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Abstract—This paper describes a system, referred to as
MESSL, for separating and localizing multiple sound sources
from an underdetermined reverberant two-channel recording.
By clustering individual spectrogram points based on their
interaural phase and level differences, MESSL generates masks
that can be used to isolate individual sound sources. We first
describe a probabilistic model of interaural parameters that can
be evaluated at individual spectrogram points. By creating a
mixture of these models over sources and delays, the multi-source
localization problem is reduced to a collection of single source
problems. We derive an expectation maximization algorithm for
computing the maximum-likelihood parameters of this mixture
model, and show that these parameters correspond well with
interaural parameters measured in isolation. As a byproduct of
fitting this mixture model, the algorithm creates probabilistic
spectrogram masks that can be used for source separation. In
simulated anechoic and reverberant environments, separations
using MESSL produced on average a signal-to-distortion ratio
1.6 dB greater and PESQ results 0.27 mean opinion score units
greater than four comparable algorithms.

I. INTRODUCTION

Humans are very good at focusing their attention on the
speech of a single speaker, even in the presence of other
speakers and background noise [1]. This ability is greatly
diminished, however, when listening with only one ear, espe-
cially in reverberant environments [2]. In order for an automatic
speech recognizer to focus on a speaker of interest, it must
similarly be able to separate that speaker from background
noise and stereo recordings likely contain significantly more
information relevant to this task than monaural recordings. This
paper thus describes a system for simultaneously separating and
localizing multiple sound sources from a stereo mixture made
in a reverberant environment, performing underdetermined,
convolutive source separation.

This system separates sources by modelling each one
probabilistically, thus we call it Model-based EM Source
Separation and Localization (MESSL). Each source in a mixture
is described by a probabilistic model of interaural parameters.
By using models that can be evaluated at each point in the
spectrogram independently, we can successfully learn multiple
models from a broadband mixture and at the same time
identify the regions of the spectrogram that best fit each model.
In Section II we discuss the construction of such models
for individual sources. We then describe in Section III an
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expectation maximization (EM) algorithm for estimating the
parameters of a mixture of these models that reduces the
multi-source parameter estimation problem to a collection of
single-source estimation problems using probabilistic masking.

This EM algorithm iteratively refines both its estimates of the
model parameters and the regions of the spectrogram dominated
by each source. In the expectation step of the algorithm,
spectrogram points are assigned to models probabilistically,
based on the agreement between the observation at that
point and each model’s prediction. In the maximization step,
parameters for each source model are re-estimated from the
set of spectrogram points assigned to that model. Currently,
these models include the interaural time difference (ITD) via
the interaural phase difference (IPD), and the interaural level
difference (ILD), but the flexibility of the framework and its
probabilistic nature allow the addition of other cues such as
source models [3]. This flexibility also lets the system separate
mixtures made with both human-like dummy head recordings
and free field microphones, although in these experiments we
focus on dummy head recordings.

In addition to separating sources well, these models are trans-
parent in their representation of these sources, i.e. the model
parameters are interesting in and of themselves. Estimating
interaural level and time differences for a single source in an
anechoic recording is straightforward, but MESSL estimates
these same parameters from a reverberant recording in the
presence of other sources, a much more difficult task. This
topic is discussed in more detail in Section IV.

Since our system uses spectral masking to separate sources,
it assumes that each point in the spectrogram is dominated
by no more than one source. This assumption, called W-
disjoint orthogonality [4], has been shown generally to hold
for simultaneous speech signals.

In Section V we describe a number of experiments that
measure the performance of various parts of our system and
the system as a whole. We examine the effect of increasing
model flexibility (and hence complexity), the effect of cheating
by replacing different parts of our system with ground truth
parameters, and the use of a “garbage” source to collect
reverberation. We also compare our system to four similar state-
of-the-art source separation systems in a number of conditions.

These experiments indicate that our model parameterization
can separate sources well, but estimating those parameters from
a mixture can be difficult and that our most complex model
is best, especially when using a garbage source. Under the
signal-to-distortion ratio metric [5], MESSL showed an average
advantage of 1.6 dB when compared to similar systems.
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A. Background

MESSL is a synthesis of localization-based clustering and
spectral masking. A number of systems have taken a similar
approach [6]–[10]. Localization in azimuth is a popular cue for
segregating sound sources [11]. Spectral masking, sometimes
called time-frequency masking, binary masking, or ideal binary
masking, allows the separation of an arbitrary number of
sources from a mixture, by assuming that a single source
is active at every time-frequency point. This is in contrast
to independent component analysis [12] and other multi-
microphone techniques [13], which can separate at most as
many sources as there are microphones.

Many models of mammalian auditory localization have
been described in the literature, see [11] for a review. Most
focus on localization within individual critical bands of the
auditory system and are either based on cross-correlation [14]
or the equalization-cancellation model [15], [16]. We are more
concerned in this work with the way in which localization
estimates are combined across bands. The main difficulty in
such combination is that the cross-correlation of bandlimited
signals is multimodal and the correct mode must be selected.
MESSL’s localization facility is based on the insight that this
multimodality is an artifact of bottom-up processing and that a
top-down approach that tests a set of candidate interaural time
differences yields an unambiguous answer at all frequencies.

In this bottom-up paradigm, a single source can be localized
using the “straightness” of cross-correlations across frequency
[17], [18] and simultaneous sources can be localized using
a “stencil” filter that embraces multimodality [19]. Other
systems localize the source in each band probabilistically
and then combine probabilities across frequency by assuming
statistical independence. Nonparametric modeling in this vein
[9], [20], [21] employs histograms of interaural parameters
collected over a large amount of training data, which can
be compared to the observation and to one another when
normalized properly. While [9], [21] collect histograms of per-
band interaural time differences, [20] collects histograms of
interaural phase difference, which avoids multimodality and
facilitates the analysis of moments. This is the general approach
that MESSL takes, although it uses a parametric model of both
the noise in interaural parameters and the connection between
ITD and frequency, avoiding the need for training data, making
it more robust to reverberation, and making it easier to deploy
in unfamiliar environments.

When using localization to separate multiple sources in a
sound mixture, it is important to be able to localize, in some
way, individual time-frequency points. The simplification made
by DUET [4], [6] is to ignore high frequencies in which the
cross-correlation is multimodal and to convert interaural phase
differences to interaural time differences only for frequencies in
which the cross-correlation is unimodal. DUET combines these
ITD estimates with similar ILD estimates at individual time-
frequency points in the spectrogram and then identifies sources
as peaks in the two dimensional ILD-ITD histogram. The
localization subsystem in [7] aggregates its cross-correlation
across frequency and time to estimate the ITD of multiple
sources. It then selects the mode in each frequency band’s

Fig. 1. A caricature of our probabilistic model of interaural phase difference
(IPD) as a function of frequency, eq (5). On the left are the probability density
functions (PDFs) of two competing model predictions, eq (3), where the IPDs
are centered around their respective ωτ values. On the right, those PDFs are
constrained to the interval (−π, π] so that the likelihood of the observation,
eq (2), the dotted line, can be evaluated under each.

cross-correlation that is closest to one of these global ITD
estimates. The localization subsystems of [8], [10] both use
ILD to resolve local ITD ambiguities. Using a model of the
relationship between ILD and azimuth, they map ILDs to
a given direction, then choose the ITD mode that is most
consistent with this direction.

