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Unsupervised Discovery of Temporal Structure in
Music

Ron J. Weiss, Member IEEE, Juan Pablo Bello, Member IEEE,

Abstract—We describe a data-driven algorithm for automat-
ically identifying repeated patterns in music which analyzes a
feature matrix using shift-invariant probabilistic latent compo-
nent analysis. We utilize sparsity constraints to automatically
identify the number of patterns and their lengths, parameters
that would normally need to be fixed in advance, as well as
to control the structure of the decomposition. The proposed
analysis is applied to beat-synchronous chromagrams in order
to concurrently extract recurrent harmonic motifs and their
locations within a song. We demonstrate how the analysis can
be used to accurately identify riffs in popular music and explore
the relationship between the derived parameters and a song’s
underlying metrical structure. Finally, we show how this analysis
can be used for long-term music structure segmentation, resulting
in an algorithm that is competitive with other state-of-the-art
segmentation algorithms based on hidden Markov models and
self similarity matrices.

I. INTRODUCTION

Repetition is widely acknowledged to play a fundamental
role in music, with many common musical terms, such as riff,
groove, motive, tempo, meter or section, largely defined as a
function of the presence or absence of recurrent patterns. In its
many guises, repetition has been linked to the coherence and
intelligibility of musical works, and features prominently in
the most influential theories of music analysis, often associated
with notions of structural organization and form [1]–[3].

While particularly strong in popular music, this prevalence
of repetition is ubiquitous across periods, styles and traditions.
This is exemplified by the recurrent riffs and sections of both
punk and salsa music; the recapitulation of themes and motives,
often in different keys and tempos, which are as common in
bebop as in music from the classical and romantic periods;
and the preference for repetitive rhythmic patterns manifest in
western African music and electronica. It is therefore clear that
the characterization of repetitive patterns and their temporal
organization is central to the analysis and understanding of
most music.

Several approaches have been proposed for the discovery
of repetitive patterns in symbolic representations of music.
Examples include the use of string matching techniques and
models of common listening strategies on isolated melodic
lines [4]–[6]; and of multiple viewpoints and the geometrical
analysis of multi-dimensional representations for polyphonic
music [7], [8]. However, discovering repetitive patterns from
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audio signals poses a significantly more challenging problem,
as they have to be untangled from the noisy mix resulting
from the interaction between musicians, instruments, and the
recording process. In this context, the automatic extraction of
even the most basic information in a score, such as the start
time, pitch, and duration of notes, has proven a difficult task
for which a canonical solution has yet to be found.

In music signal processing research, work on the char-
acterization of repetitive patterns is usually framed in the
context of music structure analysis (for a detailed review see
[9]). Example strategies include the use of agglomerative
clustering [10]; hidden Markov models (HMM) combined
with simple aggregation [11], string matching [12], k-means
clustering [13] and Bayesian clustering of state histograms
[14]. The most popular approach, however, is based on the
analysis of self-similarity matrices [15], where repetitions
are characterized by diagonals or blocks of small distance
values. This property has been exploited for tasks as diverse as
visualization, rhythmic analysis, automatic summarization and
thumbnailing, chorus detection, annotation, synchronization
and long-term segmentation [16]–[20]. With a few exceptions
[17], [21], [22], the emphasis of this research has been on
locating repetitions rather than on extracting of characteristic,
repetitive patterns. The utility of extracting such patterns is
illustrated by previous research on detecting motif occurrences
across a collection [23] and cover-song retrieval based on
feature sub-sequences [24].

In this paper we describe a novel approach for the automatic
extraction and localization of repeated patterns in music audio.
The approach is based on sparse shift-invariant probabilistic
latent component analysis [25] (SI-PLCA), a probabilistic
variant of convolutive non-negative matrix factorization (NMF)
[26]. The algorithm treats a musical recording as a concatena-
tion of a small set of short, repeated patterns, and is able to
simultaneously estimate both the patterns and their repetitions
throughout the song. We show how sparse prior distributions
can be used to learn the number of patterns and their respective
lengths, minimizing the number of parameters that must be
specified exactly in advance.

Here we extend the capabilities of the baseline model,
first described in [27], to be able to identify instances of
a harmonic pattern in the presence of complex variations,
such as key modulations. This is accomplished by extending
the model to support two dimensional shift-invariance, a
technique that has previously been used for musical source
separation of log-frequency spectral features [28]. We explore
the proposed algorithm’s ability to identify repeated motifs
present within a song, and demonstrate that it accurately
captures rhythmic structure, i.e. a song’s time signature, as
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well. Finally, we explore the application of this approach to
long-term segmentation of musical pieces.

