies and were each trained
on 18 examples of gestures constrained not to have ro-
tational or transitional variation (with variation, rates
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Figure 1: Hand tracking of three gestures: Selected frames overlaid with hand blobs from vision. Graphs
in the bottom row show the evolution of the feature vector over time. Sequences may be viewed at
http://www.media.mit.edu/ brand/taichi.html



fell to 34%). Similar circumstances would certainly
raise the rates shown in the table above.

4.5 Sensitivity analysis

HMMs are notoriously sensitive to the random val-
ues assigned to parameters at initialization of train-
ing. To test the sensitivity of final model likelihoods
to initial conditions, we randomly initialized each ar-
chitecture, trained it on 5 examples of a gesture taken
randomly, and tested it on all sequences of that ges-
ture. This was repeated 50 times per gesture and ar-
chitecture. The likelihoods of the testing sets condi-
tioned on recovered models was computed and mean
and variance statistics were computed for each ges-
ture and model. The resulting Gaussian distributions
are depicted in figure 3, which shows the probability
distribution of the per gesture likelihood for coupled,
linked and single HM Ms.

As may be expected, conventional HMMs were
quite sensitive to the initial values of the parameters.
Linked HMMs were generally less sensitive, with a
sensitivity (variance) that appears to depend on the
structure of the gesture. Finally, on average coupled
HMMs were least sensitive to initial conditions and
produced the highest likelihood models—even in the
case of the single whip, in which one hand is mostly
stationary. In sum, CHMMs reliably produce better
models.

These results also show why the HMMs performed
as well as they did in the classification test. In choos-
ing the best-of-50, we took models from the right (op-
timal) end of the distribution. Had we picked typical
models (the mean), the HMMs would have done quite
a bit worse than their already mediocre performance.

5 Conclusion

Hidden Markov models (HMMs) are used widely
in perceptual computing as trainable, time-flexible
classifiers of signals that originate from processes like
speech and gesture. We believe that a conventional
HMM is indeed the wrong model in that most in-
teresting signals fail to satisfy the very restrictive
Markov condition. Speech recognition researchers
have grown increasingly frustrated with the perfor-
mance of HMMs for this very reason, and vision re-
searchers will run into it even faster. We have pre-
sented a mathematical framework for coupled hid-
den Markov models (CHMMs) which offers a way
to model multiple interacting processes without run-
ning afoul of the Markov condition. CHMMSs couple
HMMs with temporal, asymmetric conditional prob-
abilities between the chains. To demonstrate their su-
periority to conventional HMMs, we used a variety
of HMM-based architectures to do visual classifica-
tion of two-handed gestures from T’ai Chi, a martial
art. CHMMSs produce higher likelihood models with
better discriminatory power in fewer epochs and these
models run faster than comparable HMM in a mod-
ified Viterbi algorithm. Finally, these higher-order
HMMs are far less sensitive to inital conditions than
conventional HMMs, e.g., they are more reliable. We
also compare CHMMs with linked HMMs (LHMMs),
which have atemporal, symmetric joint probabilities

between chains. LHMM architectures have been pro-
posed as a desirable higher-order HMM architecture,
but experiments show that CHMMs also significantly
outperform LHMMs.
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Figure 2: Classification by the CHMM, LHMM, and
HMM, showing per-sequence normalized log likeli-
hood. Only the CHMM attains the right discrimi-
nation structure
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Figure 3: Likelihood probability distribution for each
HMM type, learning single whip, cobra, and brush
knee gestures, respectively. The CHMM produces the
most likely models with a high consistency, indicated
by the rightmost distributions.