Given the localization of each time-frequency point, most
algorithms perform separation through some kind of clustering
[10] or histogram peak picking [6], [8], although when the
locations are known in advance, classification is also a popular
technique [7], [9], [21]. MESSL uses a clustering approach, but
simultaneously learns the interaural parameters of each source.
This allows it to jointly localize and separate the sources,
making it more noise robust than approaches that first commit
to azimuth estimates based on noisy observations and then
perform clustering in azimuth space [10].

A separation system that shares many similarities with these
systems, but does not explicitly use localization is two-source,
frequency-domain, blind source separation [22]. It performs an
ICA-like clustering in each frequency band separately and then
clusters the separation masks across frequency to unpermute
them. In the two-microphone case, the per-frequency clustering
uses features that are similar to MESSL’s, containing the same
information as IPD and ILD, but more easily generalizing to
multiple microphones. This system is purely for separation, no
correspondence is enforced between the parameters estimated at
each frequency, as would be implied by a model of localization.

While MESSL jointly localizes and separates sound sources,
the current paper only evaluates its separation performance.
Localization results are similar to those reported previously
[23] and are highly dependent on, if not indistinguishable from,
the localization algorithm used to initialize it. We therefore
believe that separation is a more challenging and discriminative
task for comparing these systems.

II. THE INTERAURAL SPECTROGRAM OF A SINGLE SOURCE

For the purposes of deriving this model we will examine
the situation where one sound source arrives at two spatially
distinct microphones or ears. We then generalize this to the
assumption that at most one source is present at each time-
frequency point in a spectrogram, but that different sources
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could be present at different points.
Denote the sound source as s(t) and the signals received

at the left and right ears as `(t) and r(t), respectively. For a
sufficiently narrowband source, the two received signals relate
to the source by some delay and gain, in addition to a disruption
due to noise. For a wideband source, this delay and gain can
vary with frequency, which, in the time domain, manifests
as a short impulse response at each ear. In the experiments
in Section V-B, we compare models assuming frequency
dependence to those assuming frequency-independence.

For analytical convenience, we assume a noise process that is
convolutive in the time domain, making it additive in both the
log-magnitude and phase domains. Thus the transfer function is
modeled as a single large, deterministic coefficient at a certain
delay and small, randomly changing coefficients at all other
delays. We have found [24] that a reverberant noise model is
still able to localize sources in the presence of additive noise,
the noise model typically chosen by other authors.

If we combine the frequency-dependent gains and delays
into two short impulse responses, h`(t) and hr(t), the various
signals are related by:

`(t) = s(t− τ`) ∗ h`(t) ∗ n`(t)
r(t) = s(t− τr) ∗ hr(t) ∗ nr(t). (1)

The ratio of the short-time Fourier transforms, F{·}, of both
equations is the interaural spectrogram,

L(ω, t)
R(ω, t)

= 10α(ω,t)/20ejφ(ω,t) (2)

≈ 10a(ω)/20e−jωτ(ω)N(ω, t) (3)

where N(ω, t) = N`(ω,t)
Nr(ω,t) = F{n`(t)}

F{nr(t)} , τ(ω) = τ`−τr+ 6 H(ω),

a(ω) = 20 log10 |H(ω)|, and H(ω) = F{h`(t)}
F{hr(t)} . Equation (2)

is the ratio of the actual observations at both ears, while (3) is
our model of that ratio. For this model to hold, τ must be much
smaller than the window over which the Fourier transform is
taken. Our experiments used a dummy-head microphone where
position-dependent delay differences were limited to about
0.75ms, while the window length was 64ms (1024 samples at a
sampling rate of 16 kHz). Similarly, h(t) must be smaller than
the window, but because distinguishing between h(t) and n(t)
is an ill-posed problem, parts of h(t) beyond one window’s
length can be considered part of n(t), with a corresponding
increase in the noise variance.

The interaural spectrogram is parameterized by φ(ω, t), the
interaural phase difference (IPD) at frequency ω and time t, and
α(ω, t), the interaural level difference (ILD) measured in dB.
We model these with the frequency-dependent interaural time
difference (ITD), τ(ω), and the frequency-dependent interaural
level difference, a(ω). All IPD observations are constrained
to the interval (−π, π], and spatial aliasing prevents IPD from
being mapped directly to a unique τ . Every τ , however, maps
unambiguously to a phase difference at every frequency. Using
a top-down approach, then, it is possible to test how well any
τ fits an observed IPD, even when multiple sources are present
and even at only a subset of frequencies.

Figure 1 shows a caricature of this top-down process. The
two shaded bars correspond to two competing τ predictions and

the dotted line to the actual observation. On the left hand side
of the figure is the model predictions of (3), on the right hand
side are the observations of (2), the dotted line. Even though
the phase wrapping makes the bottom-up observed-IPD-to-ITD
mapping ambiguous, the top-down ITD-to-IPD mapping is
unambiguous and it can be seen that the observation is much
more likely under one of the predictions than the other. Note,
however, that the phase wrapping does cause ambiguity at
certain frequencies, where the two τs predict the same IPD,
as can be seen in the right half of the figure, where the bars
cross. A similar effect can be seen in the horizontal lines of
lower probability in the example masks of Figure 5(b)–(f).

To measure the difference between the IPD predicted by a
delay of τ samples and the observed IPD, we define the phase
residual φ̂ as

φ̂(ω, t; τ) = arg
(
ejφ(ω,t)e−jωτ(ω)

)
(4)

which is always in the interval (−π, π]. Without this calculation,
phase circularity becomes a problem when observations origi-
nate from delays that are not close to 0. With this calculation,
phase circularity is no longer a problem for delays that are
close to the observations’ true delay, but only for those that are
farther away. The residual error can be modeled with a circular
probability distribution like the von Mises distribution [24], or
approximated as a linear distribution using a Gaussian scale
mixture model [23]. We have found, however, that a single
Gaussian works well enough in practice

p(φ(ω, t) | τ(ω), σ(ω)) = N
(
φ̂(ω, t; τ(ω)) | 0, σ2(ω)

)
(5)

≈ N
(
φ(ω, t) |ωτ(ω), σ2(ω)

)
. (6)

The equality is approximate because it only holds when the
standard deviation σ is small relative to 2π, in which case the
linear Gaussian is very similar to a von Mises distribution. Even
when the standard deviation is small, though, the distribution
of the IPD can be thought of as a Gaussian with mean ωτ(ω)
only if the mean is subtracted from samples in a way that
respects phase wrapping, hence the need for (4).

