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Abstract

We describe a system for separating multiple sources from a two-channel
recording based on interaural cues and prior knowledge of the statistics of
the underlying source signals. The proposed algorithm effectively combines
information derived from low level perceptual cues, similar to those used by
the human auditory system, with higher level information related to speaker
identity. We combine a probabilistic model of the observed interaural level
and phase differences with a prior model of the source statistics and derive
an EM algorithm for finding the maximum likelihood parameters of the joint
model. The system is able to separate more sound sources than there are
observed channels in the presence of reverberation. In simulated mixtures of
speech from two and three speakers the proposed algorithm gives a signal-to-
noise ratio improvement of 1.7 dB over a baseline algorithm which uses only
interaural cues. Further improvement is obtained by incorporating eigenvoice
speaker adaptation to enable the source model to better match the sources
present in the signal. This improves performance over the baseline by 2.7 dB
when the speakers used for training and testing are matched. However, the
improvement is minimal when the test data is very different from that used
in training.
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1. Introduction

Human listeners are often able to attend to a single sound source in the
presence of background noise and other competing sources. This is partially
a result of the human auditory system’s ability to isolate sound sources that
arrive from different spatial locations, an effect of the fact that humans have
two ears (Cherry, 1953). Localization is derived from low-level acoustic cues
based on the time and level differences of the sounds arriving at a listener’s
ears (Blauert, 1997). The use of these perceptual localization cues has had
much success in the development of binaural source separation algorithms
(Yilmaz and Rickard, 2004; Mandel and Ellis, 2007). Unlike competing source
separation approaches such as independent component analysis, localization-
based algorithms are often able to separate mixtures containing more than
two sources despite utilizing only binaural observations.

In contrast to binaural source separation based on the same principles used
by the human auditory system, the most successful approaches to separating
sources given a single channel observation have been model-based systems
which rely on pre-trained models of source statistics (Cooke et al., 2010).
Such monaural source separation algorithms generally require relatively large,
speaker-dependent (SD) models to obtain high quality separation. These
supervised methods therefore have the disadvantage of requiring that the
identities of all sources be known in advance and that sufficient data be
available to train models for each them. In contrast, most binaural separation
algorithms based on localization cues operate without any prior knowledge
of the signal content. The only assumption they make is that the sources
be spatially distinct from one another. However, it is to be expected that
incorporating some prior knowledge about the source characteristics would
be able to further improve separation performance.

In this paper we describe a system for source separation that combines
inference of localization parameters with model-based separation methods and
show that the additional constraints derived from the source model help to
improve separation performance. In contrast to typical model-based monaural
separation algorithms, which require complex SD source models to obtain
high quality separation, the proposed algorithm is able to achieve high quality
separation using significantly simpler source models and without requiring
that the models be specific to a particular speaker.

The remainder of this paper is organized as follows: Section 2 reviews
previous work related to the algorithms we describe in this work. Section 3
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describes the proposed signal model for binaural mixtures and section 4
describes how this model is used for source separation. Experimental results
comparing the proposed systems to other state of the art algorithms for
binaural source separation are reported in section 5.

2. Previous Work

In this paper we propose an extension of the Model-based Expectation
Maximization Source Separation and Localization (MESSL) algorithm (Man-
del et al., 2010), which combines a cross-correlation approach to source
localization with spectral masking for source separation. MESSL is based
on a model of the interaural phase and level differences derived from the
observed binaural spectrograms. This is similar to the Degenerate Unmixing
Estimation Technique (DUET) algorithm for separating underdetermined
mixtures (Yilmaz and Rickard, 2004) and other similar approaches to source
localization (Nix and Hohmann, 2006) which are based on clustering localiza-
tion cues across time and frequency. These systems work in an unsupervised
manner by searching for peaks in the two dimensional histogram of interaural
level difference (ILD) and interaural time, or phase, difference (ITD or IPD)
to localize sources. In the case of DUET, source separation is based on the
assumption that each point in the spectrogram is dominated by a single source.
Different regions of the mixture spectrogram are associated with different
spatial locations to form time-frequency masks for each source.

Harding et al. (2006) and Roman et al. (2003) take a similar but supervised
approach, where training data is used to learn a classifier to differentiate
between sources at different spatial locations based on features derived from
the interaural cues. Unlike the unsupervised approach of Yilmaz and Rickard
(2004) and Nix and Hohmann (2006), this has the disadvantage of requiring
labeled training data. MESSL is most similar to the unsupervised separation
algorithms, and is able to jointly localize and separate spatially distinct
sources using a parametric model of the interaural parameters estimated
directly from a particular mixture.

A problem with all of these methods is the fact that, as we will describe in
the next section, the localization cues are often ambiguous in some frequency
bands. Such regions can be ignored if the application is limited to localization,
but the uncertainty leads to reduced separation quality when using spectral
masking. Under reverberant conditions the localization cues are additionally
obscured by the presence of echoes which come from all directions. Binaural
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source separation algorithms that address reverberation have been proposed
by emphasizing onsets and suppressing echoes in a process inspired by the
auditory periphery (Palomäki et al., 2004), or by preprocessing the mixture
using a dereverberation algorithm (Roman and Wang, 2006).

In this paper we describe two extensions to the unsupervised MESSL
algorithm which incorporate a prior model of the underlying anechoic source
signal which does not suffer from the same underlying ambiguities as the
interaural observations and therefore is able to better resolve the individual
sources in these regions. Like the supervised separation methods described
above, this approach has the disadvantage of requiring training data to learn
the source prior (SP) model, but as we will show in section 5, such a prior
can significantly improve performance even if it is not perfectly matched to
the test data. Furthermore, because the source prior model is trained using
anechoic speech, it tends to de-emphasize reverberant noise and therefore
improves performance over the MESSL baseline, despite the fact that it does
not explicitly compensate for reverberation in a manner similar to Palomäki
et al. (2004) or Roman and Wang (2006).

The idea of combining localization with source models for separation has
been studied previously in Wilson (2007) and Rennie et al. (2003). Given prior
knowledge of the source locations, Wilson (2007) describes a complementary
method for binaural separation based on a model of the magnitude spectrum
of the source signals. This approach combines a model of the IPD based on
known source locations with factorial model-based separation as in Roweis
(2003) where each frame of the mixed signal is explained by the combination
of models for each of the underlying source signals. The system described
in Wilson (2007) models all sources using the same source-independent (SI)
Gaussian mixture model (GMM) trained on clean speech from multiple
talkers. Such a model generally results in very poor separation due to the lack
of temporal constraints and lack of source-specific information available to
disambiguate the sources (Weiss and Ellis, 2010). In this case, however, the
localization model is able to compensate for these shortcomings. Per-source
binary masks are derived from the joint IPD and source model and shown
to improve performance over separation systems based on localization cues
alone.

