Outline	Introduction	Speaker subspace model	Monaural speech separation	Binaural separation	Conclusions

Underdetermined Source Separation Using Speaker Subspace Models

Ron Weiss

Oct 2, 2009

Ron Weiss

Underdetermined Source Separation Using Speaker Subspace Models

Oct 2, 2009 1 / 30

Outline	Introduction	Speaker subspace model	Monaural speech separation	Binaural separation	Conclusions

Introduction

- 2 Speaker subspace model
- 3 Monaural speech separation
- 4 Binaural separation
- 5 Conclusions

Outline	Introduction	Speaker subspace model	Monaural speech separation	Binaural separation	Conclusions

Introduction

- 2 Speaker subspace model
- 3 Monaural speech separation
- Binaural separation
- 5 Conclusions

Audia	<u></u>	no votio n			
Outline Intro	oduction Spea	aker subspace model Mo	onaural speech separation	Binaural separation	Conclusions

Source: http://www.spring.org.uk/2009/03/the-cocktail-party-effect.php

- Many real world signals contain contributions from multiple sources
 - E.g. cocktail party, music
- Want to infer the original source signals from the mixture
 - Robust speech recognition
 - Hearing aids
 - Un-mixing music recordings
 - Polyphonic music transcription

Outline	Introduction	Speaker subspace model	Monaural speech separation	Binaural separation	Conclusions
Sepa	ration a	pproaches			

Instantaneous mixing system

$$\begin{bmatrix} y_1(t) \\ \vdots \\ y_C(t) \end{bmatrix} = \begin{bmatrix} a_{11} & \dots & a_{1I} \\ \vdots & \ddots & \vdots \\ a_{C1} & \dots & a_{CI} \end{bmatrix} \begin{bmatrix} x_1(t) \\ \vdots \\ x_I(t) \end{bmatrix}$$

- Simplest case: more channels than sources (overdetermined)
 - Perfect separation possible
- Use constraints on source signals to guide separation
 - Statistical independence constraints (e.g. ICA)
 - Spatial constraints (e.g. beamforming)

Oct 2, 2009 5 / 30

Outline	Introduction	Speaker subspace model	Monaural speech separation	Binaural separation	Conclusions
Unde	rdeterm	ined source s	enaration		

- More sources than channels, need stronger constraints
- CASA: Use perceptual cues similar to human auditory system
 - Segment STFT into short glimpses of each source
 - By harmonicity, common onset, etc.
 - Sequential grouping heuristics
 - Create time-frequency mask for each source
- Prior distribution over source signals

Dutline	Introduction	Speaker subspace model	Monaural speech separation	Binaural separation	Co
-	C	1.1			

Time-frequency masking

- Natural sounds tend to be sparse in time and frequency
 - 10% of spectrogram cells contain 78% of energy
- And redundant
 - Still intelligible when 22% of source energy is masked

Ron Weiss

Underdetermined Source Separation Using Speaker Subspace Models

nclusions

Outline	Introduction	Speaker subspace model	Monaural speech separation	Binaural separation	Conclusion

Model-based separation

- Use constraints from prior source models to guide separation
 - Leverage differences in spectral characteristics of different sources
- Borrow machinery from speech recognition
- e.g. IBM Iroquois system [Kristjansson et al., 2006]
 - Speaker-dependent hidden Markov models
 - Acoustic dynamics and grammar constraints
 - Superhuman performance under some conditions

Mad	al basad	constation	Limitations		
Outline	Introduction	Speaker subspace model	Monaural speech separation	Binaural separation	Conclusions

- Rely on speaker-dependent models to disambiguate sources
- What if the task isn't so well defined?
 - No prior knowledge of speaker identities or grammar
- Use speaker-independent (SI) model for all sources
 - Need strong temporal constraints or sources will permute
 - © "lay white in b 3 please" mixed with "bin blue in d 9 soon"
 - Separated source: "lay white in d 9 please"
- Solution: adapt speaker-independent model to compensate

Outline	Introduction	Speaker subspace model	Monaural speech separation	Binaural separation	Conclusions

Introduction

2 Speaker subspace model

- Model adaptation
- Eigenvoices

3 Monaural speech separation

4 Binaural separation

5 Conclusions

10 / 30

Outline	Introduction	Speaker subspace model ●○○	Monaural speech separation	Binaural separation	Conclusions
Mod	el adapt	ation			

- Adjust model parameters to better match observations
- Caveats
 - Want to adapt to a single utterance, not enough data for MLLR, MAP
 - Need adaptation framework with few parameters
 - Observations are mixture of multiple sources
 - Iterative separation/adaptation algorithm

Feature 1

Eigenvoice adaptation [Kuhn et al., 2000]

- Train a set of SD models
 - Pack params into speaker supervector
 - Samples from space of speaker variation
- Principal component analysis to find orthonormal bases for speaker subspace
- Model is linear combination of bases

Other models

Eigenvoice adaptation $\mu = \bar{\mu} + U$ w B h eigenvoice weights adapted mean channel channel model voice hases weights bases Ron Weiss Underdetermined Source Separation Using Speaker Subspace Models Oct 2, 2009 12 / 30

