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Abstract

This paper presents a novel discriminative
learning technique for label sequences based
on a combination of the two most success-
ful learning algorithms, Support Vector Ma-
chines and Hidden Markov Models which
we call Hidden Markov Support Vector Ma-
chine. The proposed architecture handles
dependencies between neighboring labels us-
ing Viterbi decoding. In contrast to stan-
dard HMM training, the learning procedure
is discriminative and is based on a maxi-
mum/soft margin criterion. Compared to
previous methods like Conditional Random
Fields, Maximum Entropy Markov Models
and label sequence boosting, HM-SVMs have
a number of advantages. Most notably, it
is possible to learn non-linear discriminant
functions via kernel functions. At the same
time, HM-SVMs share the key advantages
with other discriminative methods, in partic-
ular the capability to deal with overlapping
features. We report experimental evaluations
on two tasks, named entity recognition and
part-of-speech tagging, that demonstrate the
competitiveness of the proposed approach.

1. Introduction

Learning from observation sequences is a fundamental
problem in machine learning. One facet of the problem
generalizes supervised classification by predicting label
sequences instead of individual class labels. The latter
is also known as label sequence learning. It subsumes
problems like segmenting observation sequences, an-
notating observation sequences, and recovering under-
lying discrete sources. The potential applications are
widespread, ranging from natural language processing
and speech recognition to computational biology and

system identification.

Up to now, the predominant formalism for modeling
and predicting label sequences has been based on Hid-
den Markov Models (HMMs) and variations thereof.
HMMs model sequential dependencies by treating the
label sequence as a Markov chain. This avoids di-
rect dependencies between subsequent observations
and leads to an efficient dynamic programming for-
mulation for inference and learning. Yet, despite their
success, HMMs have at least three major limitations.
(i) They are typically trained in a non-discriminative
manner. (ii) The conditional independence assump-
tions are often too restrictive. (iii) They are based on
explicit feature representations and lack the power of
kernel-based methods.

In this paper, we propose an architecture for learning
label sequences which combines HMMs with Support
Vector Machines (SVMs) in an innovative way. This
novel architecture is called Hidden Markov SVM (HM-
SVM). HM-SVMs address all of the above shortcom-
ings, while retaining some of the key advantages of
HMMs, namely the Markov chain dependency struc-
ture between labels and an efficient dynamic pro-
gramming formulation. Our work continues a re-
cent line of research that includes Maximum En-
tropy Markov Models (MEMMs) (McCallum et al.,
2000; Punyakanok & Roth, 2001), Conditional Ran-
dom Fields (CRFs) (Lafferty et al., 2001), perceptron
re-ranking (Collins, 2002; Collins & Duffy, 2002) and
label sequence boosting (Altun et al., 2003). The basic
commonality between HM-SVMs and these methods is
their discriminative approach to modeling and the fact
that they can account for overlapping features, that is,
labels can depend directly on features of past or future
observations. The two crucial ingredients added by
HM-SVMs are the maximum margin principle and a
kernel-centric approach to learning non-linear discrim-
inant functions, two properties inherited from SVMs.
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2. Input-Output Mappings via Joint

Feature Functions

Before focusing on the label learning problem, let us
outline a more general framework for learning map-
pings to discrete output spaces of which the proposed
HM-SVM method is a special case (Hofmann et al.,
2002). This framework subsumes a number of prob-
lems such as binary classification, multiclass classi-
fication, multi-label classification, classification with
class taxonomies and last but not least, label sequence
learning.

The general approach we pursue is to learn a w-
parametrized discriminant function F : X × Y → <
over input/output pairs and to maximize this func-
tion over the response variable to make a prediction.
Hence, the general form for f is

f(x) = argmax
y∈Y

F (x,y;w) . (1)

In particular, we are interested in a setting, where F
is linear in some combined feature representation of
inputs and outputs Φ(x,y), i.e.

F (x,y;w) = 〈w,Φ(x,y)〉 . (2)

Moreover, we would like to apply kernel functions to
avoid performing an explicit mapping Φ when this
may become intractable, thus leveraging the theory
of kernel-based learning. This is possible due to the
linearity of the function F , if we have a kernel K over
the joint input/output space such that

K((x,y), (x̄, ȳ)) = 〈Φ(x,y),Φ(x̄, ȳ)〉 (3)

and whenever the optimal function F has a dual
representation in terms of an expansion F (x,y) =
∑m

i=1 αiK((x̃i, ỹi), (x,y)) over some finite set of sam-
ples (x̃1, ỹ1), . . . (x̃m, ỹm).