Rennie et al. (2003) take a similar approach to combining source models
with known spatial locations for separation using microphone arrays. Instead
of treating the localization and source models independently, they derive
a model of the complex speech spectrum based on a prior on the speech
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magnitude spectrum that takes into account the effect of phase rotation
consistent with a source signal arriving at the microphone array from a
particular direction. Like the other systems described above, Rennie et al.
(2003) is able to separate more sources than there are microphones.

These systems have some disadvantages when compared to the extensions
to MESSL described in this paper. The primary difference is that they
depend on prior knowledge of the source locations whereas MESSL and its
extensions are able to jointly localize and separate sources. Rennie et al.
(2005) describe an extension to Rennie et al. (2003) that is able to estimate
the source locations as well, bringing it closer to our approach. A second
difference is that these systems use a factorial model to model the interaction
between different sources. In Wilson (2007) this leads to inference that scales
exponentially with the number of underlying sources. Although the signal
models in Rennie et al. (2003, 2005) are similar, they are able to manage this
complexity using an approximate variational learning algorithm. In contrast,
exact inference in the model we propose in this paper is linear in the number
of sources.

In the next section, we describe the baseline MESSL algorithm and two
closely related extensions to incorporate a prior distribution over the source
signal statistics: MESSL-SP (Source Prior) which uses the same SI model
for all sources as in Weiss et al. (2008), and MESSL-EV (Eigenvoice) which
uses eigenvoice speaker adaptation (Kuhn et al., 2000) to learn source-specific
parameters to more accurately model the source signals. In both cases,
the information extracted from the interaural cues and source model serve
to reinforce each other. We show that it is possible to obtain significant
improvement in separation performance of speech signals in reverberation
over a baseline system employing only interaural cues. As in Wilson (2007)
and Rennie et al. (2003), the improvement is significant even when the
source models used are quite weak, and only loosely capture the spectral
shapes characteristic of different speech sounds. The use of speaker-adapted
models in MESSL-EV is sometimes able to improve performance even more,
a further improvement over the source-independent models used by other
similar systems.

3. Binaural mixed signal model

We model the mixture of I spatially distinct source signals {xi(t)}i=1..I

based on the binaural observations y`(t) and yr(t) corresponding to the signals
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arriving at the left and right ears respectively. For a sufficiently narrowband
source in an anechoic environment, the observations will be related to a given
source signal primarily by the gain and delay that characterize the direct
path from the source location. However, in reverberant environments this
assumption is confused by the addition of convolutive noise arising from the
room impulse response. In general the observations can be modeled as follows
in the time domain:

y`(t) =
∑

i

xi(t− τ `i ) ∗ h`i(t) (1)

yr(t) =
∑

i

xi(t− τ ri ) ∗ hri (t) (2)

where τi is the delay characteristic of the direct path for source i and h`,ri (t) are
the corresponding “channel” impulse responses for the left and right channels
respectively that approximate the room impulse response and additional
filtering due to the head related transfer function (HRTF), excluding the
primary delay.

3.1. Interaural model

We model the binaural observations in the short-time spectral domain
using the interaural spectrogram XIS(ω, t):

XIS(ω, t) ,
Y`(ω, t)

Yr(ω, t)
= 10α(ω,t)/20ejφ(ω,t) (3)

where Y`(ω, t) and Yr(ω, t) are the short-time Fourier transforms of y`(t)
and yr(t), respectively. For a given time-frequency cell, the interaural level
difference (ILD) in decibels between the two channels is α(ω, t), and φ(ω, t)
is the corresponding interaural phase difference (IPD).

A key assumption in the MESSL signal model is that each time-frequency
point is dominated by a single source. This implies the following approxima-
tions for the observed ILD and IPD:

α(ω, t) ≈ 20 log10

|H`
i(ω)|

|Hr
i (ω)| (4)

φ(ω, t) ≈ ω(τ `i − τ ri ) (5)

where |H(ω)| is the magnitude of H(ω), which is defined analogously to Y(ω, t),
and the subscript i is the index of the particular source dominant at that cell,
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and thus depends on ω and t. These quantities have the advantage of being
independent of the source signal, which is why the baseline MESSL model
does not require knowledge of the distribution of xi(t).

A necessary condition for the accurate modeling of the observation is
that the interaural time difference (ITD) τ `i − τ ri be much smaller than the
window function used in calculating XIS(ω, t). In the experiments described
in section 5, we use a window length of 64 ms and a maximum ITD of about
0.75 ms. Similarly, h`,ri (t) must be shorter than the window. This assumption
does not generally hold in reverberation because a typical room impulse
response has a duration of at least a few hundred milliseconds. However, we
ignore this for the purposes of our model and note that effect of violating
this assumption is to increase the variance in the ILD model. We model the
ILD for source i as a Gaussian distribution whose mean and variance will be
learned directly from the mixed signal:

P
(
α(ω, t) | i, θ

)
= N

(
α(ω, t); υi(ω), η2i (ω)

)
(6)

where θ stands for the otherwise unspecified model parameters.
The model for the IPD requires some additional considerations. It is

difficult to learn the IPD for a given source directly from the mixed signal
because φ(ω, t) is only observed modulo 2π. This is a consequence of spatial
aliasing that results at high frequencies if the ITD is large enough that
|ω(τ ` − τ r)| > π (Yilmaz and Rickard, 2004). Because of this the observed
IPD cannot always be mapped directly to a unique time difference. However,
a particular ITD will correspond unambiguously to a single phase difference.
This is illustrated in figure 1. This motivates a top down approach where
the observed IPD will be tested against the predictions of a set of predefined
time differences. The difference between the IPD predicted by an ITD of τ
samples and the observed IPD is measured by the phase residual:

φ̃τ (ω, t) = arg
(
ejφ(ω,t) e−jωτ

)
(7)

which is always in the interval (−π, π]. Given a predefined set of such τs, the
IPD distribution for a given source has the form of a Gaussian mixture model
with one mixture component for each time difference:

P
(
φ(ω, t), i | θ

)
=
∑

τ

ψiτ N
(
φ̃τ (ω, t); 0, ς2i

)
(8)

where ψiτ = P
(
i, τ
)

are the mixing weights for source i and delay τ .
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Figure 1: Illustration of spatial aliasing in our model of the interaural phase difference
(IPD). The left pane shows the predicted IPD distribution for two distinct sources centered
on their respective values of ω, t. The right pane demonstrates the observed IPDs for the
two sources (dotted lines) with the distributions overlaid. The IPDs are observed modulo
2π due to the periodicity of the complex sinusoid in equation (3). For small interaural time
difference (blue) this is not a problem, however if the ITD is large (red) the IPD wraps
around from −π to π. This is especially problematic in mixtures because the wrapping
results in additional ambiguity when the IPDs for the different sources intersect.

