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Abstract 

We presenf a texture segmentation algorithm inspired by 
the multi-channel filtering theory for visual information pro- 
cessing in the early stages of human visual system. The 
channels are characterized by a bank of Gabor filters that 
nearly uniformly covers the spatial-frequency domain. We 
propose a systematic filter selection scheme which is based 
on reconstruction of the input image from the filtered images. 
Texture features are obtained by subjecting each (selected) 
filtered image to a nonlinear transformation and computing 
a measure of “energy” in a window around each pixel. An 
unsupervised square-emr clustering algorithm is then used 
to integrate the feature images and produce a segmentation. 
A simple procedure to incorporate spatial adjacency infor- 
mation in the clustering process is also proposed. We report 
experiments on images with natural textures as well as arti- 
ficial textures with identical 2nd- and 3rd-order statistics. 

Introduction 
Image segmentation is a difficult yet very important task in many 
image analysis or computer vision applications. Differences in 
the mean gray level or in color in small neighborhoods alone axe 
not always sufficient for image segmentation. Rather, one has 
to rely on differences in the spatial arrangement of gray values 
of neighboring pixels - that is, on differences in texture. The 
problem of segmenting an image based on textural cues is referred 
to as texture segmentation problem. 

The diversity of natural and artificial textures makes it im- 
possible to give a universal definition of texture. A large number 
of techniques for analyzing image texture has been proposed in 
the past two decades [l l ,  221. In this paper, we focus on a par- 
ticular approach to texture analysis which is referred to as the 
multi-channel filtering approach. This approach is inspired by a 
multi-channel filtering theory for processing visual information in 
the early stages of the human visual system. First proposed by 
Campbell & Robson [4], the theory holds that the visual system 
decomposes the retinal image into a number of filtered images, 
each of which contains intensity variations over a narrow range 
of frequency (size) and orientation. The psychophysical experi- 
ments that suggested such a decomposition used various grating 
pattems as stimuli and were based on adaptation techniques [4]. 
Subsequent psychophysiological experiments provided additional 
evidence supporting the theory [lo]. 
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The multi-channel filtering approach to texture analysis is in- 
tuitively appealing because the dominant spatial-frequency com- 
ponents of different textures are different. An important advantage 
of the multi-channel filtering approach to texture analysis is that 
one can use simple statistics of gray values in the filtered images as 
texture features. This simplicity is the direct result of decomposing 
the original image into several filtered images with limited spec- 
tral information. The main issues involved in the multi-channel 
filtering approach to texture analysis are: 1) functional character- 
ization of the channels and the number of channels, 2) extraction 
of appropriate texture features from the filtered images. 3) the re- 
lationship between channels (dependent vs. independent), and 4) 
integration of texture features from different channels to produce 
a segmentation. Different multi-channel filtering techniques that 
are proposed in the literature differ in their approach to one or 
more of the above issues. 

We use a bank of Gabor filters to characterize the chan- 
nels. We show that the filter set forms an approximate basis for 
a wavelet transform, with the Gabor function as the wavelet. We 
propose a systematic filter selection scheme which is based on 
reconstruction of the input image from the filtered images. Each 
(selected) filtered image is subjected to a bounded nonlinear trans- 
formation that behaves as a ‘blob detector’. The combination of 
multi-channel filtering and the nonlinear stages can be viewed as 
performing a multi-scale blob detection. Texture discrimination 
is associated with differences in the attributes of these blobs in 
different regions. A statistical approach is then used where the 
attributes of the blobs are captured by texture features defined by 
a measure of “energy” in a small window around each pixel in 
each response image. This process generates one ‘feature image’ 
corresponding to each filtered image (see Figure 1). The size of 
the window for each response image is determined using a simple 
formula involving the radial frequency to which the correspond- 
ing filter is tuned. A square-error clustering algorithm is then used 
to identify the texture categories. A simple procedure for inclu- 
sion of contextual (spatial adjacency) information in the clustering 
process is also proposed. 