The key idea of this approach is to extract features not
only from the input patterns as in binary classification,
but also jointly from input-output pairs. The compat-
ibility of an input x and an output y may depend on a
particular property of x in conjunction with a particu-
lar property of y. This is especially relevant, if y is not
simply an atomic label, but has an internal structure
that can itself be described by certain features. These
features may in turn interact in non-trivial ways with
certain properties of the input patterns, which is the
main difference between our approach and the work
presented in Weston et al. (2003).

3. Hidden Markov Chain Discriminants

Learning label sequences is a generalization of the
standard supervised classification problem. Formally,

the goal is to learn a mapping f from observation
sequences x = (x1, x2, . . . , xt, . . . ) to label sequences
y = (y1, y2, . . . , yt, . . . ), where each label takes val-
ues from some label set Σ, i.e. yt ∈ Σ. Since for
a given observation sequence x we only consider la-
bel sequences y of the same (fixed) length, the ad-
missible range of f is effectively finite for every x.
The availability of a training set of labeled sequences
X ≡ {(xi,yi) : i = 1, . . . , n} to learn the mapping f
from data is assumed.

In order to apply the above joint feature mapping
framework to label sequence learning, we define the
output space Y to consist of all possible label sequences.
Notice that the definition of a suitable parametric dis-
criminant function F requires specifying a mapping Φ
which extracts features from an observation/label se-
quence pair (x,y). Inspired by HMMs, we propose
to define two types of features, interactions between
attributes of the observation vectors and a specific la-
bel as well as interactions between neighboring labels
along the chain. In contrast to HMMs however, the
goal is not to define a proper joint probability model.
As will become clear later, the main design goal in
defining Φ is to make sure that f can be computed
from F efficiently, i.e. using a Viterbi-like decoding
algorithm. In order for that to hold, we propose to
restrict label-label interactions to nearest neighbors as
in HMMs, while more general dependencies between
labels and observations can be used, in particular so-
called “overlapping” features.

More formally, let us denote by Ψ a mapping which
maps observation vectors xt to some representation
Ψ(xt) ∈ <d. Then we define a set of combined la-
bel/observation features via

φstrσ(x,y) = [[yt = σ]]ψr(x
s) , 1 ≤ r ≤ d, σ ∈ Σ (4)

Here [[Q]] denotes the indicator function for the pred-
icate Q.

To illustrate this point, we discuss a concrete example
from part-of-speech tagging: ψr(x

s) may denote the
input feature of a specific word like ’rain’ occurring in
the s-th position in a sentence, while [[yt = σ]] may
encode whether the t-th word is a noun or not. φstrσ =
1 would then indicate the conjunction of these two
predicates, a sequence for which the s-th word is ’rain’
(= r) and in which the t-th word has been labeled as
a noun (= σ). Notice that in general, ψr may not be
binary, but real-valued; and so may φstrσ.

The second type of features we consider deal with
inter-label dependencies

φ̄stστ = [[ys = σ ∧ yt = τ ]] , σ, τ ∈ Σ. (5)



In terms of these features, a (partial) feature map
Φ(x,y; t) at position t can be defined by selecting ap-
propriate subsets of the features {φstrσ} and {φ̄

st
στ}. For

example, an HMM only uses input-label features of

the type φttrσ and label-label features φ̄
t(t+1)
στ , reflect-

ing the (first order) Markov property of the chain. In
the case of HM-SVMs we maintain the latter restric-
tion (although it can trivially be generalized to higher
order Markov chains), but we also include features φstrσ,
where s 6= t, for example, s = t − 1 or s = t + 1 or
larger windows around t. In the simplest case, a fea-
ture map Φ(x,y; t) can be then specified by defining a
feature representation of input patterns Ψ and by se-
lecting an appropriate window size.1 All the features
extracted at location t are simply stacked together to
form Φ(x,y; t). Finally, this feature map is extended
to sequences (x,y) of length T in an additive manner
as

Φ(x,y) =

T
∑

t=1

Φ(x,y; t) . (6)

In order to better understand the definition of the
feature mapping Φ and to indicate how to possi-
bly exploit kernel functions, it is revealing to rewrite
the inner product between feature vectors for differ-
ent sequences. Using the definition of Φ with non-
overlapping features (for the sake of simplicity), a
straightforward calculation yields

〈Φ(x,y),Φ(x̄, ȳ)〉 =
∑

s,t

[[ys−1 = ȳt−1 ∧ ys = ȳt]]

+
∑

s,t

[[ys = ȳt]]k(xs, x̄t), (7)

where k(xs, x̄t) = 〈Ψ(xs),Ψ(x̄t)〉. Hence, the similar-
ity between two sequences depends on the number of
common two-label fragments as well as the inner prod-
uct between the feature representation of patterns with
common label.