An example of the ILD and IPD observations used by the interaural model
is shown in figure 2. The contributions of the two sources are clearly visible
in both the ILD and IPD observations. The target source, which is located
at an angle of 0◦ relative to the microphones, has an ILD close to zero at all
frequencies while the ILD of the other source becomes increasingly negative
at higher frequencies. This trend is typical of a source off to one side, since
the level difference, which results from the “shadowing” effect of the head or
baffle between the microphones, increases when the wavelength of the sound
is small relative to the size of the baffle. Similarly, the IPD for the target
source has an IPD close to zero at all frequencies while the IPD for the other
source varies with frequency, with the phase wrapping clearly visible at about
1, 3, and 5 kHz.

3.2. Source model

We extend the baseline MESSL model described in the previous section
to incorporate prior knowledge of the source statistics. This makes it possible
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Figure 2: Observed variables in the MESSL-EV model derived from a mixture of two
sources in reverberation separated by 60 degrees. The left column shows example ILD (top)
and IPD (bottom) observations. The right column shows the left and right spectrograms
modeled using the source model.

to model the binaural observations directly:

y`(ω, t) ≈ xi(ω, t) + h`i(ω) (9)

yr(ω, t) ≈ xi(ω, t) + hri (ω) (10)

where xi(ω, t) , 20 log10 |Xi(ω, t)|, and y`(ω, t), yr(ω, t), and hi(ω) are defined
analogously. An example of these observations derived from a mixture of two
sources in reverberation is shown in the right column of figure 2.

For simplicity we model the distribution of the source signal xi(ω, t) using
a Gaussian mixture model with diagonal covariances. The likelihood of a
frame of one frame of the signal, xi(t), can therefore be written as follows:

P
(
xi(t)

)
=
∑

c

πic N
(
xi(t); µic , Σic

)
(11)

where c indexes the different source mixture components (states), and πic =
P
(
c | i
)

are the mixing weights for source i and component c.

We assume that the channel responses h`,ri will be relatively smooth
across frequency, and that they will be constant across the entire mixture,
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i.e. the sources and the sensors remain stationary. The channel response
is parametrized in the DCT domain, giving h`i(ω) = B(ω, :)h`i where B is
a matrix of DCT basis vectors, B(ω, :) is the row of B corresponding to
frequency ω, and h`i is a vector of weights, the projection of the channel
onto the DCT basis. This allows h`,ri to be modeled using many fewer DCT
coefficients than the number of frequency bands Ω.

Combining this model of the channel response with the source model gives
the following likelihoods for the left and right channel spectrograms:

P
(
y`(ω, t) | i, c, θ

)
= N

(
y`(ω, t); µic(ω) +B(ω, :)h`i , σ

2
ic(ω)

)
(12)

P
(
yr(ω, t) | i, c, θ

)
= N

(
yr(ω, t); µic(ω) +B(ω, :)hri , σ

2
ic(ω)

)
(13)

where σ2
ic(ω) is the diagonal entry of Σic corresponding to frequency ω.

3.2.1. Speaker-independent source prior

Because the number of observations in a typical mixture is generally very
small compared to the amount of data needed to reliably train a signal model
describing the distribution of xi(t), we use a speaker-independent prior source
model trained in advance on data from a variety of speakers. When using such
a model, the GMM parameters in equation (11) are independent of i and the
distributions in equations (13) and (12) for each source are only differentiated
by the source-dependent channel parameters. These distributions are therefore
initially uninformative because h`i and hri are initialized to zero, in which
case equations (13) and (12) evaluate to the same likelihood for each source.
However, when the interaural model and source prior model are combined, the
binaural cues begin to disambiguate the sources and the estimated channel
responses help to differentiate the source models. We refer to the combination
of the interaural model and source prior model in this configuration as
MESSL-SP.

3.2.2. Eigenvoice adaptation

Alternatively, we can use model adaptation to take advantage of the
source-dependent characteristics of the different sources despite the lack of
sufficient observed data to robustly estimate source-dependent distributions.
Model adaptation is a widely studied topic in automatic speech recognition.
Kuhn et al. (2000) propose the “eigenvoice” technique for rapid speaker
adaptation when the amount of adaptation data is limited, as little as a
single utterance containing only a few seconds of speech. When incorporating
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eigenvoice adaptation into the combined interaural and source models, we
refer to the model as MESSL-EV.

The eigenvoice idea is to represent the means of a speaker-dependent
GMM as a linear combination of a “mean voice”, essentially corresponding to
the SI model, and a set of basis vectors U . The likelihood of component c
under such an adapted model for source i can be written as follows:

P
(
xi(t) | c, wi

)
= N

(
xi(t); µc(wi), Σ̄c

)
(14)

µci = µc(wi) = µ̄c +
∑

k

wik µ̂ck = µ̄c + Ucwi (15)

where µ̄c and Σ̄c are the mean and covariance, respectively, of the SI model, µ̂ck
is the kth basis vector for mixture component c, and Uc = [µ̂c1, µ̂c2, . . . , µ̂cK ].

Essentially, the high dimensional model parameters for a particular speaker
are represented as a function of the low dimensional adaptation parameters
wi, which typically contains only a few tens of dimensions. The bulk of the
knowledge of speakers characteristics is embedded in the predefined speaker
basis vectors U . Adaptation is just a matter of learning the ideal combination
of bases, essentially projecting the observed signal onto the space spanned by
U .

The eigenvoice bases U are learned from a set of pre-trained SD models
using principal component analysis. For each speaker in the training data,
a supervector of model parameters, µi, is constructed by concatenating the
set of Gaussian means for all mixture components in the model. Parameter
supervectors are constructed for all M speaker models and used to construct
a parameter matrix P = [µ1, µ2, . . . , µM ] that spans the space of speaker
variation. The mean voice µ̄ is found by taking the mean across columns
of P . Performing the singular value decomposition on P − µ̄ then yields
orthonormal basis vectors for the eigenvoice space, U .

Although the ordering of components in the parameter supervectors is
arbitrary, care must be taken to ensure that the ordering is consistent for all
speakers. A simple way to guarantee this consistency is to use an identical
initialization for learning all of the underlying speaker models. We therefore
bootstrap each SD model using the SI model described above to ensure that
each mixture component of the SD models corresponds directly to the same
component in the SI model.