i 

, 

2 Channel Characterization 
We represent the channels with a bank of two-dimensional Gabor 
filters. A two-dimensional Gabor function consists of a sinusoidal 
plane wave of some frequency and orientation, modulated by a 
two-dimensional Gaussian envelope. A ‘canonical’ Gabor filter in 
the spatial domain is given by 
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Figure 1: An overview of the texture segmentation algorithm. 

where uo and q5 are the frequency and phase of the sinusoidal plane 
wave along the z-axis (i.e. the 0" orientation), and uz and uy are 
the space constants of the Gaussian envelope along the z-  and 
y-axis, respectively. A Gabor filter with arbitrary orientation, 00, 
can be obtained via a rigid rotation of the I-y coordinate system. 
These two-dimensional functions have been shown to be good fits 
to the receptive field profiles of simple cells in the striate cortex 

The frequency- and orientation-selective properties of a Gabor 
filter are more explicit in its frequency domain representation. 
With 4 = 0, the Fourier transform of the Gabor function in (1) is 
real-valued and given by 

[18,71. 

where uu = l/2iruz, U, = l/2iruy, and A = 2xu,u,. The Fourier 
domain representation in (2) specifies the amount by which the fil- 
ter modifies or modulates each frequency component of the input 
image. Such representations are, therefore, referred to as modula- 
tion transfer functions (MTF). Figure 2 shows an even-symmetric 
Gabor filter and its MTF in a 64 x 64 array. 

Texture segmentation requires simultaneous measurements in 
both the spatial and the spatial-frequency domains. Filters with 
smaller bandwidths in the spatial-frequency domain are more de- 
sirable because they allows us to make finer distinctions among 
different textures. On the other hand, accurate localization of 
texture boundaries requires filters that are localized in the spatial 
domain. However, the effective width of a filter in the spatial 
domain and its bandwidth in the spatial-frequency domain are in- 
versely related. An important property of Gabor filters is that they 
have optimal joint localization, or resolution, in both the spatial 
and the spatial-frequency domains [8]. 

The use of Gabor filters in texture analysis is not new. For 
example, Tumer [21] used a fixed set of Gabor filters and demon- 
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Figure 2: (a) An even-symmetric Gabor filter in the spatial do- 
main. (b) Corresponding MTF. The origin is at ( r ,  c )  = (32,32). 

scrated their potential for texture discrimination. Similarly, Perry 
& Lowe 1191 use a fixed set of Gabor filters in their texture seg- 
mentation algorithm. Bovik et at. 111 have used complex Gabor 
filters, where the real part of each filter is an even-symmetric Ga- 
bor filter (i.e., 4 = 0) and the imaginary part is an odd-symmetric 
Gabor filter (i.e., 4 = n/2). Instead of using a fixed set of filters, 
Bovik er al. apply a simple peak finding algorithm to the power 
spectrum of the image in order to determine the radial frequen- 
cies of the appropriate Gabor filters. In our texture segmentation 
algorithm, we model the channels with afued set of Gabor filters 
that preserve almost all the information in the input image. 

2.1 Choice of Filter Parameters 
We implement each Gabor filter as a discrete realization of the 
MTF in (2). We use four values of orientation 00: O", 45", go", 
and 135". For an image array with a width of N, pixels, where 
N ,  is a power of 2, the following values of radial frequency uo 
are used: 

Note that the radial frequencies are 1 octave apart. (The frequency 
bandwidth, in octaves, from frequency f l  to frequency fi is given 
by log,(f2/fl).) We let the orientation and frequency bandwidths 
of each filter be 45" and 1 octave, respectively. Several experi- 
ments have shown that the frequency bandwidth of simple cells 
in the visual cortex is about 1 Octave [20]. Psychophysical exper- 
iments show that the resolution of the orientation tuning ability of 
the human visual system is as high as 5 degrees. Therefore, in 
general, finer quantization of orientation will be needed. The re- 
striction to four orientations is made for computational efficiency. 