From observations measured in dB, the interaural level
difference similarly appears to be well modeled by a single
Gaussian with frequency-dependent mean and variance

p(α(ω, t) |µ(ω), η2(ω)) = N
(
α(ω, t) |µ(ω), η2(ω)

)
. (7)

We combine the ILD and IPD models by assuming that they
are conditionally independent, given their respective parameters

p(φ(ω, t), α(ω, t) |Θ) =

N
(
φ̂(ω, t) | ξ(ω), σ2(ω)

)
· N
(
α(ω, t) |µ(ω), η2(ω)

)
, (8)

where Θ represents all of the model parameters. Note that this
assumption of conditional independence applies only to the
noise that corrupts the measurements, it does not contradict the
well known correlation between ILD and ITD in actual head-
related transfer functions, which should be enforced instead in
the means of these Gaussians, ξ(ω) and µ(ω). In this work, we
model this correlation by enforcing a prior on the ILD based
on the initialization of the ITD. Because the ILD is modeled
with a Gaussian, we use the normal-Wishart distribution, its
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conjugate, as the prior [25]. The mean of this normal-Wishart
is set from the initial ITD using data on their relationship
collected from synthetic impulse responses, but the system is
not especially sensitive to particular values.

Equation (8) can be used to evaluate the likelihood of an
observation at any point in a spectrogram under the model
specified by the parameters Θ. Points are assumed to be
independent of one another as well, so such a likelihood
can be computed for any set of points by multiplying the
individual points’ likelihoods. Such a set of points could be
a spectrogram frame, as in traditional cross-correlation, but
could just as easily be a frequency band or an arbitrarily shaped
region in the spectrogram.

III. PARAMETER ESTIMATION FROM MIXTURES

The parameters of the model described above cannot be
estimated directly from a mixture of sources, where different
regions of the spectrogram are dominated by different sources,
because the sources have different distributions over IPD and
ILD. Only points from the same source and at the same delay
are assumed to be distributed identically. The parameters of
each of these distributions, then, could only be estimated if
somehow the source and delay of each point in the spectrogram
were known.

This is a classic missing data problem and the maximum-
likelihood model parameters can be estimated with an expec-
tation maximization (EM) algorithm. For each source in a
multisource mixture, this EM algorithm selects the regions
of the spectrogram that best fit its parameters, and then re-
estimates its parameters from only those regions. Instead of
using hard, binary masks, however, EM uses soft, likelihood-
based masks. It treats the source dominating each spectrogram
point as a hidden variable, i, and uses the expected probability
of source membership to estimate source parameters.

The delay of the source that dominates each spectrogram
point, τ(ω), also includes a hidden variable. We model it as
the sum of two components,

τ(ω) = τ + ω−1ξ(ω). (9)

The first term is a frequency-independent delay that is used
for localization. To make the inference tractable, the hidden
variable τ is modeled as a discrete random variable, where the
set of allowable delays is specified a priori. The parameter ξ(ω)
is an offset in (−π, π] that allows for minor deviations from
this frequency-independent model. It replaces 0 as the mean
of the IPD Gaussian in (5). Both i and τ are combined into
the hidden variable ziτ (ω, t), which is 1 if spectrogram point
(ω, t) comes from both source i and delay τ and 0 otherwise.
Each observation must come from some source and delay, so∑
i,τ ziτ (ω, t) = 1.
The parameters of the various Gaussians are estimated in

the M step along with the marginal class memberships, ψiτ ≡
p(i, τ), the estimate of the joint probability of any spectrogram
point’s being in source i at delay τ . Estimates of the time-
delay of arrival for each source can be computed from ψiτ .
Since τ only takes on discrete values in our model, ψiτ is a
two-dimensional matrix of the probability of being in each
discrete state.

In the most general form of the model, we include all possible
dependencies of the parameters on dimensions of the data. In
Section V-B we compare different parameter tying schemes,
which reduce these dependencies. The IPD parameters for each
source, σiτ (ω) and ξiτ (ω), depend on τ as well as ω. The ILD
parameters for each source, µi(ω) and ηi(ω) depend on ω, but
are independent of τ . Both IPD and ILD parameters depend
on the source from which they come, i. Let

Θ ≡ {ξiτ (ω), σiτ (ω), µi(ω), ηi(ω), ψiτ} (10)

be the collection of the parameters of all of the models. By
marginalizing over the hidden variable ziτ (ω, t), we arrive at
the total log likelihood for a given observation

L(Θ) =
∑
ω,t

log p(φ(ω, t), α(ω, t) |Θ) (11)

=
∑
ω,t

log
∑
i,τ

[
p(φ(ω, t), α(ω, t) | ziτ (ω, t),Θ)

· p(ziτ (ω, t) |Θ)
]

(12)

=
∑
ω,t

log
∑
i,τ

[
N
(
φ̂(ω, t; τ) | ξiτ (ω), σ2

iτ (ω)
)

· N
(
α(ω, t) |µi(ω), η2

i (ω)
)
· ψiτ

]
. (13)

This is basically a Gaussian mixture model, with one Gaussian
per (i, τ) combination and ψiτ as the mixing weights. The
number of sources to compare must be specified a priori.

From this total log likelihood, we define the auxiliary
function to maximize with respect to Θ,

Q(Θ |Θs) = k +
∑
ω,t

∑
i,τ

[
p
(
ziτ (ω, t) |φ(ω, t), α(ω, t),Θs

)
· log p

(
ziτ (ω, t), φ(ω, t), α(ω, t) |Θ

)]
(14)

where Θs is the estimate of the parameters Θ after s iterations
of the algorithm and k is independent of Θ. Maximum-
likelihood parameter estimation then proceeds in two steps,
the E step, in which the expectation of ziτ (ω, t) is computed
given the observations and the parameter estimate Θs, and the
M step, in which Q is maximized with respect to Θ given the
expected value of ziτ (ω, t).

In the E step, we compute

νiτ (ω, t) ≡ p(ziτ (ω, t) |φ(ω, t), α(ω, t),Θs) (15)
∝ p(ziτ (ω, t), φ(ω, t), α(ω, t) |Θs) (16)

= ψiτ · N
(
φ̂(ω, t; τ) | ξiτ (ω), σ2

iτ (ω)
)

· N
(
α(ω, t) |µi(ω), η2

i (ω)
)
. (17)

Because ziτ (ω, t) is a binary random variable, this probability
is equal to its expectation, hence this is the “expectation”
step. This expectation is then used in the M step to calcu-
late maximum-likelihood parameters as weighted means of
sufficient statistics. Let the operator

〈x〉t,τ ≡
∑
t,τ x νiτ (ω, t)∑
t,τ νiτ (ω, t)

(18)

be the weighted mean over the specified variables, in this case t
and τ . This notation makes it convenient to specify the indices
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(a) IPD-only mask (b) ILD-only mask (c) Combined mask

Fig. 2. Contribution of (a) IPD and (b) ILD to (c) MESSL mask using frequency-dependent ΘΩΩ parameters. White is 1, black 0. Two speakers at 0◦ and
75◦ in reverberation. Notice that the IPD mask is mainly informative for low frequencies and the ILD mask for high frequencies, but not exclusively. For this
same example, Figures 3 and 4 show the ground truth and estimated parameters for interaural level and phase differences, respectively.