4. Hidden Markov Perceptron Learning

We will first focus on an on-line learning approach to
label sequence learning, which generalizes perceptron
learning and was first proposed in the context of nat-
ural language processing in Collins and Duffy (2002).

In a nutshell, this algorithm works as follows. In an
on-line fashion, pattern sequences xi are presented
and the optimal decoding f(xi) is computed. This

1Of course, many generalizations are possible, for ex-
ample, one may extract different input features depending
on the relative distance |t− s| in the chain.

amounts to Viterbi decoding in order to produce the
most ’likely’, i.e. highest scored, label sequence ŷ. If
the predicted label sequence is correct ŷ = yi, no
update is performed. Otherwise, the weight vector
w is updated based on the difference vector 4Φ =
Φ(xi,yi)− Φ(xi, ŷ), namely wnew ← wold +4Φ.

In order to avoid an explicit evaluation of the fea-
ture map as well as a direct (i.e. primal) represen-
tation of the discriminant function, we would like to
derive an equivalent dual formulation of the percep-
tron algorithm. Notice that in the standard percep-
tron learning case, Φ(x, 1) = −Φ(x,−1), so it is suf-
ficient to store only those training patterns that have
been used during a weight update. In the label se-
quence perceptron algorithm one also needs to store
the incorrectly decoded sequence (which we call neg-
ative pseudo-example) (xi, f(xi)). More precisely, one
only needs to store how the decoded f(xi) differs from
the correct yi, which typically results in a more com-
pact representation.

The dual formulation of the discriminant function is as
follows. One maintains a set of dual parameters αi(y)
such that

F (x,y) =
∑

i

∑

ȳ

αi(ȳ)〈Φ(xi, ȳ),Φ(x,y)〉 . (8)

Once an update is necessary for training sequence
(xi,yi) and incorrectly decoded ŷ, one simply incre-
ments αi(yi) and decrements αi(ŷ) by one. Of course,
as a practical matter of implementation, one will only
represent the non-zero αi(y). Notice that this requires
to keep track of the α values themselves as well as the
pairs (xi,y) for which αi(y) < 0.

The above formulation is valid for any joint feature
function Φ on label sequences and can be generalized
to arbitrary joint kernel functions K by replacing the
inner product with the corresponding values of K. In
the case of nearest neighbor label interactions, one
can make use of the additivity of the sequence fea-
ture map in Eq. (7) to come up with a more efficient
scheme. One can decompose F into two contributions,
F (x,y) = F1(x,y) + F2(x,y), where

F1(x,y) =
∑

σ,τ

δ(σ, τ)
∑

s

[[ys−1=σ∧ys=τ ]] , (9a)

δ(σ, τ) =
∑

i,ȳ

αi(ȳ)
∑

t

[[ȳt−1 = σ ∧ ȳt = τ ]] (9b)

and where

F2(x,y) =
∑

s,σ

[[ys=σ]]
∑

i,t

β(i, t, σ)k(xs, xti), (10a)

β(i, t, σ) =
∑

y

[[yt = σ]]αi(y) . (10b)



This shows that it is sufficient to keep track of how of-
ten each label pair incorrectly appeared in a decoded
sequence and how often the label of a particular ob-
servation xsi was incorrectly decoded. The advantage
of using the representation via δ(σ, τ) and β(i, t, σ) is
that it is independent of the number of incorrect se-
quences ŷ and can be updated very efficiently.

In order to perform the Viterbi decoding, we have to
compute the transition cost matrix and the observa-
tion cost matrix Hi for the i-th sequence. The latter
is given by

Hsσ
i =

∑

j

∑

t

β(j, t, σ)k(xsi , x
t
j). (11)

The coefficients of the transition matrix are simply
given by the values δ(σ, τ). After the calculation of the
observation cost matrix and the transition cost matrix,
Viterbi decoding amounts to finding the argument that
maximizes the potential function at each position in
the sequence.