The above choice of the radial frequencies, guarantees that 
the passband of the filter with the highest radial frequency, viz. 
(NJ4)fi  cycledimage-width, falls inside the image array. For 
an image with 256 columns, for example, a total of 28 filters 
can be used - 4 orientations and 7 frequencies. Note that filters 
with very low radial frequencies (e.g., 1 f i  and 2 f i  cycledimage- 
width) can often be left out, because they capture spatial variations 
that are too large to correspond to texture. To assure that the filters 
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Figure 3: The filter set in the spatial-frequency domain 
(256 x 256). There are a total of 28 Gabor filters. Only 
the half-peak support of the filters are shown. The origin is at 
(row,col) = (128,128). 

do not respond to regions with constant intensity, we have set the 
MTF of each filter at (u,o) = (0,O) to zero. As a result each 
filtered image has a zero mean. 

The set of filters used in our algorithm results in nearly uni- 
form coverage of the frequency domain (Figure 3). This filter 
set constitutes an approximate basis for a wavelet transform, with 
the Gabor filter as the wavelet. The wavelet transform is closel) 
related to the window Fourier transform. However, unlike win- 
dow Fourier transforms where the window is fixed, in a wavelet 
transform the window size is allowed to change according to fre- 
quency [17]. Intuitively, a wavelet transform can be interpreted 
as a band-pass filtering operation on the input image. The Gabor 
function is an admissible wavelet, however, it does not result in an 
orthogonal decomposition. This means that a wavelet transform 
based on Gabor wavelets is redundant. A decomposition obtained 
by our filter set is nearly orthogonal, as the amount of overlap 
between the filters (in the spatial-frequency domain) is small. 

Figure 4 shows examples of filtered images for an image 
containing ‘straw matting’ @55) and ‘wood grain’ (D68) textures 
from the photographic album of textures by Brodatz [2]. The abil- 
ity of the filters to exploit differences in spatial-frequency (size) 
and orientation in the two textures is evident in these images. The 
differences in the strength of the responses in regions with dif- 
ferent textures is the key to the multi-channel approach to texture 
analysis. To maximize visibility, each filtered image has been 
scaled to full contrast. 

2.2 Filter Selection 
Using only a subset of the filtered images can reduce the com- 
putational burden at later stages, because this directly translates 
into a reduction in the number of texture features. Let s(z, y )  be 
the reconstruction of the input image obtained by adding all the 
filtered images. Let .^(z,y) be the partial reconstruction of the 
image obtained by adding a given subset of filtered images. The 
e m r  involved in using S(z,y) instead of s(z, y )  can be measured 
by 

SSE = C [S^(X,Y) - 4 x 1  Y)12 
Z,Y 

The fraction of intensity variations in s(z, y) that is explained by 
S^(z,y) can be measured by the coefficient of determination 

SSE R 2 = 1 - -  
SSTOT’ 

Figure 4 Examples of filtered images for 055-068 texture pair 
(128x256). (a) Input image. @e) Filtered images corresponding 
to Gabor filters tuned to 16 fi ch-w and to 0°,450, W O ,  and135O. 
respectively. 

where 
SSTOT = C s ( ~ , y ) ~ .  

Z,Y 

Note that s(z,y) has a mean of zero, since the mean gray value 
of each filtered image is zero. 

For computational efficiency, we determine the “best” subset 
01 .he filtered images (filters) by the following suboptimal sequen- 
tial forward selection procedure: 

1. Select the filtered image that best approximates s(z, y), i.e. 

2. Select the next filtered image that together with previously 

3. Repeat Step 2 until R2 2 0.95. 

results in the highest value of R2. 

selected filtered image(s) best approximate s(z, y). 

A minimum value of 0.95 for R2 means that we will use only as 
many filtered images as necessary to account for at least 95% of 
the intensity variations in s(z, y). 

Let r;(z,y) be the z t h  filtered image and R,(u,v) be its Dis- 
crete Fourier Transform. The amount of overlap between the 
MTFs of the Gabor filters in our filter set is small. Therefore, 
the total energy E in S ( I ,  y )  can be approximated by 

n 

E R ~ E ; ,  
i= 1 

where 
Ei = [ ~ i ( z ? y ) ] ~  = ( R , ( U , V ) ~ ~ .  