over which to take the mean, i.e. the indices over which to
tie parameters. Without tying, and with an uninformative ILD
prior the model parameter updates are

µi(ω) = 〈α(ω, t)〉t,τ (19)

η2
i (ω) =

〈(
α(ω, t)− µi(ω)

)2〉
t,τ

(20)

ξiτ (ω) =
〈
φ̂(ω, t; τ)

〉
t

(21)

σ2
iτ (ω) =

〈(
φ̂(ω, t; τ)− ξiτ (ω)

)2〉
t

(22)

ψiτ =
1

ΩT

∑
ω,t

νiτ (ω, t). (23)

To tie parameters, the weighted mean is taken across more
variables. For example, different versions of the IPD variance
can be derived

σ2
iτ =

〈(
φ̂(ω, t; τ)− ξiτ (ω)

)2〉
ω,t

(24)

σ2
i =

〈(
φ̂(ω, t; τ)− ξiτ (ω)

)2〉
ω,t,τ

(25)

In addition to the model parameters that are output by the
algorithm, it is also possible to compute probabilistic masks
for each of the sources by marginalizing over delay

Mi(ω, t) ≡
∑
τ

νiτ (ω, t). (26)

Note that this mask represents probabilities and preliminary
experiments indicate that separation performance can be
improved by converting these probabilities to more Wiener
filter-like coefficients. We do not do so in this paper, and this
conversion should be explored in future work.

Under weak assumptions, this algorithm is guaranteed to
converge to a local maximum of the likelihood, but since
the total log likelihood is not convex, it is still sensitive to
initialization. Conveniently, however, it is also very flexible in
its initialization. Since it can start with the E step or the M
step, it can be initialized with data in the form of either model
parameters or masks. Even a subset of the model parameters
can be used to initialize the algorithm, from which the rest
can be bootstrapped. In Section V-C we compare the results
of initializing the algorithm in various ways.

Unless otherwise mentioned, we initialize ψiτ from a
cross-correlation based method while leaving all the other
parameters in a symmetric, non-informative state. If the ILD
prior (described below) is used, we initialize the ILD with
the same mean as its prior and a standard deviation of 10 dB.
From these parameters, we compute the first E step mask.
Using estimates of τ for each source from PHAT-histogram
[26], ψiτ is initialized to be centered at each cross-correlation
peak and to fall off away from that. Specifically, p(τ | i), which
is proportional to ψiτ , is set to be approximately Gaussian,
with its mean at each cross-correlation peak and a standard
deviation of one sample.

In order to model reverberation, we introduce a “garbage”
source into MESSL that is initialized to have a uniform p(τ | i),
a uniform distribution across IPD, and an ILD with 0 mean
across frequency. This garbage source is designed to account
for spectrogram points that are not well described by any
of the other source models. While the direct-path signal has
interaural cues consistent with the specific direction of the
source, reverberation has a diffuse character that may not fit a
source model particularly well. Thus a single garbage source
should be able to account for the reverberation from all of
the sources in a mixture, regardless of their locations. The
garbage source also allows the parameters of the other sources
to be estimated more accurately, as they are no longer forced
to include poorly fitting points into their parameter estimation.

The ILD prior affects the estimation of the ILD parameters
µi(ω) and ηi in (19) and (20). In effect, the prior acts as
a number of “virtual” observations that are included in (19)
and (20). The prior precision (inverse variance) controls the
strength of the prior relative to the observations, i.e. the
number of virtual observations. The exact value of the prior
mean was estimated from a set of synthetic binaural room
impulse responses, using a regression on ITD and frequency
and interaction terms up to the third order. The fact that this
mean is only able to capture broad features of the relationship
between ILD and ITD makes it better able to generalize across
individuals. We only employ the ILD prior when also using
the garbage source, as a pilot study found that that was when
it was most useful.

A note about computational complexity. The running time
of this algorithm is linear in the number of points in the
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Fig. 3. Example ILD for two sources at 0◦ (upper lines) and 75◦ (lower lines)
in reverberation. Thick lines are ground truth direct-path ILD measured in
isolation, thin lines are estimated from a mixture by MESSL using frequency-
dependent ΘG parameters, and the dashed lines are estimated by MESSL
using frequency-independent Θ11 parameters.

spectrogram, the number of sources, the number of discrete
values of τ that are used, and the number of EM iterations.
Running time on a 1.86 GHz Intel Xeon processor was
approximately 80 seconds to separate 2 sources from a 2.5-
second (40,000 sample) mixture using a τ grid of 61 elements
and 16 EM iterations. This processing rate is approximately
32 times slower than real time. To separate 3 sources under
the same conditions took approximately 110 seconds, or 45
times slower than real time.

IV. EXAMPLE PARAMETER ESTIMATES

We now present an example separation illustrating some
of MESSL’s properties. The example mixture includes two
speakers in a reverberant environment. The target speaker is
female and is located at 0◦, saying, “Presently, his water brother
said breathlessly.” The interfering speaker is male and is located
at 75◦, saying, “Tim takes Sheila to see movies twice a week.”
It is taken directly from the experiments in Section V-D without
any modification and is used in Figures 2, 3, 4, and 5. Sound
files from this example are also available on the project’s
webpage1. Two MESSL parameterizations were used in this
example, one frequency-dependent and the other frequency-
independent. Both use the garbage source and ILD prior.

Figure 2 shows the contributions of the IPD and ILD to
the full MESSL mask when using the frequency-dependent
parameterization. Note that as in human hearing, the IPD mask
is generally informative at low frequencies, while the ILD
mask is generally informative at high frequencies. Unlike in
human hearing, however, the IPD is effective at separating
the sources up to 6 kHz and beyond, albeit with periodic
interruptions. These interruptions occur when both sources’
ITD models predict the same IPD at a given frequency. The
IPDs from any pair of ITDs will coincide at a certain set of
harmonically related frequencies. See Figure 1 for an example
of this ambiguity. In the combined mask, these bands of
uncertainty remain present at low frequencies, but are resolved
at high frequencies by the ILD.

1http://labrosa.ee.columbia.edu/projects/messl

The parameters estimated by MESSL are not only effective at
separating sources, but are also interesting in and of themselves.
Figure 3 compares the ILD that MESSL estimates to the ground
truth direct-path ILD measured in isolation. Notice that the
estimate closely follows the ground truth for both sources even
though neither source was ever observed alone. The parameters
that MESSL estimates are different from the ILD measured
for a single source in reverberation, as reverberation tends to
reduce the magnitude of ILD cues [27]. MESSL’s ILD prior
helps it to estimate the correct direct-path parameters and the
garbage source absorbs reverberant time-frequency points that
do no fit these parameters well.

Similarly, Figure 4 compares the probability density function
of IPD that MESSL estimates to the ground truth IPD measured
in isolation. Even without depending on frequency, this model
accurately estimates the IPD of both sources, again without
ever observing either source alone. Marginalizing over the
delay yields the probability of a given IPD under the model

p(φ(ω, t) | i) =
∑
τ

ψiτN
(
φ̂(ω, t; τ) | ξiτ (ω), σ2

iτ (ω)
)
. (27)

Each component in this mixture is a line with a different slope,
as illustrated in Figure 1, although for Figure 4 there are 61
lines rather than two. In the frequency-independent case, the
width of each line is constant in IPD. At lower frequencies,
these mixture components are very close together and so the
variance of the mixture is lower. At higher frequencies, however,
the various mixture components are spaced farther apart due to
their proportionality to ω, and so the model is less informative.