A more detailed discussion of eigenvoice adaptation is beyond the scope
of this paper. Its application to model-based source separation is explored in
detail in Weiss and Ellis (2010) and Weiss (2009).
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3.3. Putting it all together

Combining the model of the interaural signals with the source model gives
the complete likelihood of the model including the hidden variables:

P
(
φ(ω, t), α(ω, t), y`(ω, t), yr(ω, t), i, τ , c | θ

)

= P
(
i, τ
)
P
(
φ(ω, t) | i, τ , θ

)
P
(
α(ω, t) | i, θ

)

P
(
c | i
)
P
(
y`(ω, t) | i, c, θ

)
P
(
yr(ω, t) | i, c, θ

)
(16)

This equation explains each time-frequency point of the mixed signal as being
generated by a single source i at a given delay τ using a particular component
c in the source model. The graphical model corresponding to this factorization
is shown in figure 3. This figure only includes the observations and those
parameters that are estimated to match a particular mixture. We describe the
parameter estimation and source separation process in the following section.
For simplicity we omit the parameters that remain fixed during separation,
including πc, µ̄c, Uc, and Σc, which are learned offline from a corpus of training
data. It is also important to note that the figure depicts the full MESSL-EV
model. If eigenvoice adaptation is not used, then wi is clamped to zero and
the model reduces to the original MESSL-SP model as described in Weiss
et al. (2008).

Note that all time-frequency points are conditionally independent given
the model parameters. The total likelihood of the observations can therefore
be written as follows:

P
(
φ, α, y` , yr | θ

)
=
∏

ωt

∑

iτc

P
(
φ(ω, t), α(ω, t), y`(ω, t), yr(ω, t), i, τ , c | θ

)

(17)

The combined model is essentially the product of three independent mixtures of
Gaussians, corresponding to the IPD, ILD, and source models. For conciseness
we will drop the (ω, t) where convenient throughout the remainder of this
paper.

4. Parameter estimation and source separation

The model described in the previous section can be used to separate
sources because it naturally partitions the mixture spectrogram into regions
dominated by different sources. Given estimates of the source-specific model
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Figure 3: MESSL-EV graphical model of a mixture spectrogram. Each time-frequency
point is explained by a source i, a delay τ , and a source model component c. Square nodes
represent discrete variables and round nodes represent continuous variables Shaded nodes
correspond to observed quantities.

parameters θ = {ψiτ , ς2i , υi, η2
i , wi, h

`
i , h

r
i}, the responsibilities at each time-

frequency point can be easily computed. Similarly, given knowledge of
the responsibilities, it is straightforward to estimate the model parameters.
However, because neither of these quantities are generally known in advance,
neither can be computed directly. We derive an expectation-maximization
algorithm to iteratively learn both the parameters and responsibilities of
time-frequency points for each source in a particular mixture.

The E-step consists of evaluating the posterior responsibilities for each
time-frequency point given the estimated parameters for iteration j, θj. We
introduce a hidden variable representing the posterior of i, τ and c in a
particular time-frequency cell:

ziτc(ω, t) =
P
(
φ, α, y` , yr , i, τ , c | θj

)
∑

iτc P
(
φ, α, y` , yr , i, τ , c | θj

) (18)

This is easily computed using the factorization in equation (16).
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The M-step consists of maximizing the expectation of the total log-
likelihood given the current parameters θj:

L
(
θ | θj

)
= k +

∑

ωt

∑

iτc

ziτc(ω, t) logP
(
φ, α, y` , yr , i, τ , c | θ

)
(19)

where k is a constant that is independent of θ.
The maximum likelihood model parameters are weighted means of sufficient

statistics of the data. First, we define the operator

〈x〉t,τ ,
∑

t,τ ziτc(ω, t)x∑
t,τ ziτc(ω, t)

(20)

as the weighted mean over the specified variables, t and τ in this case, weighted
by ziτc(ω, t). The updates for the interaural parameters can then be written
as follows:

ς2i =
〈
φ̃2
τ (ω, t)

〉
ω,t,τ,c

(21)

υi(ω) = 〈α(ω, t)〉t,τ,c (22)

η2i (ω) =
〈
(α(ω, t)− υi(ω))2

〉
t,τ,c

(23)

ψiτ =
1

ΩT

∑

ωtc

ziτc(ω, t) (24)

Unlike the interaural parameters, the source model parameters are tied
across frequency to ensure that each time frame is explained by a single
component in the source prior. The updated parameters can be found by
solving the following set of simultaneous equations for wi,h

`
i , and hri :

∑

tc

UT
c Mict Σ̄−1c

(
2 (µ̄c + Ucwi) +B (hri + h`i)

)

=
∑

tc

UT
c Mict Σ̄−1c

(
y`(t) + yr(t)

)

(25)
∑

tc

BTMict Σ̄−1c
(
µ̄c + Ucwi +Bh`i

)
=
∑

tc

BTMict Σ̄−1c y`(t) (26)

∑

tc

BTMict Σ̄−1c
(
µ̄c + Ucwi +Bhri

)
=
∑

tc

BTMict Σ̄−1c yr(t) (27)
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where Mict is a diagonal matrix whose diagonal entries correspond to a
soft mask encoding the posterior probability of component c from source i
dominating the mixture at frame t:

Mict , diag

(∑

τ

ziτc(:, t)

)
(28)

This EM algorithm is guaranteed to converge to a local maximum of
the likelihood surface, but because the total likelihood in equation (17) is
not convex, the quality of the solution is sensitive to initialization. We
initialize ψiτ using an enhanced cross-correlation based localization method
while leaving all the other parameters in a symmetric, non-informative state.
From those parameters, we compute the first E step mask.

Initial estimates of τ are obtained for each source from the PHAT-
histogram (Aarabi, 2002), which estimates the time delay between x`(t)
and xr(t) by whitening the signals and then computing their cross-correlation.
Then, ψiτ is initialized to be centered at each cross-correlation peak and to
fall off away from that. Specifically, P

(
τ | i
)
, which is proportional to ψiτ , is

set to be approximately Gaussian, with its mean at each cross correlation
peak and a standard deviation of one sample. The remaining IPD, ILD, and
source model parameters are estimated from the data in the M-step following
the initial E-step.

It should be noted that initializing models with a large number of pa-
rameters requires some care to avoid source permutation errors and other
local maxima. This is most important with regards to the ILD parameters υi
and ηi which are a function of frequency. To address this problem, we use
a bootstrapping approach where initial EM iterations are performed with a
frequency-independent ILD model, and frequency-dependence is gradually in-
troduced. Note that the number of EM iterations is specified in advance, and
is set to 16 in the experiments described in the following section. Specifically,
for the first half of the total number of iterations, we tie all of the parameters
across frequency. For the next iteration, we tie the parameters across two
groups, the low and high frequencies, independently of one another. For the
next iteration, we tie the parameters across more groups, and we increase the
number of groups for subsequent iterations until in the final iteration, there is
no tying across frequency and all parameters are independent of one another.