Outline	Introduction	Speaker subspace model ○○●	Monaural speech separation	Binaural separation	Conclusions
Eiger	nvoice b	ases			

- Mean voice
 - = speaker-independent model
- Eigenvoices shift formant frequencies, add pitch
- Independent bases to capture channel variation

Outline	Introduction	Speaker subspace model	Monaural speech separation	Binaural separation	Conclusions

Introduction

2 Speaker subspace model

3 Monaural speech separation

- Adaptation algorithm
- Experiments

Binaural separation

5 Conclusions

Ron Weiss

Underdetermined Source Separation Using Speaker Subspace Models

Oct 2, 2009 15 / 30

1= 9QC

< 1[™] >

< 3 >

- Single channel mixtures of utterances from 34 different speakers
- Constrained grammar:

command(4) color(4) preposition(4) letter(25) digit(10) adverb(4)

- Separation/recognition task
 - Determine letter and digit for source that said "white"

Outline	Introduction	Speaker subspace model	Monaural speech separation ○○○●○	Binaural separation	Conclusions
		6			

Adaptation performance

- Letter-digit accuracy averaged across all TMRs
- Adaptation clearly improves separation
- Same talker case hard source permutations

Ron Weiss

Ron Weiss

Underdetermined Source Separation Using Speaker Subspace Models

Oct 2, 2009 19 / 30

Outline	Introduction	Speaker subspace model	Monaural speech separation	Binaural separation	Conclusions

Introduction

- 2 Speaker subspace model
- 3 Monaural speech separation

④ Binaural separation

- Mixed signal model
- Parameter estimation and source separation
- Experiments

5 Conclusions

Outline	Introduction	Speaker subspace model	Monaural speech separation	Binaural separation ●00000	Conclusions
Bina	ural aud	ition			

$$y^{\ell}(t) = \sum_{i} x_{i}(t - \tau_{i}^{\ell}) * h_{i}^{\ell}(t)$$
$$y^{r}(t) = \sum_{i} x_{i}(t - \tau_{i}^{r}) * h_{i}^{r}(t)$$

21 / 30

- Given stereo recording of multiple sound sources
- Utilize spatial cues to aid separation
 - Interaural time difference (ITD)
 - Interaural level difference (ILD)

- Model-based EM Source Separation and Localization
- Probabilistic model of interaural spectrogram
 - Independent of underlying source signals
- Assume each time-frequency cell is dominated by a single source
- EM algorithm to learn model parameters for each source
- Derive probabilistic time-frequency masks for separation

MESSL-SP: Source prior

- Extend MESSL to include prior source model
- Pre-trained GMM for speech signals in mixture
- Channel model to compensate for HRTF and reverberation
- Can incorporate eigenvoice adaptation (MESSL-EV)

Ron Weiss

Separate sources by multiplying mixture by different masks

-

12 16

Time (sec)

04

7

SP channel response - source 1

Use posteriors to

update parameters

= 200

Outline	Introduction	Speaker subspace model	Monaural speech separation	Binaural separation	Conclusions
Expe	riments				

- Mixtures of 2 and 3 speech sources, anechoic and reverberant
- Source models trained on SSC data (32 components)
- Compare MESSL systems to:

DUET – Clustering using ILD/ITD histogram [Yilmaz and Rickard, 2004] 2S-FD-BSS – Frequency domain ICA [Sawada et al., 2007]

Ron Weiss

EL OQO

- N

26 / 30

Outline I	Introduction	Speaker subspace model	Monaural speech separation	Binaural separation	Conclusions

Introduction

- 2 Speaker subspace model
- 3 Monaural speech separation
- Binaural separation

Outline	Introduction	Speaker subspace model	Monaural speech separation	Binaural separation	Conclusions
Summary					

- Prior signal models for underdetermined source separation
- Model-based source separation making minimal assumptions using subspace adaptation
- Monaural separation
 - Speaker-dependent > speaker-adapted \gg speaker-independent
- Binaural separation
 - Extend MESSL framework to use source models (joint with M. Mandel)
 - Substantial improvement using simple speaker-independent model

Outline	Introduction	Speaker subspace model	Monaural speech separation	Binaural separation	Conclusions		
Applications to music							

Challenges

- Very dense mixtures: 4+ sources mixed down to 2 channels
- By design, sources are synchronized in time and frequency
- But sources contain a lot of structure
 - Very limited "vocabulary"
 - Significant repetition
- Recent work
 - Polyphonic music transcription using non-negative matrix factorization and eigeninstruments [Grindlay and Ellis, WASPAA 2009]