Even though the IPD of the source at 0◦ is not distributed
exactly around 0 IPD, the model is able to approximate it by
mixing together components for a few delays that are close
to the true ITD. Thus, the marginal IPD distribution (27) is
still able to vary with frequency, even when the parameters ξiτ
and σiτ do not, as can be seen in Figure 4(b). Also, learning
τ -dependent, but frequency-independent ξiτ parameters can
more favorably align the straight lines that sum to the best
IPD model than setting them to 0.

Figure 4(c) shows the extra information captured by the
frequency-dependent parameters. This extra information mostly
takes the form of rapid fluctuations of the mean and variance
of the IPD with frequency, particularly at high frequencies.
It is not clear to us what these represent, possibly aspects
of the room impulse response like early echoes, and further
investigation is warranted.

V. SPEECH SEPARATION EXPERIMENTS

We perform three experiments in order to examine MESSL’s
performance and compare it to four other well-known algo-
rithms. The basic form of the experiments is as follows. Single
sentence utterances recorded with a microphone close to the
speaker are convolved with binaural impulse responses recorded
from a KEMAR dummy head, simulating speech originating
from a particular direction. A number of these utterances,
simulated at different azimuthal directions in the horizontal
plane, are then mixed together. The target speaker is always
directly in front of the dummy head (0◦) while the others are
up to 90◦ to either side. These stereo mixtures are given to
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(a) Before mixing (b) Estimated by MESSL with Θ11 (c) Estimated by MESSL with ΘG

Fig. 4. Interaural phase differences (IPD) as a function of frequency for two speakers at 0◦ and 75◦ in reverberation. Black is higher probability. (a)
Histogram of each source’s IPD before mixing, (b) PDF of each source’s IPD estimated from the mixture by MESSL using frequency-independent parameters,
Θ11. (c) PDF of each source’s IPD estimated from the mixture by MESSL using frequency-dependent parameters, ΘΩΩ.

the algorithms to separate along with the number of sources
that were mixed together. The algorithms attempt to extract
the target signal, which is mixed down to mono and evaluated
on its signal-to-distortion ratio.

A. Shared experimental details
1) Data sources: The utterances used are from the TIMIT

acoustic-phonetic continuous speech corpus [28], a dataset of
utterances spoken by 630 native American English speakers. Of
the 6300 utterances in the database, we randomly selected 15 of
approximately the same duration to use in our evaluation. Each
utterance is approximately 3 seconds long, and we used the first
2.5 seconds to avoid ending silence. Before convolution with the
binaural impulse responses, all utterances were normalized to
have the same root mean square energy. All of the experiments
either include two or three simultaneous speakers, a single
target and one or two distractors. In the three speaker case, the
two distractors were situated symmetrically about the target.

The binaural impulse responses come from two sources. For
simulating anechoic signals, we use the head-related impulse
responses from [29], an effort to record such impulse responses
for many individuals. We use the measurements of the KEMAR
dummy with small ears, although the dataset contains impulse
responses for around 50 individuals. We restrict our attention
to the 50 impulse responses measured in the horizontal plane,
both in front and in back of the dummy. These 50 impulse
responses were measured more densely near the median plane
and more sparsely to the sides.

The second set of binaural impulse responses comes from
[27]. They were recorded in a real classroom with a reverbera-
tion time of around 565 ms. These measurements were also
made on a KEMAR dummy, although a different actual dummy
was used. We used the measurements taken in the middle of
the classroom, with the source 1 meter from the listener, at 7
different angles spaced evenly between 0◦ and 90◦, i.e. all the
way to the right. The recording equipment was taken down and
setup on three different occasions, so there are three recordings
at each location, for a total of 21 binaural impulse responses.
For three-source measurements, we transpose the two ears to
simulate the source on the left.

For each configuration of the simulated sources, i.e. each
off-axis binaural impulse response, we randomly select five

different sets of utterances. Thus, for anechoic mixtures, 10
different sets of utterances are mixed at each angular separation,
five in front and five behind the listener. For reverberant
mixtures, 15 different sets of utterances are mixed at each
angular frequency, five for each of the three repetitions of
the impulse response measurement. Each configuration was
repeated for two and three speakers, for a total of 240 different
anechoic mixtures and 180 different reverberant mixtures.

2) Evaluation metrics: We evaluate separation performance
using the signal-to-distortion ratio (SDR) [5]. This metric is
the ratio of the energy in the original signal to the energy in
interference from other signals and other unexplained artifacts.
Any energy in the estimated signal that can be explained with
a linear combination of delayed versions of the target signal
(up to 32 ms) counts towards the target energy. Similarly,
any energy that can be explained with a linear combination
of delayed versions of the interferer signals counts towards
interferer energy. Any energy that cannot be explained by either
of these projections is deemed to be an artifact, most notably
reverberation from any of the sources. Using the same structure,
we can also compute the signal-to-interferer ratio (SIR), the
ratio of the target to interferer energy, which ignores artifacts
like reverberation.

We also evaluate the speech quality of the separations using
the Perceptual Evaluation of Speech Quality, or PESQ [30, Sec.
10.5.3.3]. This measure is highly correlated with the Mean
Opinion Score (MOS) of human listeners asked to evaluate the
quality of speech examples. MOS ranges from −0.5 to 4.5,
with 4.5 representing the best possible quality. Although it was
initially designed for use in evaluating speech codecs, PESQ
can also be used to evaluate speech enhancement systems [31].
The PESQ results for each algorithm in Table III should be
compared to those of the unseparated mixtures in the last row
of that table.

3) Control “algorithms”: All algorithms are compared
against three control masks, two ground truth 0 dB masks, and
a random mask. These masks are included to provide upper
and lower bounds on the separation performance achievable
using spectral masking. Since our test mixtures are created
synthetically, we use knowledge of the original separate
sources to create ground truth binary masks. Optimal masking
separation is achieved by a mask that is 1 at every spectrogram
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(a) DP-Oracle (12.78 dB) (b) MESSL using ΘG (8.32 dB) (c) Messl using ΘΩΩ (6.11 dB)

(d) Sawada (6.87 dB) (e) DUET (5.48 dB) (f) Mouba (5.58 dB)

Fig. 5. Example masks from the various algorithms compared in Section V-D (white is 1, black 0). Two speakers at 0◦ and 75◦ in reverberation. SDR for
each mask is in parentheses. Not shown: TRINICON (5.02 dB), Random mask (−3.52 dB). Note that (b) is the same as Figure 2(c).

point in which the target signal is at least as loud as the
combined interferers and 0 everywhere else [4]. Because this
information is not available in an actual source separation
application, this mask is referred to as the Oracle mask. In our
notation, the Oracle and DP-Oracle masks are the same except
for their treatment of reverberation from the target source.