Algorithm 1 Dual perceptron algorithm for learning
via joint feature functions (naive implementation).

1: initialize all αi(y) = 0
2: repeat

3: for all training patterns xi do
4: compute ŷi = argmaxy∈Y F (xi,y), where

F (xi,y) =
∑

j

∑

ȳ αj(ȳ)〈Φ(xi,y),Φ(xj , ȳ)〉
5: if yi 6= ŷi then

6: αi(yi)← αi(yi) + 1
7: αi(ŷi)← αi(ŷi)− 1
8: end if

9: end for

10: until no more errors

In order to prove the convergence of this algorithm, it
suffices to apply Theorem 1 in Collins (2002) which is
a simple generalization of Novikoff’s theorem.

Theorem 1. Assume a training set (xi,yi), i =
1, . . . , n, and for each training label a set of candidate
labels Yi ⊆ Y −{yi}. If there exists a weight vector w
such that ‖w‖ = 1 and

〈w,Φ(xi,yi)〉 − 〈w,Φ(xi,y)〉 ≥ γ, for all y ∈ Yi

then the number of update steps performed by the above

perceptron algorithm is bounded from above by R2

γ2 ,

where R = maxi ‖Φ(xi,y)‖ for y ∈ Yi ∪ {yi}.

5. Hidden Markov SVM

Our goal in this section is to derive a maximum margin
formulation for the joint kernel learning setting. We

generalize the notion of a separation margin by defin-
ing the margin of a training example with respect to
a discriminant function, F , as:

γi = F (xi,yi)−max
y 6=yi

F (xi,y) . (12)

Then, the maximum margin problem can be defined
as finding a weight vector w that maximizes mini γi.
Obviously, like in the standard setting of maximum
margin classification with binary labels, one has to ei-
ther restrict the norm of w (e.g. ‖w‖ = 1), or fix the
functional margin (maxi γi ≥ 1). The latter results in
the following optimization problem with a quadratic
objective

min
1

2
‖w‖2, s.t.F (xi,yi)−max

y 6=yi

F (xi,y) ≥ 1,∀i. (13)

Each non-linear constraint in Eq. (13) can be replaced
by an equivalent set of linear constraints,

F (xi,yi)− F (xi,y) ≥ 1 , ∀i and ∀y 6= yi. (14)

Let us further rewrite these constraints by introducing
an additional threshold θi for every example,

zi(y) (F (xi,y) + θi)≥
1

2
, zi(y)=

{

1 if y = yi

−1 otherwise.

(15)

Then it is straightforward to prove the following:

Proposition 1. A discriminant function F fulfills the
constraints in Eq. (14) for an example (xi,yi) if and
only if there exists θi ∈ < such that F fulfills the con-
straints in Eq. (15).

We have introduced the functions zi to stress that we
have basically obtained a binary classification prob-
lem, where (xi,yi) take the role of positive examples
and (xi,y) for y 6= yi take the role of |Y| − 1 neg-
ative pseudo-examples. The only difference with bi-
nary classification is that the bias can be adjusted for
each ’group’ sharing the same pattern xi. Hence, there
is some additional interaction among pseudo-examples
created from the same example (xi,yi).

Following the standard procedure, we derive the dual
formulation of this quadratic program. The La-
grangian dual is given by

max W (α) =−
1

2

∑

i,y

∑

j,ȳ

αi(y)αj(ȳ)zi(y)zj(ȳ)ki,j(y, ȳ)

+
∑

i,y

αi(y) (16)

s.t. αi(y) ≥ 0, ∀i = 1, . . . , n, ∀y ∈ Y
∑

y∈Y

zi(y)αi(y) = 0 ,∀i = 1, . . . , n



where ki,j(y, ȳ) = 〈Φ(xi,y),Φ(xj , ȳ)〉. Notice that
the equality constraints, which generalize the standard
constraints for binary classification SVMs (

∑

i yiαi =
0), result from the optimality conditions for the thresh-
olds θi. In particular, this implies that αi(y) = 0, if
αi(yi) = 0, i.e. only if the positive example (xi,yi) is
a support vector, will there be corresponding support
vectors created from negative pseudo-examples.

6. HM-SVM Optimization Algorithm

Although it is one of our fundamental assumptions
that a complete enumeration of the set of all label
sequences Y is intractable, the actual solution might
be extremely sparse, since we expect that only very
few negative pseudo-examples (which is possibly a very
small subset of Y) will become support vectors. Then,
the main challenge in terms of computational efficiency
is to design a computational scheme that exploits the
anticipated sparseness of the solution.