29 / 30

Outi	ine	Introduction	000	00000	000000	Conclusions
Re	efer	rences				
	Coo Mon <i>Con</i>	ke, M., Hershey, J aural speech sepa aputer Speech and	R., and Rennie, S. J. (2010) ration and recognition challer Language, 24(1):1 – 15.). ge.		
	Kris Sup In <i>P</i>	tjansson, T., Hers er-human multi-ta iroc. Interspeech, j	hey, J., Olsen, P., Rennie, S., Iker speech recognition: The pages 97–100.	and Gopinath, R. (2006). IBM 2006 speech separation	ı challenge system.	
	Kuh Rapi IEEI	n, R., Junqua, J., id speaker adaptat E <i>Transations on</i> S	Nguyen, P., and Niedzielski, tion in eigenvoice space. Speech and Audio Processing,	N. (2000). 8(6):695–707.		
	Man Moc IEEI in pi	del, M. I., Weiss, lel-based expectat E <i>Transactions on</i> ress.	R. J., and Ellis, D. P. W. (20 ion maximization source sepa Audio, Speech, and Languag	09). ration and localization. e Processing.		
	Saw A tw In <i>P</i>	ada, H., Araki, S., vo-stage frequency voc. IEEE Worksh	, and Makino, S. (2007). -domain blind source separat op on Applications of Signal	ion method for underdeterm Processing to Audio and Act	ined convolutive mixtures. oustics (WASPAA).	
	Weis Und PhD	ss, R. J. (2009). <i>Terdetermined Sour</i> thesis, Departme	rce Separation Using Speaker nt of Electrical Engineering, (Subspace Models. Columbia University.		
	Weis Spee <i>Con</i>	ss, R. J. and Ellis, ech separation usin aputer Speech and	D. P. W. (2010). ng speaker-adapted eigenvoice / Language, 24(1):16 – 29.	e speech models.		
	Weis	ss, R. J., Mandel,	M. I., and Ellis, D. P. W. (20 derdetermined Source Separat	08).	□ › 《@ › 《 클 › 《 클 e Models Oct 2	▶ 토⊫ ∽੧ 2009 30 / 30

◆□ > < 個 > < E > < E > E = のQ ○

Factorial HMM separation

- Each source signal is characterized by state sequence through its HMM
- Viterbi algorithm to find maximum likelihood path through factorial HMM
- Reconstruct source signals using Viterbi path

- 4 同 6 4 日 6 4 日 6

Eigenvoice factorial HMM

- Model mixture with combination of source HMMs
- Need adaptation parameters w_i to estimate source signals x_i(t) and vice versa

Adaptation algorithm initialization

- Fast convergence needs good initialization
- Want to differentiate source models to get best initial separation

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三回日 ののの

- Treat each eigenvoice dimension independently
 - Coarsely quantize weights
 - Find most likely combination in mixture

Extra slides

Variational learning

• Approximate EM algorithm to estimate adaptation parameters

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三回日 ののの

- Treat each source HMM independently
- Introduce variational parameters to couple them

Extra slides

Performance – Learning algorithm comparison

- Adapting Gaussian covariances and means significantly improves performance
- Hierarchical algorithm outperforms variational EM
- But variational algorithm is significantly (\sim 4x) faster
- At same speed variational EM performs better

Extra slides

Performance - Comparison to other participants

Performance – Comparison to other participants

System	Description	ST	SG	DG
Human	N/A	66	81	88
Kristjansson	Source models, FHMM	56	87	87
Virtanen	Source models, FHMM	48	77	75
Ming	Source models	51	60	65
Barker	CASA, Speech fragment decoder	48	62	64
Schmidt	Source models, NMF	42	47	62
Srinivasan	CASA	28	52	61
Deshmukh	Phase Opponency	30	33	32
Every	Pitch tracking	19	23	28
Runquiang	CASA	19	22	24
SA (mean only)	Eigenvoice models, FHMM	27	48	59
SA (full)	Eigenvoice models, FHMM	30	55	70
SD (mean only)	Source models, FHMM	25	60	62
SD (full)	Source models, FHMM	26	72	74

Experiments – Switchboard

- What about previously unseen speakers?
- Switchboard: corpus of conversational telephone speech
 - 200+ hours, 500+ speakers
- Task significantly more difficult than Speech Separation Challenge

- Spontaneous speech
- Large vocabulary
- Significant channel variation across calls

Switchboard – Results

- Adaptation outperforms SD model selection
 - Model selection errors due to channel variation
- SD performance drops off under mismatched conditions
- SA performance improves as number of training speakers increases

MESSL-EV: Putting it all together

- Big mixture of Gaussians
- Interaural model
 - ITD: Gaussian for each source and time delay
 - ILD: Single Gaussian for each source
- Source model
 - Separate channel responses for each source at each ear
 - Both channels share eigenvoice adaptation parameters

Explain each point in spectrogram by a particular source, time delay, and source model mixture component

MESSL-EV example

- IPD informative in low frequencies, but not in high frequencies
- ILD primarily adds information about high frequencies
- Source model introduces correlations across frequency and emphasizes reliable time-frequency regions
 - Helps resolve ambiguities in interaural parameters due to spatial aliasing

Extra slides

Experiments - Matched vs. mismatched

- SSC matched train/test speakers
 - ullet MESSL-EV, MESSL-SP beat MESSL baseline by \sim 3 dB in reverb
 - MESSL-EV beats MESSL-SP by $\sim 1~\text{dB}$ on anechoic mixtures
- TIMIT mismatched train/test speakers
 - Small difference between MESSL-EV and MESSL-SP