The Oracle mask considers reverberation from the target
source to be part of the desired signal. In reality, however,
reverberation is an unwanted addition to the signal and should
be considered interference rather than target. Thus, the DP-
Oracle mask only considers direct-path energy from the target
source as desirable. For anechoic mixtures, the two masks are
equivalent. Since we simulate source location by convolution
with impulse responses, we are able to isolate the direct-path
of each impulse response by forcing all of the samples after
10 ms to be 0. This eliminates both early reflections and
reverberation while still coloring the signal with the anechoic
head-related transfer function, making it comparable to the
separated sources.

The lower-bound control mask is one in which each
spectrogram point is assigned uniformly at random to one
of the sources. Its SDR is typically the same as the SDR of
the mixture.

B. Model complexity

The first experiment examines the tying of various parameters
to determine the amount of complexity our test data can support.
Tying parameters means that model parameters that are similar
in some way are forced to take the same value, for example the
IPD variance could be forced to be the same across frequency

as in (24) and (25). Parameters can be tied across frequency,
across delay, across sources, or assumed to have a fixed value,
although certain combinations make more sense than others.
This tying is easy to enforce in the M step equations (19)-(23),
by averaging together tied parameters.

In this experiment, we compare the signal-to-distortion ratio
of MESSL with different amounts of parameter tying when
separating two sources in reverberation. See Table I for the
list of parameters used for each version of the algorithm. The
parameter sets are named by their complexity in ILD and IPD,
respectively, 0 being simplest, 1 being more complex, and Ω
being most complex, i.e. frequency-dependent. For example,
the model with parameters ΘΩ0 uses a complex ILD model, but
a simple IPD model. The model with parameters Θ01 on the
other hand uses a simple ILD model and a moderately complex
IPD model. See Table I for the specific parameterization used
in each condition and the separation results.

The version of MESSL using Θ00 was published in [23]
and referred to as EM−ILD in [32]. It uses only IPD and has
a single σ per source. The versions using Θ10 and ΘΩ0 were
referred to as EM+1ILD and EM+ILD in [32], they use both
IPD and ILD, but their IPD model again only uses a single σ
per source. The others are introduced for the first time in this
paper. The versions using Θ01 and Θ0Ω have τ -dependent IPD
mean and variance, but no ILD. The last three versions use
the full IPD and ILD models. With Θ11, both are frequency-
independent and with ΘΩΩ both are frequency-dependent. The
ΘG parameters are the same as the ΘΩΩ parameters, but also
include the garbage source and ILD prior.

It should be noted that initializing models with a large
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Fig. 6. Signal-to-distortion ratio for complexity experiment, two speakers
in reverberation. Each point is the average of 15 mixtures with the same
angular separation. Error bars show 1 standard error. Note that the random
and DP-Oracle masks bound performance between 11.79 and −0.78 dB SDR,
respectively, independent of angle.

number of parameters requires some care to avoid source
permutation errors and other local maxima. This is most
important with regards to parameter tying across frequency. To
address this problem, we use a bootstrapping approach where
initial EM iterations are performed with frequency-independent
models, and frequency-dependence is gradually introduced.
Specifically, for the first half of the total number of iterations,
we tie all of the parameters across frequency. For the next
iteration, we tie the parameters across two groups, the low and
high frequencies, independently of one another. For the next
iteration, we tie the parameters across more groups, and we
increase the number of groups for subsequent iterations until
in the final iteration, there is no tying across frequency and all
parameters are independent of one another, but still consistent.

1) Results: A summary of the results of this experiment can
be seen in Table I. The most complex model, using ΘG achieves
the best separation by 1.3 dB. Note that the models after that are
paired as performance is comparable with frequency-dependent
and frequency-independent parameters. Comparing ΘΩ0 with
Θ00, the frequency-dependent ILD increases the signal-to-
distortion ratio of the target by 1.0 dB. The more complete
model of interaural phase difference present in Θ0Ω provides
an extra 0.6 dB of separation over Θ00. Their combination is
not quite additive, ΘΩΩ increases SDR by 1.4 dB over Θ00.

A graph of MESSL’s performance using each of these
parameter sets versus interferer azimuth can be seen in Figure 6.
First note that all of the algorithms perform similarly compared
to the two controls (which are not shown). Second, note
that they also all perform worse as the separation decreases.
Third, note that the ILD improves separation, except at the
smallest angles. And finally, note that the models that use the
more complicated parameterization of the IPD, including a τ -
dependent mean and variance, are able to realize proportionally
larger improvements at larger separations than those that use
the simpler parameterization with zero mean and a single σ
per source.

TABLE I
SDR FOR DIFFERENT MODEL COMPLEXITIES, SEPARATING TWO SPEAKERS

IN REVERBERATION, AVERAGED OVER 15 MIXTURES AT EACH OF 6
ANGULAR SEPARATIONS.

Name ILD mean ILD std IPD mean IPD std SDR (dB)

ΘG µi(ω) ηi(ω) ξiτ (ω) σiτ (ω) 5.87
ΘΩΩ µi(ω) ηi(ω) ξiτ (ω) σiτ (ω) 4.45
Θ11 µi ηi ξiτ σiτ 4.57
ΘΩ0 µi(ω) ηi(ω) 0 σi 4.07
Θ10 µi ηi 0 σi 4.16
Θ0Ω 0 ∞ ξiτ (ω) σiτ (ω) 3.69
Θ01 0 ∞ ξiτ σiτ 3.51
Θ00 0 ∞ 0 σi 3.08

C. Initialization

Our second experiment compares the normal version of
MESSL with other versions that are allowed to “cheat” using
ground truth information. This experiment provides insight into
the ability of the non cheating model to extract parameters from
mixtures and the ways in which the imperfections in parameter
estimates from mixtures hurt separation. Note that all models
use frequency-dependent parameters for this experiment, with
no garbage source and no ILD prior.

The ground truth parameters were extracted using MESSL on
“mixtures” of a single source at a time. White noise was passed
through each pair of reverberant binaural impulse responses and
then fed into MESSL, allowing it to make the best possible
estimates of the ILD parameters µi(ω) and ηi(ω) and the
IPD parameters ξiτ (ω), σiτ (ω), and ψiτ . To perform actual
separations, the ideal parameters for each source in the mixture
were combined in initializing MESSL. The DP-Oracle mask
was used for initializing from a ground truth mask.

Seven different initializations were compared in this ex-
periment on the 90 mixtures of the two-speaker, reverberant
condition. See Table II for an enumeration of the parameters
used in each one and their separation results. MESSL can be
initialized from many different parameters, including masks,
ILD, ITD, or any combination thereof. ITD can be estimated
from a mixture using cross-correlation based methods like
PHAT-histogram [26], and masks can be estimated using e.g.
monaural signal-based source separators. ILD is more difficult
to estimate directly from a mixture in practice. In the other
experiments in this paper, we only initialize MESSL’s ITD
parameters from a non-cheating estimate, which appears on
the second to last line of the table.