Since the constraints only couple Lagrange parameters
for the same training example, we propose to optimize
W iteratively, at each iteration optimizing over the
subspace spanned by all αi(y) for a fixed i. Obviously,
by repeatedly cycling through the data set and opti-
mizing over {αi(y) : y ∈ Y}, one defines a coordinate
ascent optimization procedure that converges towards
the correct solution, provided the problem is feasible
(i.e., the training data is linearly separable). We first
prove the following two lemmata.

Lemma 1. If α∗ is a solution of the Lagrangian dual
problem in Eq. (16), then α∗i (y) = 0 for all pairs
(xi,y) for which F (xi,y;α

∗) < maxȳ 6=yi
F (xi, ȳ;α

∗).

Proof. Define F̃ (xi;α) = maxy 6=yi
F (xi,yi;α). Then,

the optimal threshold needs to fulfill θ∗i =
−(F (xi,yi;α

∗) + F̃ (xi;α
∗))/2. Hence, if y is a label

sequence such that F (xi,y;α
∗) < F̃ (xi;α

∗) then

−F (xi,y;α
∗)− θ∗i > −F̃ (xi;α

∗)− θ∗i =

1

2
(F (xi,yi;α

∗)− F̃ (xi;α
∗)) ≥

1

2
.

Together with the assumption α∗i (y) > 0 this
contradicts the KKT complementary condition
α∗i (y)(F (xi,y;α

∗) + θ∗i +
1
2 ) = 0.

Lemma 2. Define the matrix D((xi,y), (xj , ȳ)) ≡
zi(y)zj(ȳ)ki,j(y, ȳ). Then α′Dei(y) = zi(y)F (xi,y),
where ei(y) refers to the canonical basis vector corre-
sponding to the dimension of αi(y).

Proof. α′Dei(y) = zi(y)
∑

j,y′ αj(y
′)zj(y

′)ki,j(y,y
′) =

zi(y)F (xi,y).

We use a working set approach to optimize over the
i-th subspace that adds at most one negative pseudo-
example to the working set at a time. We define an
objective for the i-th subspace by

Wi(αi; {αj : j 6= i}) (17)

which we propose to maximize over the arguments αi

while keeping all other αj ’s fixed. Adopting the proof
presented in (Osuna et al., 1997), we prove the follow-
ing result:

Proposition 2. Assume a working set S ⊆ Y with
yi ∈ S is given, and that a solution for the working
set has been obtained, i.e. αi(y) with y ∈ S maximize
the objective Wi subject to the constraints that αi(y) =
0 for all y 6∈ S. If there exists a negative pseudo-
example (xi, ŷ) with ŷ 6∈ S such that −F (xi, ŷ)− θi <
1
2 , then adding ŷ to the working set S′ ≡ S ∪ {ŷ} and
optimizing over S′ subject to αi(y) = 0 for y 6∈ S′

yields a strict improvement of the objective function.

Proof. Case I: If the training example (xi,yi) is not a
support vector (yet), then all αi(y) in the working set
will be zero, since αi(yi) =

∑

y 6=yi
αi(y) = 0. Con-

sider ᾱi = αi+δei(yi)+δei(ŷ), for some δ > 0. Then,
the difference in cost function can be written as:

Wi(ᾱi; {αj : j 6= i})−Wi(αi; {αj : j 6= i})

= (δei(yi) + δei(ŷi))
′1− α′D(δei(yi) + δei(ŷi))

−
1

2
(δei(yi) + δei(ŷi))

′D(δei(yi) + δei(ŷi))

= 2δ − δ (F (xi,yi)−F (xi, ŷi))−O(δ2) ≥ δ−O(δ2)

since F (xi,yi) − F (xi, ŷi) < 1. By choosing δ small
enough we can make δ −O(δ2) > 0.

Case II: If the training example is a support vec-
tor, then αi(yi) > 0, and there has to be a neg-
ative pseudo-example ȳ with αi(ȳ) > 0. Consider
ᾱi = αi + δei(ŷi)− δei(ȳi).

