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Monaural speech separation
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@ Given single channel recording of multiple talkers
@ Infer the original source signals from mixture

@ Under-determined - more unknowns (sources) than observations
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Speech separation challenge [Cooke and Lee, 2006]

lay white by z 1 again

Single channel, two-talker mixtures of utterances from 34 speakers

Constrained grammar: command(4) color(4) preposition(4) letter(25)
digit(10) adverb(4)

@ Task: determine letter and digit for source that said “white” Lab
@ -9to6dB TMR
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Model-based separation

Model means
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State index
@ Use constraints from prior signal models to guide separation
o HMM, log spectral features
@ Factorial model inference
o Explain each frame of mixed signal as combination of model states
@ e.g. lroquois [Kristjansson et al., 2006]

o Speaker-dependent models
e Acoustic dynamics and grammar constraints
e Superhuman performance Lab
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Model-based separation - Limitations

@ Rely on speaker-dependent models to disambiguate sources

@ What if the task isn't so well defined?
e No a priori knowledge of speaker identities or grammar
@ Adapt speaker-independent source model [Ozerov et al., 2005]
@ Problems
© Want to adapt to a single utterance, not enough data for MLLR
o Use PCA to reduce number of adaptation parameters - “Eigenvoices”
© Only observation is mixed signal

o lterative separation/adaptation algorithm
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Eigenvoices [Kuhn et al., 2000]

@ Train N speaker-dependent models
e priors on space of speaker variation

@ Pack model parameters (Gaussian means) into
speaker supervector

@ Principal component analysis to find orthonormal
bases

@ Speaker model is a linear combination of bases:

p o= B + w U + g
adapted mean weights eigenvoice gain
model voice bases
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Eigenvoice example

Mean voice
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Separation algorithm - Signal separation

Initial source models —) Separate signals Update models

model 2

o Compose factorial HMM from adapted
models

o Find maximum likelihood path using

Viterbi algorithm %

@ Reconstruct source signals from Viterbi =
path observations /tna b
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Separation algorithm - Model adaptation

Initial source models —3»| Separate signals | Update models

ul=u+wlU+gl

@ Find projection of reconstructed source signals onto eigenvoice bases
@ But state sequence is hidden, need EM

o E-step: HMM forward-backward
o M-step: for each possible state sequence, project signal frames onto
corresponding sequence of states from each eigenvoice basis vector

o lterate... Lab
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Separation example

Mixture: t32_swil2a_m18_sbar9n
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Performance
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Iteration
o Letter-digit accuracy averaged across all TMRs
o Adaptation improves separation Lab

@ Same talker case hard - source permutations
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Performance - Adapted vs. source-dependent models

Diff Gender
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Performance - Held out speakers

Same Gender Diff Gender

Accuracy

10 20 30 34 10 20 30 34
Num training speakers Num training speakers

Trained models on subset of speakers
Tested on mixtures from held out speakers
Performance suffers for both systems

Relative decrease significantly bigger for SD than SA

Open question: scale Lab
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Limitations of model-based source separation

Algorithm for model adaptation from mixed signal

Significant improvement over speaker-independent models

Source-dependent models better on matched training/testing data

Adaptation helps generalize better to held out speakers
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Separation algorithm - Initialization

Initial source models —3»| Separate signals | Update models

Eigenvoice weights vs speaker gender

o Fast convergence needs good initialization )
o Want to differentiate source models to get . R
best separation o o o A
o Get initial coefficient for each eigenvoice 262, : £
dimension independently oo B -
o Coarsely quantize eigenvoice weights e
) Flnd most ||ke|y Comb|nat|on in mixture ““Z2000 1500 -1000 500 v?‘ 500 1000 1500 2000
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