Z,Y u,u 

Now, it is easily verified that for any subset A of filtered images 

An approximate filter selection would then consists of computing 
E; for z = 1 , . . . , n. These energies can be computed in the Fourier 
domain, hence avoiding unnecessary inverse Fourier transforms. 
We then sort the filters (channels) based on their energy and pick 
as many filters as needed to achieve R2 2 0.95. Computationally, 
this procedure is much more efficient than the sequential forward 
selection procedure described before. 
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3 Computing Feature Images 
We use the following procedure to compute features from each 
filtered image. First, each filtered image is subjected to a non- 
linear transformation. Specifically, we use the following bounded 
nonlinearity 

1 - 
Q(4 = tanh((Yt) = -7 (3) 

where (Y is a constant. This nonlinearity bears certain similari- 
ties to the sigmoidal activation function used in artificial neural 
networks. In our experiments, we have used an empirical value 
of (Y = 0.25 which results in a rapidly saturating, threshold-like 
transformation. As a result, the application of the nonlinearity 
transforms the sinusoidal modulations in the filtered images to 
square modulations and, therefore, can be interpreted as a blob 
detector. However, the detected blobs are not binary, and unlike 
the blobs detected by Voorhees & Poggio [23] they are not nec- 
essarily isolated from each other. Also, since each filtered image 
has a zero mean and the nonlinearity in (3) is odd-symmetric, both 
dark and light blobs are detected. 

Instead of identifying individual blobs and measuring their at- 
tributes, we simply compute the average absolute deviation (AAD) 
from the mean in small overlapping windows. This is similar to 
the ‘texture energy’ measure that was first proposed by Laws [15]. 
Formally, the feature image ek(z,  y)  corresponding to filtered im- 
age ~(i, y )  is given by 

where $( .) is the nonlinear function in (3) and W,, is an M x M 
window centered at the pixel with coordinates (z, y) .  

The size, M ,  of the averaging window in (4) is an important 
parameter. More reliable measurement of texture features calls for 
larger window sizes. On the other hand, more accurate localiza- 
tion of region boundaries calls for smaller windows. Furthermore, 
using Gaussian weighted windows, rather than unweighted win- 
dows, is likely to result in more accurate localization of texture 
boundaries. For each filtered image we use a Gaussian window 
whose space constant U is proportional to the average size of the 
intensity variations in the image. For a Gabor filter with radial 
frequency uo this average size is given by 

T = N,/uo pixels, ( 5 )  

where N,  is the width (number of columns) of the image. We 
found a n NN 0.52’ to be appropriate in most of our segmentation 
experiments. 

4 Integrating Feature Images 
Having obtained the feature images, the main question is how to 
integrate features corresponding to different filters to produce a 
segmentation. Let’s assume that there are K texture categories, 
CI, . . . , CK, present in the image. If our texture features are capa- 
ble of discriminating these categories then the patterns belonging 
to each category will form a cluster in the feature space which 
is “compact” and “isolated” from clusters corresponding to other 
texture categories. Pattern clustering algorithms are ideal vehicles 
for recovering such clusters in the feature space. In our texture 
segmentation experiments we use a square-error clustering algo- 
rithm known as CLUSTER [13]. Prior to clustering each feature 
is normalized to have a zero mean and a constant variance. This 
normalization is intended to avoid the domination of features with 
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small numerical ranges by those with larger ranges. 
Clustering a large number of pattems becomes computation- 

ally demanding. Therefore, we first cluster a small randomly se- 
lected subset of pattems into a specified number of clusters. Pat- 
rems in each cluster are given a generic category label that distin- 
guishes them from those in other clusters. These labeled panems 
are then used as training patterns to classify pattems (pixels) in 
the entire image using a minimum distance classifier. 