Wi(ᾱi; {αj : j 6= i})−Wi(αi; {αj : j 6= i})

= (δei(ŷ)−δei(ȳ))
′1−α′D(δei(ŷ)−δei(ȳ))−O(δ2)

= δ(F (xi, ŷ)− F (xi, ȳ))−O(δ2)

Hence, we have to show that F (xi, ŷ)−F (xi, ȳ) ≥ ε >
0 independent of δ. From the KKT conditions we know
that −F (xi, ȳ) − θi = 1

2 , while our assumption was
that −F (xi, ŷ)− θi <

1
2 . Setting ε =

1
2 + θi +F (xi, ŷ)

concludes the proof.

The above proposition justifies the optimization proce-
dure for the coordinate ascent over the i-th subspace,
described in Algorithm 2. Notice that in order to com-
pute ŷ in step 3 one has to perform a two-best Viterbi



decoding (Schwarz & Chow, 1990). The definition of
the relevant cost matrices follows the procedure out-
lined in Section 4.

Algorithm 2 Working set optimization for HM-
SVMs.
1: S ← {yi}, αi = 0
2: loop

3: compute ŷ = argmaxy 6=yi
F (xi,y;α)

4: if F (xi,yi;α)− F (xi, ŷ;α) ≥ 1 then
5: return αi

6: else

7: S ← S ∪ {ŷ}
8: αi ← optimize Wi over S
9: end if

10: for y ∈ S do

11: if αi(y) = 0 then
12: S ← S − {y}
13: end if

14: end for

15: end loop

7. Soft Margin HM-SVM

In the non-separable case, one may also want to intro-
duce slack variables to allow margin violations. First,
we investigate the case of L2 penalties.

min
1

2
‖w‖2 +

C

2

∑

i

ξ2i (18)

s.t. zi(y)(〈w,Φ(xi,y)〉+ θi) ≥ 1− ξi

ξi ≥ 0 ∀i = 1, . . . , n, ∀y ∈ Y

Notice that we only introduce a slack variable per
training data point, and not per pseudo-example, since
we want to penalize the strongest margin violation per
sequence.

By solving the Lagrangian function for ξi, we get

ξi =
1

C

∑

y

αi(y) (19)

which gives us the following penalty term:

C

2

∑

i

ξ2i =
1

C

∑

i

∑

y,y′

αi(y)αi(y
′). (20)

Similar to the SVM case, this term can be absorbed
into the kernel which is effectively changed to

KC((xi,y), (xi, ȳ)) = 〈Φ(xi,y),Φ(xi, ȳ)〉 (21)

+
1

C
zi(y)zi(y

′)

and KC((xi,y), (xj ,y
′)) = K((xi,y), (xj ,y

′)) for i 6=
j.

Using the more common L1 penalty, one gets the fol-
lowing optimization problem

min
1

2
‖w‖2 + C

∑

i

ξi (22)

s.t. zi(y)(〈w,Φ(xi,y)〉+ θi) ≥ 1− ξi, ξi ≥ 0

∀i = 1, . . . , n, ∀y ∈ Y

Again the slack variable ξi is shared across all the
negative pseudo-examples generated. The Lagrangian
function for this case is

L =
1

2
‖w‖2 +

∑

i

(C − ρi)ξi

−
∑

i,y

αi(y) [zi(y) (F (xi,y) + θi)− 1 + ξi](23)

with non-negativity constraints on the dual variables
ρi ≥ 0 and αi(y) ≥ 0. Differentiating w.r.t. ξi gives:

∑

y

αi(y) = C − ρi ≤ C (24)

The box constraints on the αi(y) thus take the follow-
ing form

0 ≤ αi(y), and
∑

y∈Y

αi(y) ≤ C. (25)

In addition, the KKT conditions imply that whenever
ξi > 0,

∑

y∈Y αi(y) = C, which means that

αi(yi) =
∑

y 6=yi

αi(y) = C/2.

Hence, one can use the same working set approach
proposed in Algorithm 2 with different constraints in
the quadratic optimization of step 8.

8. Applications and Experiments

8.1. Named Entity Classification

Named Entity Recognition (NER) is an information
extraction problem which deals with finding phrases
containing person, location and organization names,
as well as temporal and number expressions. Each
entry is annotated with the type of its expression and
its position in the expression, i.e. the beginning or the
continuation of the expression.

We generated a sub-corpus consisting of 300 sentences
from the Spanish news wire article corpus which was
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Figure 1. Test error of NER task over a window of size 3

using 5-fold cross validation.

provided for the Special Session of CoNLL2002 on
NER. The expression types in this corpus are limited
to person names, organizations, locations and miscel-
laneous names, resulting in a total of |Σ| = 9 different
labels.