Figure 4 shows the interaural parameters estimated from the observations
in figure 2 using the EM algorithm described in this section. The algorithm
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Figure 4: Interaural model parameters estimated by the EM algorithm given the observa-
tions shown in figure 2. In the bottom left plot, solid lines indicate υi, the mean ILD for
each source, while dotted lines indicate υi ± ηi.

does a good job localizing the sources, as shown in the plot of ψiτ . The ILD
distribution (bottom left) accurately characterizes the true distribution as
well. As described earlier, the ILD of the source facing the microphones head
on (source 1), is basically flat across the entire frequency range while that of
source 2 becomes more negative with frequency. Similarly, the per-source IPD
distributions shown in the right hand column closely match the predictions
made earlier as well. These distributions consist of a mixture of Gaussians
calculated by marginalizing over all possible settings of τ as in equation (8).
Since ψiτ contains non-zero probability mass for multiple τ settings near the
correct location for each source, there is some uncertainty as to the exact
source locations. The mixture components are spaced further apart at high
frequencies because of their proportionality to ω. This is why the distributions
are quite tight at low frequencies, but get gradually broader with increasing
frequency.

The estimated source model parameters are shown in figure 5. As with
the ILD and IPD parameters, the source model parameters are initialized to
an uninformative state. However, as the binaural cues begin to disambiguate
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Figure 5: Source model parameters estimated by the EM algorithm given the observations
shown in figure 2. The overall model for source i is the sum of the speaker-independent
means, µ̄, the source-adapted term Uwi based on the eigenvoice model of inter-speaker
variability, and the channel response at each ear, Bh`,r

i .

the sources, the learned channel responses and source adaptation parameters
help to differentiate the source models. By the time the algorithm has
converged, the source models have become quite different, with wi learning
the characteristics unique to each source under the predefined eigenvoice
model that are common to both left and right observations, e.g. the increased
energy near 6 kHz in many components for source 2. h`,ri similarly learns the
magnitude responses of the filters applied to each channel. Note that the
overall shapes of Bh`,ri reflect the effects of the HRTFs applied to the source
in creating the mixture. These are unique to the particular mixture and were
not present in the training data used to learn µ̄ and U . The difference between
the channel response at each ear, Bh`i − Bhri , reflects the same interaural
level differences as the ILD parameters, υi in figure 4.

Although the parameters learned by the MESSL model are interesting
in their own right, they cannot separate the sources directly. After the EM
algorithm converges, we derive a time-frequency mask from the posterior
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Figure 6: Contribution of the IPD, ILD, and source model to the final mask learned using
the full MESSL-EV algorithm on the mixtures from figure 2. The SNR improvement
computed using equation (32) is shown in parenthesis.

probability of the hidden variables for each source:

Mi(ω, t) =
∑

τc

ziτc(ω, t) (29)

Estimates of clean source i can then be obtained by multiplying the short-
time Fourier transform of each channel of the mixed signal by the mask for
the corresponding source. This assumes that the mask is identical for both
channels.

X̂`
i(ω, t) = Mi(ω, t) Y`(ω, t) (30)

X̂r
i (ω, t) = Mi(ω, t) Yr(ω, t) (31)

Figure 6 shows an example mask derived from the proposed algorithm.
To demonstrate the contributions of the different types of observations in
the signal model to the overall mask, we also plot masks isolating the IPD,
ILD, and source models. These masks are found by leaving unrelated terms
out of the factored likelihood and computing “marginal” posteriors, i.e. the
full model is used to learn the parameters, but in the final EM iteration
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Figure 7: Contribution of the IPD and ILD to the final mask learned using the baseline
MESSL separation algorithm using only the interaural signal model on the mixtures from
figure 2. The SNR improvement computed using equation (32) is shown in parenthesis.

the contributions of each underlying model to the complete likelihood in
equation (16) are treated independently to compute three different posterior
distributions.

The IPD and ILD masks make qualitatively different contributions to the
final mask, so they serve as a good complement to one another. The IPD
mask is most informative in low frequencies, and has characteristic subbands
of uncertainty caused by the spatial aliasing described earlier. The ILD
mask primarily adds information in high frequencies above 2 kHz and so it is
able to fill in many of the regions where the IPD mask is ambiguous. This
poor definition in low frequencies is because the per-source ILD distributions
shown in figure 4 have significant overlap below 2 kHz. These observations
are consistent with the use of the ITD and ILD cues for sound localization in
human audition (Wightman and Kistler, 1992).

Finally, the source model mask is qualitatively quite similar to the ILD
mask, with some additional detail below 2 kHz. This is not surprising because
both the ILD and source models capture related features of the mixed signal.
We expect that the additional constraints from the prior knowledge built into
the source model should allow for more accurate estimation than the ILD
model alone, however it is not clear that this is the case based on this figure.

To better illustrate the contribution of the source model, figure 7 shows
the mask estimated from the same data using the baseline MESSL algorithm
of Mandel and Ellis (2007) which is based only on the interaural model. The
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MESSL mask is considerably less confident (i.e. less binary) than that of the
MESSL-EV mask in figure 6. The contribution of the IPD mask is quite
similar in both cases. The difference in quality between the two systems is a
result of the marked difference in the ILD contributions. The improvement
in the MESSL-EV case can be attributed to the addition of the source model,
which, although not as informative on its own, is able to indirectly improve
the estimation of the ILD parameters. This is because the source model
introduces correlations across frequency, that are only loosely captured by
the ILD model during initial iterations. This is especially true in the higher
frequencies which are highly correlated in speech signals. By modeling each
frame with GMM components with a different spectral shape, the source
model is able to decide which time-frequency regions are a good fit to each
source based on how well the observations in each frame match the source
prior distribution. It is able to isolate the sources based on how speech-like
they are, using prior knowledge such as the high-pass shape characteristic of
fricatives and characteristic resonance structure of vowels, etc. In contrast,
the ILD model treats each frequency band independently and is prone to
source permutations if poorly initialized. Although the bootstrapping process
described earlier alleviates these problems to some extent, the source model’s
ability to emphasize time-frequency regions consistent with the underlying
speech model further reduces this problem and significantly improves the
quality of the interaural parameters and thus the overall separation.

5. Experiments

In this section we describe a set of experiments designed to evaluate the
performance of the proposed algorithm under a variety of different conditions
and compare it to two other well known binaural separation algorithms. We
assembled a data set consisting of mixtures of two and three speech signals
in simulated anechoic and reverberant conditions. The mixtures were formed
by convolving anechoic speech utterances with a variety of different binaural
impulse responses. We formed two such data sets, one from utterances from
the GRID corpus (Cooke et al., 2006) for which training data was available for
the source model, and another using the TIMIT corpus (Garofolo et al., 1993)
to evaluate the performance on held out speakers using the GRID source
models. Although the TIMIT data set contains speech from hundreds of
different speakers, it does not contain enough data to adequately train models
for each of these speakers. This makes it a good choice for evaluation of the
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eigenvoice adaptation technique. In both cases, we used a randomly selected
subset of 15 utterances to create each test set. Prior to mixing, the utterances
were passed through a first order pre-emphasis filter to whiten their spectra
to avoid overemphasizing the low frequencies in our SNR performance metric.