In texture segmentation, neighboring pixels are very likely 
to belong to the same texture category. We propose a simple 
method that incorporates the spatial adjacency information directly 
in the clustering process. This is achieved by including the spatial 
coordinates of the pixels as two additional features. 

5 Experimental Results 
We now apply our texture segmentation algorithm to several im- 
ages in order to demonstrate its performance. These images are 
created by collaging subimages of natural as well as artificial tex- 
tures. We start by a total of 20 Gabor filters in each case. Each 
filter is tuned to one of the four orientations and to one of the five 
highest radial frequencies. For an image with a width of 256 pix- 
els, for example, 4fi, 8d?, 16fi ,32fi ,  and 64fi  cycleshmage- 
width radial frequencies are used. We then use our filter selection 
scheme to determine a subset of filtered images that achieves an 

(a) (b) 

Figure 5: (a) 055-068 texture pair. (b) Two-category segmen- 
tation obtained using a total of 13 Gabor filters. 

(b) (c) 

Figure 6: (a) A 256 x 256 image containing four different Gaus- 
sian Markov random field textures. (b) Four-category segmen- 
tation obtained using a total of 11 Gabor filters. (c) Same as b, 
but with pixel coordinates used as additional features. 



R2 value of at least 0.95. The number of randomly selected fea- 
ture vectors, that are used as input to the clustering program, is 
proportional to the size of the input image. For a 256 x 256 im- 
age, for example, 4000 pattems are selected at random, which is 
about 6% of the total number of pattems. The same percentage is 
used in all the following experiments. The segmentation results 
are displayed as gray-level images, where regions belonging to 
different categories are shown with different gray levels. 

Figure 5 shows the segmentation results for the 055-068 
texture pair. The algorithm successfully discriminates the two 
textured regions and detects the boundary between them quite ac- 
curately. The segmentation with pixel coordinates included as 
additional features was essentially the same for this example. 

Figure 6 (a) shows a 256 x 256 image containing four dif- 
ferent Gaussian Markov random field (GMRF) textures generated 
using non-causal finite lattice models [5] .  These four textures can 
not be discriminated based on their mean gray values. The four- 
category segmentation of the image is shown in Figure 6 (b). The 
segmentation improves considerably when pixel coordinates are 
used as additional features (Figure 6 (c)). 

Figure 7 (a) shows another 256 x 256 image containing natural 
textures D77, D55, D84, D17, and D24 from the Brodatz album. 
The five-category segmentation of this image, using 13 Gabor 
filters and the pixel coordinates, is shown in Figure 7 (b). 

Figure 8 (a) shows a 512 x 512 image containing sixteen 
natural textures, also from the Brodatz album. Our filter selection 
(with a threshold of 0.95 for R2)  indicated that only 14 filtered 
images are sufficient. However, the resulting segmentation was not 
very good. Using all 20 filtered images (and the pixel coordinates) 
we obtained the 16-category segmentation in Figure 8 (b). Recall 
that the fitting criterion in our filter selection scheme is computed 
globally over the entire image. A larger threshold for R2 should, 
therefore, be used when one or more texture. categories occupy a 
small fraction of the image. 

Figure 9 shows the segmentation of a number of texture pair 
images that have been used in the psychophysical studies of tex- 
ture perception [13]. The two textures in the ‘L-and-+’ texture 
pair have identical power spectra. The textures in the ‘even-odd’ 

+ + + + + + + + + + + + + + + +  
+ + + + + + + + + + + + + + + +  
+ + + + + + + + + + + + + + + +  
+ + + + + + + + + + + + + + + +  
+ + + + + + + + + + + + + + + +  
+ + + + + L L L L L L + + + + +  

+ + + + + L L L L L L + + + + +  
+ + + + + L L L L L L + + + + +  
+ + + + + L L L L L L + + + + +  
+ + + + + L L L L L L + + + + +  
+ + + + + L L L L L L + + + + +  
+ + + + + + + + + + + + + + + +  
+ + + + + + + + + + + + + + + +  
+ + + + + + + + + + + + + + + +  
+ + + + + + + + + + + + + + + +  
+ + + + + + + + + + + + + + + +  

(a) (b) 
Figure 7: (a) A 256 x 256 image containing five natural textures 
(D77, D55, D84, D17, and D24) from the Bmdatz album. @) 
Five-category segmentation obtained using a total of 13 Gabor 
filters and the pixel coordinates. 