All input features are simple binary features. Most
features are indicator functions for a word occurring
within a fixed size window centered on the word being
labeled. In addition, there are features that encode not
only the identity of the word, but also more detailed
properties (e.g. spelling features). Notice that these
features are combined with particular label indicator
functions in the joint feature map framework. Some
example features are: “Is the previous word ‘Mr.’ and
the current tag ‘Person-Beginning’?”, “Does the next
word end with a dot, and is the current tag ‘Non-
name’?”, and “Is the previous tag ‘Non-name’ and
the current tag ‘Location-Intermediate’?”.

In order to illustrate the nature of the extracted sup-
port sequences, we show an example in Figure 2. The
example sentence along with the correct labeling can
be seen on the top of the figure. N stands for non-name
entities. The upper case letters stand for the beginning
and the lower case letters stand for the continuation
of the types of name entities (e.g. M: Miscellaneous
beginning, o: Organization continuation). We also
present a subset of the support sequences y, first the
correct label and then the other support sequences de-
picted at the positions where they differ from the cor-
rect one. The support sequences with maximal αi(y)
have been selected. As can be seen, most of the sup-
port sequences differ only in a few positions from the
correct label sequence, resulting in sparse solutions.
In this particular example, there are 34 support se-
quences, whereas the size of Y is 169. It should also
be noted that there are no support sequences for some
of the training examples, i.e. αi(yi) = 0, since these
examples already fulfill the margin constraints.

PP ESTUDIA YA PROYECTO LEY TV REGIONAL REMITIDO

O N N N M m m N

POR LA JUNTA Merida ( EFE ) .

N N O L N O N N
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Figure 2. Example sentence, the correct named entity la-

beling, and a subset of the corresponding support se-

quences. Only labels different from the correct labels have

been depicted for support sequences.

We compared the performance of HMMs and CRFs
with the HM-Perceptron and the HM-SVM according
to their test errors in 5-fold cross validation. Over-
lapping features with a window of size 3 were used
in all experiments. We used second degree polyno-
mial kernel for both the HM-Perceptron and the HM-
SVM. For soft margin HM-SVM, C = 1. Although
in a generative model like an HMM, overlapping fea-
tures violate the model, we observed that HMMs using
the overlapping features described above outperformed
the ordinary HMMs. For this reason, we only report
the results of HMMs with overlapping features. The
CRFs have been optimized using a conjugate gradient
method which has reportedly outperformed other tech-
niques for minimizing the CRF loss function (Minka,
2001). Since optimizing log-loss functions (as is done
in CRFs) may result in overfitting, especially with
noisy data, we have followed the suggestion of (John-
son et al., 1999) and used a regularized cost function.
We refer to this CRF variant as CRF-B.

The results summarized in Figure 1 demonstrate the
competitiveness of HM-SVMs. As expected, CRFs
perform better than the HM-Perceptron algorithm
(HM-PC), since CRFs use the derivative of the log-
loss function at every step, whereas the Perceptron
algorithm uses only an approximation of it (cf. Collins
(2002)). HM-SVMs achieve the best results, which
validates our approach of explicitly maximizing a soft
margin criterion.

8.2. Part-Of-Speech Tagging

We extracted a corpus consisting of 300 sentences from
the Penn TreeBank corpus for the Part-Of-Speech
(POS) tagging experiments. The features and experi-
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Figure 3. Test error of POS task over a window of size 3

using 5-fold cross validation.

mental setup is similar to the NER experiments. The
total number of function tags was |Σ| = 45. Figure 3
summarizes the experimental results obtained on this
task. Qualitatively, the behavior of the different op-
timization methods is comparable to the NER experi-
ments. All discriminative methods clearly outperform
HMMs, while HM-SVMs outperform the other meth-
ods.

9. Conclusion

We presented HM-SVMs, a novel discriminative learn-
ing technique for the label sequence learning problem.
This method combines the advantages of maximum
margin classifier and kernels with the elegance and ef-
ficiency of HMMs. Our experiments prove the compet-
itiveness of HM-SVMs in terms of the achieved error
rate on two benchmark data sets. HM-SVMs have sev-
eral advantages over other methods, including the pos-
sibility of using a larger number and more expressive
features. We are currently addressing the scalability
issue to be able to perform larger scale experiments.
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