The anechoic binaural impulse responses came from Algazi et al. (2001),
a large effort to record head-related transfer functions for many different
individuals. We use the measurements for a KEMAR dummy head with small
ears, taken at 25 different azimuths at 0◦ elevation. The reverberant binaural
impulse responses were recorded by Shinn-Cunningham et al. (2005) in a real
classroom with a reverberation time of around 565 ms. These measurements
were also made with a KEMAR dummy head, although a different unit was
used. The measurements we used were taken in the center of the classroom,
with the source 1 m from the head at 7 different azimuths, each repeated 3
times.

In the synthesized mixtures, the target speaker was located directly in
front of the listener, with distractor speakers located off to the sides. The
angle between the target and distractors was systematically varied and the
results combined for each direction. In the anechoic setting, there were 12
different angles at which we placed the distractors. In the reverberant setting,
there were 6 different angles, but 3 different impulse response pairs for each
angle, for a total of 18 conditions. Each setup was tested with 5 different
randomly chosen sets of speakers and with one and two distractors, for a total
of 300 different mixtures. We measure the performance of separation with
signal-to-noise ratio improvement, defined for source i as follows:

SNRIi = 10 log10

‖MiXi‖2
‖Xi −Mi

∑
j Xj‖2

− 10 log10

‖Xi‖2
‖∑j 6=i Xj‖2

(32)

where Xi is the clean spectrogram for source i, Mi is the corresponding mask
estimated from the mixture, and ‖ · ‖ is the Frobenius norm operator. This
measure penalizes both noise that is passed through the mask and signal that
is rejected by the mask.

We also evaluate the speech quality of the separations using the Perceptual
Evaluation of Speech Quality (PESQ) (Loizou, 2007, Sec. 10.5.3.3). This
measure is highly correlated with the Mean Opinion Score (MOS) of human
listeners asked to evaluate the quality of speech examples. MOS ranges from
-0.5 to 4.5, with 4.5 representing the best possible quality. Although it was
initially designed for use in evaluating speech codecs, PESQ can also be used
to evaluate speech enhancement systems.
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We compare the proposed separation algorithms to the two-stage frequency-
domain blind source separation system from Sawada et al. (2007) (2S-FD-BSS),
the Degenerate Unmixing Estimation Technique from Jourjine et al. (2000);
Yilmaz and Rickard (2004) (DUET), and the performance using ground truth
binary masks derived from oracle knowledge of the clean source signals. The
ground truth mask for source i is set to 1 for regions of the spectrogram
dominated by that source, i.e. regions with a local SNR greater than 0 dB,
and set to zero elsewhere. It represents the ideal binary mask (Wang, 2005)
and serves as an upper bound on separation performance.

We also compare three variants of our system: the full MESSL-EV al-
gorithm described in the previous section, the MESSL-SP algorithm from
Weiss et al. (2008) that uses a speaker-independent source prior distribu-
tion (identical to MESSL-EV but with wi fixed at zero), and the baseline
MESSL algorithm from Mandel and Ellis (2007) that does not utilize source
constraints at all. The MESSL-SP system uses a 32 mixture component,
speaker-independent model trained over data from all 34 speakers in the
GRID data set. Similarly, the MESSL-EV system uses a 32 component
eigenvoice speech model source GMMs trained over all 34 speakers. All 33
eigenvoice bases were retained. Figure 8 shows example masks derived from
these systems.

DUET creates a two-dimensional histogram of the interaural level and
time differences observed over an entire spectrogram. It then smooths the
histogram and finds the I largest peaks, which should correspond to the I
sources. DUET assumes that the interaural level and time difference are
constant at all frequencies and that there is no spatial aliasing, conditions
which can be met to a large degree with free-standing microphones close to
one another. With dummy head recordings, however, the interaural level
difference varies with frequency and the microphones are spaced far enough
apart that there is spatial aliasing above about 1 kHz. Frequency-varying
ILD scatters observations of the same source throughout the histogram as
does spatial aliasing, making the sources more difficult to isolate. As shown
in figure 8, this manifests itself as poor estimation in frequencies above 4 kHz
which the algorithm overwhelmingly assigns to a single source, and spatial
aliasing in subbands around 1 and 4 kHz.

The 2S-FD-BSS system uses a combination of ideas from model-based
separation and independent component analysis (ICA) that can separate
underdetermined mixtures. In the first stage, blind source separation is
performed on each frequency band of a spectrogram separately using a
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Figure 8: Example binary masks found using the different separation algorithms evaluated
in section 5. The mixed signal is composed of two GRID utterances in reverberation
separated by 60 degrees.

probabilistic model of mixing coefficients. In the second stage, the sources
in different bands are associated with the corresponding signals from other
bands using k-means clustering on the posterior probabilities of each source
and then further refined by matching sources in each band to those in nearby
and harmonically related bands. The first stage encounters problems when a
source is not present in every frequency and the second encounters problems if
sources’ activities are not similar enough across frequency. Such second stage
errors are visible in the same regions where spatial aliasing causes confusion for
the other separation algorithms in the 2S-FD-BSS mask shown in figure 8. In
general, such errors tend to happen at low frequencies, where adjacent bands
are less well-correlated. In contrast, the failure mode of the MESSL variants
is to pass both sources equally when it is unable to sufficiently distinguish
between them. This is clearly visible in the regions of the MESSL mask in
figure 8 that have posteriors close to 0.5. As a result 2S-FD-BSS is more
prone to source permutation errors where significant target energy can be
rejected by the mask.
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System A2 R2 A3 R3 Avg

Ground truth 11.83 11.58 12.60 12.26 12.07
MESSL-EV 8.79 7.85 8.20 7.54 8.09
MESSL-SP 6.30 7.39 7.08 7.18 6.99
MESSL 7.21 4.37 6.17 3.56 5.33
2S-FD-BSS 8.91 6.36 7.94 5.99 7.30
DUET 2.81 0.59 2.40 0.86 1.67

Table 1: Average SNR improvement (in dB) across all distractor angles on mixtures created
from the GRID data set. The test cases are described by the number of simultaneous
sources (2 or 3) and whether the impulse responses were anechoic or reverberant (A or R).

System A2 R2 A3 R3 Avg

Ground truth 3.41 3.38 3.10 3.04 3.24
MESSL-EV 3.00 2.65 2.32 2.24 2.55
MESSL-SP 2.71 2.62 2.22 2.22 2.44
MESSL 2.81 2.39 2.15 1.96 2.33
2S-FD-BSS 2.96 2.50 2.28 2.04 2.44
DUET 2.56 2.03 1.85 1.53 1.99
Mixture 2.04 2.04 1.60 1.67 1.84

Table 2: Average PESQ score (mean opinion score) across all distractor angles on mixtures
created from the GRID data set.