The top section of the table shows the performance of
initializations that include ground truth interaural parameters
in various combinations. From the top of the table down, these
are: ground truth IPD and ILD information along with DP-
Oracle masks, ground truth IPD and ILD information, only
IPD information, and only ILD information. Initializations
including ground truth ILD are run for as few iterations as
possible, because on a separate parameter tuning data set
their performance decreased with each iteration. This property
indicates that it is the estimation of ILD parameters that is
limiting the system’s performance, not the separation based on
an ILD estimate. This is not the case for ITD estimates, for
which separation improves with each iteration as the parameters
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TABLE II
SDR FOR MESSL WITH DIFFERENT INITIALIZATIONS AND NO GARBAGE

SOURCE OR ILD PRIOR, SEPARATING TWO SPEAKERS IN REVERBERATION,
AVERAGED OVER 15 MIXTURES AT EACH OF 6 ANGULAR SEPARATIONS.

KEY: 1: UNINFORMATIVE INIT., gt: GROUND TRUTH INIT., xcorr: ITD INIT.
FROM CROSS-CORRELATION PEAKS.

ILD IPD Mask Iterations SDR (dB)

gt gt gt 2 6.40
gt gt 1 2 6.29
1 gt 1 16 5.59
gt xcorr 1 2 5.37

1 xcorr gt 16 4.67
1 xcorr 1 16 4.43
1 1 gt 16 4.17

adapt to a particular mixture, even after initialization with
ground truth ITD parameters. One possible explanation for this
is that ILD is reduced by reverberation, while ITD is not [27].

The bottom section of the table shows the performance
of initializations that do not include ground truth interaural
parameters. From the top of this section, these are: estimated
ITD with ground truth DP-Oracle masks, only estimated ITD,
and only DP-Oracle masks. These systems were all run for 16
iterations because their performance tended to improve every
iteration.

Initial model parameters were used in the first E step to
calculate νiτ (ω, t). The algorithm then proceeded normally,
discarding the initial parameters and replacing them with
estimates made directly from the mixture and νiτ (ω, t). When
an initial mask was supplied, however, it survived until the
second E step. This is because in the first E step, it is used as
a prior in estimating νiτ (ω, t), which also varies with τ , and
only re-estimated after the first M step. Thus two iterations
are required for a fair evaluation.

1) Results: The results of this experiment can be seen
in Table II. Considering the top portion of the table, all
initializations that use ground truth interaural parameters are
better able to separate the sources than those estimating initial
parameters from the mixture. IPD parameters seem to be
slightly more helpful than ILD parameters, increasing SDR by
1.2 dB versus 0.9 dB when compared with the ΘΩΩ parameters,
shown in the second to last row in the table. In combining
the two cues, the performance gain is approximately additive,
increasing SDR 1.9 dB beyond what is achieved with IPD
alone. Including the ground truth mask only increases SDR by
another 0.1 dB.

Considering the bottom portion of the table, initializing
with just the ground truth mask separates sources more poorly
than the baseline algorithm initialized from PHAT-histogram
localization. When combined, however, the ground truth mask
provides a slight improvement in separation. The difficulty in
starting with just a mask is that the ψiτ extracted using the
mask is peaked at the proper delay, but assigns significant
probability to the other delays as well. It takes between 8
and 12 iterations before the values in ψiτ begin to resemble
those coming from the PHAT-histogram initialization. When
starting with ψiτ already reasonably initialized, the mask helps
performance, possibly in estimating the ILD parameters.

D. Comparison with other algorithms

The third experiment compares MESSL with four other well
known source separation algorithms, DUET [6], the algorithm
of Sawada et al. [22], which we refer to as Sawada, the
algorithm of Mouba and Marchand [10], which we refer to as
Mouba, and TRINICON-based blind source separation using
second order statistics [13]. We implemented the first three of
these algorithms ourselves and tested them on mixtures of two
and three sources in reverberant and anechoic environments.
TRINICON was run on our mixtures by the authors of that
paper using their original code.

The Degenerate Unmixing Estimation Technique (DUET)
[4], [6] creates a two-dimensional histogram of the interaural
level and time differences observed over an entire spectrogram.
It then smooths the histogram and finds the I largest peaks,
which should correspond to the I sources. DUET assumes that
the interaural level and time differences are constant at all
frequencies and that there is no spatial aliasing, conditions that
can be met to a large degree with free-standing microphones
close to one another. With dummy head recordings, however,
the ILD varies with frequency and the microphones are spaced
far enough apart that there is spatial aliasing above about
1 kHz. Frequency-varying ILD scatters observations of the
same source throughout the histogram as does spatial aliasing,
making sources harder to localize and isolate. See Figure 5(e)
for an example mask estimated by DUET.

Two-stage frequency-domain blind source separation [22]
is a combination of ideas from model-based separation and
independent component analysis (ICA) that can separate
underdetermined mixtures. In the first stage, blind source sep-
aration is performed on each frequency band of a spectrogram
separately using a probabilistic model of mixing coefficients. In
the second stage, the sources in different bands are unpermuted
using k-means clustering on the posterior probabilities of
each source and then refined by matching sources in each
band to those in nearby and harmonically related bands. The
first stage encounters problems when a source is not present
in every frequency and the second encounters problems if
sources’ activities are not similar enough across frequency. See
Figure 5(d) for an example mask estimated by this algorithm.

The algorithm of Mouba and Marchand [10], like MESSL,
uses EM clustering to separate sources from binaural recordings.
This algorithm needs access to certain coefficients describing
the relationship between ILD, ITD, and azimuth, which can be
extracted offline from head-related transfer functions. It it not
particularly sensitive to the exact values of these coefficients,
however, so the same values generally work for different
heads. Using these coefficients, the algorithm maps the ILD
at each point in the spectrogram to an azimuth, with which
it disambiguates each IPD-to-ITD mapping. The ITD is then
mapped to azimuth at each spectrogram point and these azimuth
values (after weighting by the energy at that spectrogram point)
are clustered using a Gaussian mixture model. The means of the
Gaussians are the estimated source locations and the posterior
probability of each azimuth coming from each Gaussian is used
to construct a spectral mask. See Figure 5(f) for an example
mask estimated by Mouba and Marchand’s algorithm.
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(a) Anechoic, 3 speakers (b) Reverberant, 2 speakers (c) Reverberant, 3 speakers
Fig. 7. SDR as a function of angle for three conditions. Anechoic conditions are averaged over 10 mixtures at each of 12 angles, reverberant over 15 mixtures
at each of 6 angles. Error bars show 1 standard error.

Blind Source Separation using Second Order Statistics
(BSS-SOS) using Triple-N ICA for convolutive mixtures
(TRINICON) [13] is very different from the other algorithms
compared in this experiment. Instead of using time-frequency
masking to separate sources, it learns a convolutive linear
system to unmix the signals. The three Ns referred to are
nongaussianity, nonstationarity, and nonwhiteness, properties
of signals that TRINICON takes advantage of in separation.
The unmixing system that it learns minimizes the correlation
between the separated signals at multiple time lags. A number
of algorithms in this framework have been derived, trading off
computational complexity for separation performance. Note
that this algorithm can only separate critically-determined and
over-determined mixing systems, so we only evaluate it on
two-source mixtures.

