P.1 Assume the training samples are distributed in the unit hypercube in the d-dimensional feature space, R^d. Compute $l_d(p)$, the length of a hypercube edge in d dimensions that contains the fraction p of points ($0 \leq p \leq 1$). To better appreciate the implications of your result, compute $l_5(0.01)$, $l_5(0.1)$, $l_{20}(0.01)$ and $l_{20}(0.1)$.

Answer: If the training samples are uniformly distributed in the d-dimensional hypercube, then we have:

$$p = (l_d(p))^d$$

$$\implies l_d(p) = \sqrt[p]{p}$$

Then

$$
egin{align*}
l_5(0.01) &= 0.3981 \\
l_5(0.1) &= 0.6310 \\
l_{20}(0.01) &= 0.7943 \\
l_{20}(0.1) &= 0.8913
\end{align*}
$$

P.2 Using the results given in Table 3.1, show that the maximum likelihood estimate for parameter θ of a Rayleigh distribution is given by:

$$\hat{\theta} = \frac{1}{n} \sum_{k=1}^{n} x_k^2$$

Answer:

$$
egin{align*}
l &= \sum_{k=1}^{n} \log P(x_k|\theta) \\
&= \sum_{k=1}^{n} \log \left(2\theta x_k e^{-\theta x_k^2} \right) \\
&= n \log 2\theta + \sum_{k=1}^{n} \log x_k - \theta \sum_{k=1}^{n} x_k^2
\end{align*}
$$

1
thus
\[
\frac{dl}{d\theta} = \frac{n}{\theta} - \sum_{k=1}^{n} x_k^2 = 0
\]

\[\Rightarrow \hat{\theta} = \frac{1}{n} \sum_{k=1}^{n} x_k^2, \quad (x_k \geq 0, k = 1, \ldots, n)\]

Further to see \(\hat{\theta} = \frac{1}{n} \sum_{k=1}^{n} x_k^2\) is the sufficient statistics, we write \(P(D|\theta)\) as follows:

\[
P(D|\theta) = \prod_{k=1}^{n} \left(2 \theta x_k e^{-\theta x_k^2} \right)
\]

\[
= \prod_{k=1}^{n} 2 x_k \prod_{k=1}^{n} \theta e^{-\theta x_k^2}
\]

\[
= \left(\prod_{k=1}^{n} 2 x_k \right) \left(\theta^n e^{-\theta \sum_{k=1}^{n} x_k^2} \right)
\]

\[
= P(D) g(s, \theta)
\]

So \(\sum_{k=1}^{n} x_k^2\), the denominator of \(\hat{\theta}\), is one form of the sufficient statistics.

P.3 Option A: Consider data \(D = \{(2, 3)^t, (3, 1)^t, (5, 4)^t, (4, *)^t, (\ast, 6)^t\}\) sampled from a two-dimensional uniform distribution:

\[
p(x) \sim U(x_l, x_u) = \left\{ \begin{array}{ll}
\frac{1}{|x_{u1} - x_{l1}||x_{u2} - x_{l2}|}, & x_{l1} \leq x_1 \leq x_{u1} \& x_{l2} \leq x_2 \leq x_{u2} \\
\epsilon, & \text{otherwise}
\end{array} \right.
\]

where * represents missing feature values and \(\epsilon\) is a very small positive constant that can be neglected when normalizing the density within the above bounds.

(a) Start with an initial estimate \(\theta^0 = (x_l^t, x_u^t)^t = (0, 0, 10, 10)^t\) and analytically calculate \(Q(\theta; \theta^0)\) – the E-step in the EM algorithm.

(b) Find the \(\theta\) that maximize your \(Q(\theta; \theta^0)\) – the M-step. You may make some simplifying assumptions.

(c) Plot your data and the bounding rectangle

(d) Without having to iterate further, state the estimate of \(\theta\) that would result after convergence of the EM algorithm.
Answer:

\[p(x) \sim U(x_l, x_u) = I(x_l \leq x \leq x_u)A(x_l, x_u) \]

where

\[A(x_l, x_u) = \frac{1}{|x_u - x_l||x_u - x_l|} \]

and

\[I(x) = 1 \text{ if } x = \text{true}, I(x) = 0, \text{otherwise} \]

In E-step, we compute the \(Q(\theta, \theta^0) \), where \(\theta = (x_{l1}, x_{l2}, x_{u1}, x_{u2}) \), and \(\theta^0 = (0, 0, 10, 10) \)