The remainder of this paper is organized as follows: Sec-
tion II reviews the proposed analysis based on SI-PLCA
and describes its relationship to NMF. Sections III and IV
describe prior distributions over the SI-PLCA parameters
and the expectation maximization algorithm for parameter
estimation. Sections V to VII discuss how the analysis can be
used to extract the repetitive structure of music on different
scales. Section V discusses how SI-PLCA can be used for
motif finding, Section VI explores the relationship between
the analysis and musical meter, and Section VII discusses how
the proposed analysis can be used for structure segmentation.
Finally, we conclude with a discussion of the limitations of
the proposed approach and future work in Section VIII.

II. SIGNAL MODEL

A. Feature representation

For our analysis we use chroma features to represent the
harmonic content of music audio. These features summarize
the signal energy present in each of the 12 pitch classes of
the chromatic scale. We use the implementation in [29], which
averages features within automatically detected beat segments.
Furthermore, the features for each beat are normalized such
that the maximum energy is one. The process is designed to
minimize the influence of timbre, tempo and dynamic variations
on the rest of our analysis.

The resulting representation consists of an F = 12 pitch
classes by T beats feature matrix V . An example is shown in
Figure 1. Analysis of these beat-synchronous chroma features
identifies repeated motifs in the form of chord patterns.

B. From NMF to PLCA

Conventional Non-negative Matrix Factorization (NMF) [30]
decomposes a non-negative matrix V into the product of two
non-negative matrices W and H:

V ≈WH (1)

where the columns of W represent basis vectors used repeatedly
throughout V and the rows of H represent the activations of
each basis. In the context of audio analysis, if V represents a
time-frequency decomposition of an audio signal, each column
of W can be thought of as a frequency template used repeatedly
throughout V , and each row of H can be thought of as
the activations of the corresponding basis in time. Although
the focus of this paper is the analysis of chroma features,
the method is equally applicable to any non-negative time-
frequency representation such as a magnitude spectrogram.

Probabilistic Latent Component Analysis (PLCA) [25], [31]
recasts NMF in a probabilistic framework, reminiscent of the
Probabilistic Latent Semantic Analysis algorithm [32] used
for text topic modeling. PLCA represents each column of W
and each row of H as multinomial probability distributions
and adds an additional distribution over the set of bases, i.e. a

mixing weight. The decomposition can be rewritten in NMF
terms as follows:

V ≈WZH =
K−1∑
k=0

zkwkhTk (2)

where Z = diag(z) is a diagonal matrix of mixing weights
z and K is the rank of the decomposition, i.e. the number
of bases in W . Contrary to standard NMF, each of V , wk,
z, and hTk are normalized to sum to 1 since they correspond
to probability distributions. Therefore, the decomposition can
also be written as a factorization of the distribution as follows:

V = P
(
f , t

)
≈
∑
k

P
(
k
)
P
(
f | k

)
P
(
t | k
)

(3)

where P
(
k
)

= zk, P
(
f | k

)
= wkf , P

(
t | k

)
= hkt, and

f ∈ [0, F ), t ∈ [0, T ) index into the rows and columns of V ,
respectively.

The normalization of the parameters to form distributions
removes the scale indeterminacy between W and H present in
conventional NMF. The probabilistic foundation furthermore
makes for a convenient framework for imposing constraints
on the parameters wk, hTk , and z through the use of prior
distributions. This will be discussed in detail in Section III.

C. Adding shift-invariance

In [25], Smaragdis, et al. describe a shift-invariant extension
to the PLCA model which allows for convolutive bases. Unlike
the single beat bases wk described in Section II-B, each SI-
PLCA basis is expanded to form a fixed duration template Wk

containing L beats. Therefore, the F ×K matrix W becomes
an F×L×K tensorW , and the normalized basis wk becomes
a normalized matrix Wk. The factors W and H are combined
via a convolution operation instead of matrix multiplication in
a process analogous to the right side of equation (2):

V ≈
∑
k

zkWk ∗ hTk =
∑
k,τ

zk wkτ

→τ
hTk (4)

where
→t
x shifts x t places to the right and τ ∈ [0, L)

indexes into the columns of Wk. Mirroring equation (3), the
probabilistic interpretation of equation (4) can be written as
follows:

P
(
f , t

)
≈
∑
k,τ

P
(
k
)
P
(
f , τ | k

)
P
(
t− τ | k

)
(5)

Figure 1 shows an example SI-PLCA decomposition of a
chromagram using K = 4 basis patterns of length L= 40 beats.