(a) (b) 

Figure 8: (a) A 512 x 512 image containing sixteen natural 
textures (D29, D12, D17, D55; D32, D5, D84, D68; D77, D24. 
D9, D4; D3, D33, D51, D54) from the Brodatz album @) 16- 
categoly segmentation obtained using a total of 20 Gabor filters 
and the pixel coordinates. 

(a) (b) (c) (dl 
Figure 9: Segmentation of texture pairs that have been used in the psychophysical studies of texture perception. All images are 
256 x 256. The number of Gabor filters used varied between 8 - 11.  (a) ‘Land-+’. (b) ‘even-odd’. (c) ‘triangle-arrow’ (d) 
‘S-IO’. 

18 



Table 1: Percentage of misclassified pixels. 

texture pair have identical third-order sde~ statistics. The tex- 
tures in the ‘m-arr’ and ‘S-IO’ texture pairs, on the other hand, 
have identical second-order statistics. The ‘even-odd’ and ‘tri-arr’ 
textures are two of the counter-examples to the original Julesz 
conjecture that texture pairs with identical second-order statistics 
cannot be preattentively discriminated [14]. While the first three 
texture pairs in Figure 9 are easily discriminated, the ‘S-IO’ texture 
pair is not preattentively discriminable. Our algorithm appears to 
perform as predicted by preattentive texture discrimination by hu- 
man - the algorithm successfully segments the first three texture 
pairs, but fails to do so for the ‘S-IO’ texture pair. 

The lack of appropriate quantitative measures of the goodness 
of a segmentation makes it very difficult to evaluate and compare 
texture segmentation algorithms. One simple criterion that is of- 
ten used is the percentage of misclassified pixels. Table 1 gives 
the percentage of misclassified pixels for the segmentation ex- 
periments reported here. As seen in this table, there is a clear 
advantage in using the pixel coordinates (spatial information) as 
additional features. 

6 Summary and Conclusions 
We have presented an  unsupervised texture segmentation algo- 
rithm that uses a fixed set of Gabor filters. Our choice of Gabor 
filters and their parameters were motivated by a goal to construct 
an approximate basis for a wavelet transform. The use of a non- 
linear transformation following the linear filtering operations has 
been suggested as one way to account for inherently nonlinear 
nature of biological visual systems [9]. We argued that the lo- 
calized filtering by our Gabor filter set followed by a nonlinear 
transformation can be interpreted as a multi-scale blob detection 
operation. 

One of the limitations of our texture segmentation algorithm 
is the lack of a criterion for choosing the value of a in the non- 
linear transformation. Also, the algorithm assumes that different 
channels are independent from each other. However, there is psy- 
chophysical and physiological evidence indicating inhibitory inter- 
actions between different spatial frequency channels [9]. Allowing 
inhibitory interactions among the channels is shown to have the 
potential to reduce the effective dimensionality of the feature space 
131. 

In our texture segmentation algorithm, we assumed that the 
number of texture categories is given. The pattem clustering tech- 
nique that is used by our segmentation algorithm will produce 
a clustering with the desired number of clusters, even if it does 
not make “sense”. We believe that an integrated approach that 
uses both a region-based and an edge-based segmentation can be 
used to resolve the question of determining the number of texture 
categories. Mal& 8~ Perona [16], for example, have developed 
a multi-channel filtering technique that produces edge-based seg- 
mentations. The basic idea is to generate an oversegmented solu- 
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tion using our region-based texture segmentanorl algorithm. Then, 
based on the “evidence” for an edge provided by the edge-based 
segmentation, one can test the validity of boundaries between re- 
gions in the oversegmented solution. This integrated approach is 
currently being investigated. 
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