1) Results: The results of this experiment can be seen in
Figure 7, where the SDR is shown as a function of separation
angle for two and three sources in anechoic and reverberant
environments. From the graphs, it is clear that the performance
of all of the algorithms decreases as the sources get closer
together and their spatial cues become more similar. This is
not the case with the ground truth masks, suggesting that an
algorithm that relied more on spectral cues (perhaps from
source models) as opposed to spatial cues might be able
to separate the two speakers equally well at any separation.
Note that the DP-Oracle mask achieves much higher SDR and
PESQ scores than the Oracle mask, due to its exclusion of all
reverberation.

MESSL isolates the target source better than the other algo-
rithms in all conditions and at all angles except for the smallest
angles in anechoic conditions. Adding a second distractor
source does not affect performance when the separation is
large, but hurts performance for separations less than 40◦. The
garbage source and ILD prior increase performance quite a bit
in reverberation, and when the sources are close together in
anechoic mixtures.

In all conditions except A2, Mouba and Marchand’s algo-
rithm performs second best. Qualitatively, it appears to do
a good job of resolving 2π ambiguities when the phase has
wrapped one or two times. This is the case for most of the
spectrum when azimuths are small and for lower frequencies
when azimuths are larger. This frequency range generally
includes most of the speech energy of interest, giving it good

SDR performance and a significant advantage over DUET. At
very small separations, it is difficult for the clustering to resolve
two separate peaks in the azimuth histogram, so performance
appears to be best for angles that are neither too big nor too
small.

Generally, Sawada et al.’s algorithm performs third best.
Visually inspecting some of the masks it creates, it generally
works quite well, especially at high frequencies where adjacent
frequency bands are highly correlated. It seems to have some
difficulty unpermuting sources at low frequencies, however,
where adjacent bands are less well-correlated. These problems
are exacerbated in reverberation and with more sources.
Comparing Figure 5(b) and (d), it is interesting to note that
MESSL and this algorithm both exhibit “bands of ambiguity”
in frequencies for which two sources’ ITDs predict the same
IPD (e.g. 1.5–2 kHz).

In anechoic conditions, TRINICON dramatically outperforms
the masking-based systems in terms of SDR, even the DP-
Oracle mask. In reverberation, however, it performs slightly
worse than Sawada et al.’s algorithm. According to the signal-to-
interferer ratio (SIR), which measures only the ratio of energy
directly attributable to the target and interference (i.e. ignoring
most reverberation), TRINICON outperforms MESSL even in
reverberation, achieving 12.79 dB SIR on average in the two-
source reverberant condition, compared to MESSL’s 11.07 dB.
We believe that the inversion of the ranking between SIR
and SDR is due to the introduction of a substantial amount
of reverberation by TRINICON (which is penalized under
SDR but does not affect SIR). Another interesting performance
characteristic is that in reverberation TRINICON achieves a
much better SDR for the interfering source, 5.64 dB, than the
target source, 3.72 dB. We believe that this is because the on-
axis target source is easier to cancel than the off-axis interfering
source. Under the PESQ metric, TRINICON’s estimated speech
quality is second only to MESSL’s.

DUET performs relatively well in the anechoic case, but
worse in reverberation. It is not affected much by the presence
of a second distractor source. It performs much better in this
experiment than in previous experiments we have run, possibly
because the sources are more balanced here, while before they
sometimes had different energies.

The PESQ results follow the SDR results quite closely. As
would be expected, the PESQ scores for anechoic mixtures
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TABLE III
SDR AND PESQ METRICS COMPARING SYSTEMS IN ANECHOIC AND REVERBERANT ENVIRONMENTS WITH 2 AND 3 SPEAKERS, E.G. “A2” INDICATES

ANECHOIC, 2 SPEAKER CONDITION. ANECHOIC CONDITIONS AVERAGED OVER 120 MIXTURES EACH, REVERBERANT OVER 90 MIXTURES EACH.

SDR (dB)

A2 A3 R2 R3 Avg

DP-Oracle 16.63 13.63 11.79 10.15 13.05
Oracle 16.63 13.63 8.25 7.59 11.52

MESSL-G 11.91 8.41 5.87 2.87 7.27
MESSL-ΩΩ 11.29 6.47 4.45 2.19 6.10
Mouba 11.83 6.34 3.98 0.55 5.67
Sawada 11.44 4.98 3.80 −0.55 4.91
TRINICON 22.47 — 3.72 — —
DUET 9.67 4.38 2.35 −1.42 3.75

Random 1.54 −2.13 −0.78 −3.95 −1.33

PESQ (MOS)

A2 A3 R2 R3 Avg

DP-Oracle 3.34 3.02 2.99 2.72 3.02
Oracle 3.34 3.01 2.35 2.24 2.73

MESSL-G 2.93 2.29 2.07 1.73 2.26
MESSL-ΩΩ 2.84 2.12 1.92 1.62 2.13
TRINICON 3.37 — 1.84 — —
Mouba 2.69 1.96 1.81 1.49 1.99
Sawada 2.82 1.71 1.80 1.24 1.89
DUET 2.53 1.95 1.60 1.20 1.82

Mixture 1.81 1.35 1.45 1.15 1.44

are higher than for reverberant mixtures, and they are also
higher for two sources than for three. The separations typically
maintain the same ordering across conditions, except for
TRINICON, which does better than DP-Oracle for anechoic,
two-source mixtures. These orderings and this exception are
consistent with the SDR results. Of the 1.58 MOS units between
the average mixture score and the average DP-Oracle score,
MESSL was able to recover approximately half, or 0.82 units.

VI. SUMMARY

This paper has presented a novel source separation procedure
using probabilistic models of sources and an expectation
maximization parameter estimation procedure. We first built
a probabilistic model of a single source that can be evaluated
independently at every spectrogram point. We then reduced the
multi-source problem to a collection of single source problems
by combining this model with the idea of probabilistic masking
using an EM algorithm.

We then performed three experiments to test various aspects
of the model. We found that the most complex models were
the best at separating sources in our experimental conditions.
We showed that even from a mixture, MESSL can estimate
interaural parameters that are close to those measured in
isolation and using these parameters can closely approximate
its performance when initialized with “cheating” parameters.
In reverberant and anechoic conditions with two and three
speakers, MESSL produces SDRs 1.6 dB higher and PESQ
results 0.27 MOS higher than comparable algorithms.

There are a number of directions to take this work in
the future. The first is to build a more explicit model of
reverberation than the garbage source to better distinguish
it from direct-path sounds. We would also like to add a
model of early echoes to the system so that they could aid
in separation and be removed from the reconstructed sources.
Other monaural cues could also be used for separation and
combined probabilistically with the current binaural separation.
Finally, to allow for a real-time implementation we would like
to develop an online version of this algorithm. Such a system
would propagate sources in time using a dynamics model while
simultaneously creating separation masks one frame at a time.
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