5.1. GRID performance

The average performance of the evaluated algorithms on the GRID data
set is summarized in tables 1 and 2 using the SNR improvement and PESQ
metrics, respectively. Broadly speaking, all algorithms perform better in
anechoic conditions than in reverberation and on mixtures of two sources
than on mixtures of three sources under both metrics. In most cases MESSL-
EV performs best, followed by MESSL-SP and 2S-FD-BSS. 2S-FD-BSS
outperforms MESSL-SP in anechoic conditions, however, in reverberation,
this trend is reversed and 2S-FD-BSS performs worse. Both of the MESSL
variants perform significantly better than the MESSL baseline for reasons
described in the previous section. The addition of speaker adaptation in
MESSL-EV gives an overall improvement of about 1.1 dB over MESSL-SP and
2.8 dB over MESSL in SNR improvement on average. 2S-FD-BSS generally
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performs better than MESSL, but not as well as MESSL-SP and MESSL-EV.
The exception is on mixtures of two sources in anechoic conditions where 2S-
FD-BSS performs best overall in terms of SNR improvement. Finally, DUET
performs worst, especially in reverberation where the IPD/ILD histograms
are more diffuse, making it difficult to accurately localize the sources.

We note that unlike the initial results reported in Weiss et al. (2008)
MESSL-SP does not perform worse than MESSL on anechoic mixtures. The
problems in Weiss et al. (2008) were caused by the channel parameters h`,ri
over-fitting which led to source permutations. To fix this problem in the
results reported here, we used a single, flat channel basis for the channel
parameters in anechoic mixtures. In reverberant mixtures 30 DCT bases were
used.

The poor performance of some of the MESSL systems in table 1 on
anechoic mixtures is a result of poor initialization at small distractor angles.
An example of this effect can be seen in the left column of figure 9 where the
MESSL systems have very poor performance compares to 2S-FD-BSS when
the sources are separated by 5 degrees. However, as the sources get further
apart, the performance of all of the MESSL systems improves dramatically.
The very poor performance at very small angles heavily skews the averages
in table 1. This problem did not affect MESSL’s performance on reverberant
mixtures because the minimum separation between sources on that data is 15
degrees and the initial localization used to initialize MESSL was adequate.
Finally, 2S-FD-BSS was unaffected by this problem at small distractor angles
because, unlike the other systems we evaluated, it does not directly utilize
the spatial locations for separation.

MESSL, 2S-FD-BSS, and DUET all perform significantly better on ane-
choic mixtures that on reverberant mixtures because the lack of noise from
reverberant echoes makes anechoic sources much easier to localize. As de-
scribed in the previous section, the additional constraints from the source
models in MESSL-EV and MESSL-SP help to resolve the ambiguities in the
interaural parameters in reverberation so the performance of these systems
does not degrade nearly as much in reverberation. In reverberation MESSL-
EV and MESSL-SP both improve over the MESSL baseline by over 3 dB.
The added benefit from the speaker adaptation in MESSL-EV is limited in
reverberation, but is significant in anechoic mixtures. This is likely a result of
the fact that the EV model has more degrees of freedom to adapt to the obser-
vation. The MESSL-SP system can only adapt a single parameter per source
in anechoic conditions due the limited model of channel variation described
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System A2 R2 A3 R3 Avg

Ground truth 12.09 11.86 12.03 11.84 11.95
MESSL-EV 10.08 8.36 8.21 7.22 8.47
MESSL-SP 10.00 8.10 7.97 6.96 8.26
MESSL 9.66 5.83 7.12 4.32 6.73
2S-FD-BSS 10.29 7.09 6.17 4.86 7.10
DUET 3.87 0.59 3.63 0.62 2.18

Table 3: Average SNR improvement (in dB) across all distractor angles on mixtures created
from the TIMIT data set. The test cases are described by the number of simultaneous
sources (2 or 3) and whether the impulse responses were anechoic or reverberant (A or R).

System A2 R2 A3 R3 Avg

Ground truth 3.35 3.33 3.06 3.02 3.19
MESSL-EV 2.99 2.52 2.30 2.11 2.48
MESSL-SP 2.98 2.50 2.28 2.10 2.47
MESSL 2.92 2.33 2.24 1.96 2.36
2S-FD-BSS 3.07 2.36 1.91 1.76 2.28
DUET 2.59 1.85 2.01 1.48 1.98
Mixture 1.96 1.92 1.53 1.62 1.76

Table 4: Average PESQ score (mean opinion score) across all distractor angles on mixtures
created from the TIMIT data set.

above. Finally, we note that the addition of the source model in MESSL-EV
and MESSL-SP is especially useful in underdetermined conditions (i.e. A3
and R3) because of the source model’s ability to emphasize time-frequency
regions consistent with the underlying speech model which would otherwise
be ambiguous. In two source mixtures this effect is less significant because
the additional clean glimpses of each source allow for more robust estimation
of the interaural parameters.

5.2. TIMIT performance

Tables 3 and 4 show the performance of the different separation algorithms
on the data set derived from TIMIT utterances. The trends are very similar
to those seen in the GRID data set, however performance in general tends to
be a bit better in terms of SNR improvement. This is probably because the
TIMIT utterances are longer than the GRID utterances, and the additional
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Data set System 1 – System 2 A2 R2 A3 R3 Avg

GRID
MESSL-EV – MESSL 1.58 3.46 2.03 3.98 2.76
MESSL-EV – MESSL-SP 2.49 0.48 1.12 0.36 1.10

TIMIT
MESSL-EV – MESSL 0.42 2.53 1.09 2.89 1.74
MESSL-EV – MESSL-SP 0.08 0.26 0.24 0.26 0.21

Table 5: Comparison of the relative performance in terms of dB SNR improvement of
MESSL-EV to the MESSL baseline and MESSL-SP on both the GRID data set where the
source models are matched to the test data, and on the TIMIT data set where the source
models are mismatched to the test data.

observations lead to more robust localization which in turn leads to better
separation. The main point to note from the results in table 3 is that the
performance improvement of MESSL-EV over the other MESSL variants
is significantly reduced when compared to the GRID experiments. This is
because of the mismatch between the mixtures and the data used to train
the models. However, despite this mismatch, the performance improvement
of the MESSL variants that incorporate a prior source model still show a
significant improvement over MESSL.

The performance of MESSL-EV relative to the other MESSL variants on
both data sets is compared in table 5. On the matched data set, MESSL-EV
outperforms MESSL by an average of about 2.8 dB and also outperforms
MESSL-SP by an average of 1.1 dB. However, on the mismatched data set the
improvement of MESSL-EV is significantly reduced. In fact, the improvement
of MESSL-EV over MESSL-SP on this data set is only 0.2 dB on average.
This implies that the eigenvoice model of speaker variation is significantly less
informative when applied to speakers that are very different from those in
the train set. The bulk of MESSL-EV’s improvement is therefore due to the
speaker-independent portion of the model which is still a good enough model
for speech signals in general to improve performance over MESSL, even on
mismatched data.