Let, the hidden variables, \(h = (x_{42}, x_{51}) \) and \(X = \{x_i, i = 1, 2, \ldots, 5\} \setminus h \).

\[
Q(\theta, \theta^0) = \int_h \ln(p(X, h|\theta))p(h|X, \theta^0)dh
\]

\[
= \sum_{k=1}^{3} \ln(p(x_i|\theta)) + \int \ln(p(x_{42}|\theta))p(x_{42}|X, \theta^0)dx_{42} + \int \ln(p(x_{51}|\theta))p(x_{51}|X, \theta^0)dx_{51}
\]

\[
= \sum_{k=1}^{3} \ln(p(x_i|\theta)) + C_4 \int \ln(p(x_{42}|\theta))p(x_{42}|x_{41} = 4, \theta^0)dx_{42}
\]

\[
+ C_5 \int \ln(p(x_{51}|\theta))p(x_{51}|x_{52} = 6, \theta^0)dx_{51}
\]

\[
= 3\ln(A(\theta)) + 10C_4\ln(A(\theta))A(\theta^0) + 10C_5\ln(A(\theta))A(\theta^0)
\]

\[
= \ln(A(\theta))(3 + 10C_4A(\theta^0) + 10C_5A(\theta^0))
\]

\[
\max_{\theta}Q(\theta, \theta^0) = \max_{\theta}A(\theta) = \min_{\theta} |x_{u1} - x_{l1}| |x_{u2} - x_{l2}|
\]

The minimum \(\theta \) can be found by looking for the smallest bounding box that contains all the points, therefore \(\theta = (2, 1, 5, 6) \)

The subsequent iterations will give us the same expression for \(Q(\theta, \theta^0) \), therefore the maximized \(\theta \) will remain the same.
P.3 Option B: Let \(p(x) \sim U(0, a) \) be uniform from 0 to \(a \), and let a Parzen window be defined as \(\varphi(x) = e^{-x} \) for \(x > 0 \) and 0 for \(x \leq 0 \).

(a) Show that the mean of such a Parzen-window estimate is given by:

\[
\bar{p}_n(x) = \begin{cases}
0, & x < 0 \\
\frac{1}{a} (1 - e^{-x/h_n}), & 0 \leq x \leq a \\
\frac{1}{a} (e^{a/h_n} - 1) e^{-x/h_n}, & a \leq x
\end{cases}
\]

(b) Plot \(\bar{p}_n(x) \) versus \(x \) for \(a = 1 \) and \(h_n = 1, 1/4, \) and \(1/16 \).

Answer:

(a) Since \(p(x) \sim U(0, a) \). Thus the training samples \(x_1, \ldots, x_n \in [0, a] \) and, for all \(x_i \), the volume, \(V_n \) is given by:

\[
V_n = \int e^{(x-x_i)/h_n} = h_n
\]

Case 1: when \(x \geq a, x - x_i \geq 0 \), for \(i = 1, \ldots, n \). We have:

\[
p_n(x) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{h_n} \varphi\left(\frac{x-x_i}{h_n}\right) \\
= \frac{1}{n} \sum_{i=1}^{n} \frac{1}{h_n} e^{-\left(\frac{x-x_i}{h_n}\right)}
\]
So in this case

\[p_n(x) = E\{p_n(x)\} = \frac{1}{n} \sum_{i=1}^{n} E\{\frac{1}{h_n} e^{-\frac{x-x_i}{h_n}}\} = \int_0^a \frac{1}{ah_n} e^{-\frac{x-v}{h_n}} dv = \frac{1}{a} e^{-x/h_n} (e^{a/h_n} - 1) \]

Case 2: when \(x < 0, x - x_i < 0 \), for \(i = 1, \ldots, n \), and \(p_n(x) = 0 \). So \(p_n(x) = 0 \).

Case 3: when \(0 \leq x \leq a \), we have:

\[p_n(x) = \int_0^x \frac{1}{ah_n} e^{-\frac{x-v}{h_n}} dv = \frac{1}{a} e^{-x/h_n} (e^{x/h_n} - 1) = \frac{1}{a} (1 - e^{-x/h_n}) \]

So in summary:

\[p_n(x) = \begin{cases} 0, & x < 0 \\ \frac{1}{a} (1 - e^{-x/h_n}), & 0 \leq x \leq a \\ \frac{1}{a} (e^{a/h_n} - 1) e^{-x/h_n}, & a \leq x \end{cases} \]

(b) The following figure shows \(p_n(x) \) versus \(x \) for \(a = 1 \), and \(h_n = 1, 1/4, 1/16 \) respectively.