The small improvement in the performance of MESSL-EV when the
training and test data are severely mismatched is the result of a number of
factors. The primary problem is that a relatively small set of speakers were
used to train the GRID eigenvoice bases. In order to adequately capture the
full subspace of speaker variation and generalize well to held-out speakers,
data from a large number of training speakers, on the order of a few hundred,
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are typically required (Weiss, 2009). In these experiments, training data was
only available for 34 different speakers.

This lack of diversity in the training data is especially relevant because
of the significant differences between the GRID and TIMIT speakers. The
speakers in the GRID data set were all speaking British English while TIMIT
consists of a collection of American speakers. There are significant pronunci-
ation differences between the two dialects, e.g. British English is generally
non-rhotic, which lead to signification differences in the acoustic realizations
of common speech sounds and therefore differences between the corresponding
speech models. These differences make it impossible to fully capture the
nuances of the other dialect without including some speakers of both dialects
in the training set. Finally, the likelihood that the eigenvoice model will
generalize well to capture speaker-dependent characteristics across both data
sets is further decreased because the models themselves were quite small,
consisting of only 32 mixture components.

5.3. Performance at different distractor angles

Finally, the results on the TIMIT set are shown as a function of distractor
angle in figure 9. Performance of all algorithms generally improves when the
sources are better separated in space. In anechoic mixtures of two sources
the MESSL variants all perform essentially as well as ground truth masks
when the sources are separated by more than 40◦. None of the systems are
able to approach ideal performance under the other conditions. As noted
earlier, 2S-FD-BSS performs best on 2 source anechoic mixtures in tables 1
and 3. As seen in figure 9 this is mainly an effect of very poor performance
of the MESSL systems on mixtures with small distractor angles. All MESSL
variants outperform 2S-FD-BSS when the are separated by more than about
20◦. The poor performance of MESSL when the sources are separated by 5◦

is a result of poor initialization due to the fact that localization is difficult
because the parameters for all sources are very similar. This is easily solved
by using better initialization. In fact, it is possible to effectively combine
the strengths of both of the ICA and localization systems by using the mask
estimated by 2S-FD-BSS to initialize the MESSL systems. This would require
starting the separation algorithm with the M-step instead of the E-step as
described in section 4, but the flexibility of our model’s EM approach allows
this. We leave the investigation of the combination of these techniques as
future work.
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Figure 9: Separation performance on the TIMIT data set as a function of distractor angle.

This dependence on spatial localization for adequate source separation
highlights a disadvantage of the MESSL family of algorithms, especially as
compared to model-based binaural separation algorithms that use factorial
model combination (Rennie et al., 2003; Wilson, 2007). As seen in the
examples of figures 6 and 7, in MESSL-SP and MESSL-EV the source model
is used to help disambiguate uncertainties in the interaural localization model.
It does not add any new information about the interaction between the two
sources and can only offer incremental improvements over the MESSL baseline.
Therefore the addition of the source model does not improve performance
when the sources are located very close to each other in space.

In contrast, in Rennie et al. (2003) and Wilson (2007), the factorial source
model is used to model the interaction between the sources directly. In
these algorithms, the localization cues are used to disambiguate the source
model, which, on its own is inherently ambiguous because identical, speaker-

29



independent models are used for all sources. This makes it impossible for the
models to identify which portions of the signal are dominated by each source
without utilizing the fact that they arrive from distinct spatial locations.
These algorithms therefore suffer from similar problems to MESSL at very
small distractor angles where the localization cues are similar for all sources.
However, this could be overcome by incorporating additional knowledge about
the differences between the distributions of each source signal through the use
of speaker-dependent models, or model adaptation as described in this paper.
When the sources are close together the binaural separation problem reduces
to that of monaural separation, where factorial model based techniques using
source-dependent or -adapted models have been very successful (Weiss and
Ellis, 2010). MESSL-EV, however, still suffers at small distractor angles
despite utilizing source-adapted models.

The advantage of MESSL-EV over the factorial model approach to com-
bining source models with localization cues is that it enables efficient inference
because it is not necessary to evaluate all possible model combinations. This
is because each time-frequency cell is assumed to be conditionally independent
given the latent variables. Because each frequency band is independent given
a particular source and mixture component, the sources decouple and all
combinations need not be considered. This becomes especially important for
dense mixtures of many sources. As the number of sources grows, the factorial
approach scales exponentially in terms of the number of Gaussian evaluations
required (Roweis, 2003). In contrast, the computational complexity of the
algorithms described in this paper scale linearly in the number of sources.

6. Summary

We have presented a system for source separation based on a probabilistic
model of binaural observations. A model of the interaural spectrogram that is
independent of the source signal is combined with a prior model of the statistics
of the underlying anechoic source spectrogram to obtain a hybrid localization
and source model based separation algorithm. The joint model explains each
point in the mixture spectrogram as being generated by a single source, with
a spatial location consistent with a particular time-delay drawn from a set
of candidate values, and whose underlying source signal is generated by a
particular mixture component in the prior source model. The computational
complexity therefore scales linearly in each of these parameters, since the
posterior distribution shown in equation (18) takes all possible combinations

30



of the source, candidate time-delay, and source prior hidden variables into
account. Despite the potentially large number of hidden variables, the scaling
behavior is favorable compared to separation algorithms based on factorial
model combination.

Like other binaural separation algorithms which can separate underdeter-
mined mixtures, the separation process in the proposed algorithm is based
on spectral masking. The statistical derivation of MESSL and the variants
described in the paper represents an advantage when compared to other
algorithms in this family, most of which are constructed based on computa-
tional auditory scene analysis heuristics which are complex and difficult to
implement.

In the experimental evaluation, we have shown that the proposed model
is able to obtain a significant performance improvement over the algorithm
that does not rely on a prior source model and another state of the art source
separation algorithms based on frequency domain ICA. The improvement
is substantial even when the prior on the source statistics is quite limited,
consisting of a small speaker-independent model. In this case, the sources are
differentiated through the source-specific channel model which compensates
for the binaural room impulse responses applied to each of the source signals.
Despite the fact that the proposed algorithm does not incorporate an explicit
model of reverberation, we have shown that the additional constraints derived
from the anechoic source model are able to significantly improve performance
in reverberation. The investigation of an model extensions similar to Palomäki
et al. (2004) which compensate for early echoes to remove reverberant noise
remains as future work.

Finally, we have shown that the addition of source model adaptation
based on eigenvoices can further improve performance under some conditions.
The performance improvements when using source adaptation are largest
when the test data comes from the same sources as were used to train the
model. However, when the training and test data are severely mismatched,
the addition of source adaptation only boosts performance by a small amount.
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