D. Two dimensional shift invariance

A useful property of the chroma representation is that trans-
positions into different keys correspond to vertical rotations of
the corresponding features in V . This motivates the addition of
vertical shift invariance into the model described in the previous
section. We accomplish this by expanding the activations H
into a K × R × T tensor H, and expanding the per-basis
activations hTk to form a matrix Hk whose rows correspond to
different vertical rotations, i.e. relative key transpositions, of
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Fig. 1: Demonstration of the SI-PLCA analysis of a beat-synchronous chromagram. The decomposition was initialized with
L = 40, and K = 10 with αz = 0.98, and no sparsity on Wk or hTk . The parameter estimation algorithm pruned out most of
the initial bases due to the sparse prior on z, converging on only 4 bases.

the corresponding basis Wk. R corresponds to the maximum
allowed rotation of Wk, and is typically equal to F to allow
the model to detect all possible key transpositions.

This decomposition can be written as follows:

V ≈ V̂ =
∑
k,τ,r

zk
r

↑wkτ

→τ
hTkr (6)

where
r

↑x circularly shifts x r places upward and hTkr
corresponds to the rth row of Hk. Similar to equation (5),
the probabilistic interpretation of (6) can be written as follows:

P
(
f , t

)
≈
∑
k,τ,r

P
(
k
)
P
(
f − r, τ | k

)
P
(
t− τ , r | k

)
(7)

Note that the models described in Sections II-B and II-C are
special cases of that described here, using L = R = 1 and
R = 1, respectively. We will therefore utilize the notation
from this section throughout the remainder of this paper, even
in situations where R = 1. The parameters Wk, z, and Hk

are estimated from the feature matrix V iteratively using an
expectation maximization algorithm. This will be discussed in
detail in Section IV.

III. SPARSE PRIOR DISTRIBUTIONS

A common strategy used throughout the NMF literature to
learning parsimonious, parts-based decompositions is to favor
sparse settings for W and H, i.e. settings containing many
zeros [33]. Sparse solutions can be encouraged when estimating
the parameters in equation (6) by imposing constraints using
an appropriate prior distribution. In the following sections we
describe how sparsity can be used to automatically learn the
number and length of the repeated motifs within a song, and
to favor solutions composed of bases that are easy to interpret.

A. Learning the number of patterns K

The Dirichlet distribution is conjugate to the multinomial
distributions Wk, z, and Hk, making it a natural choice for a
prior. The Dirichlet prior on z has the following form:

P
(
z |αz

)
∝
∏
k

zαz−1
k , αz ≥ 0 (8)
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Fig. 2: Typical behavior of the automatic relevance determi-
nation process using a sparse prior on z. The initial rank of
the decomposition is set to K = 15, and as the estimation
algorithm iterates it is pruned down to a final effective rank
(the number of bases with non-zero zk) of 4.

where the hyperparameter αz is fixed across all K components.
If αz < 1 this prior favors solutions where the distribution is
sparse.

By forcing z to be sparse, the learning algorithm attempts
to use as few bases as possible. This enables an automatic
relevance determination strategy in which: (a) the algorithm
is initialized to use many bases, i.e. K is set to a large value,
and (b) the sparse prior on z prunes out bases that do not
contribute significantly to the reconstruction of V . Only the
most relevant patterns “survive” to the end of the parameter
estimation process, as is shown in the example in Figure 2. This
approach is useful because it removes the need to specify the
exact rank of the decomposition K in advance. The parameter
estimation simply learns the underlying number of patterns
needed to accurately reconstruct the data. A similar approach
to automatically determining the rank of a standard NMF
decomposition is described in [34].

B. Learning the pattern length L

Different patterns within the same piece often have different
intrinsic lengths, e.g. if a song’s chorus is based on a shorter
riff than the verse or if its time signature changes. Therefore
it is useful to automatically identify the length of each basis
independently instead of using a fixed length across all bases.
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The Beatles - Revolver - Good Day Sunshine

*

Fig. 3: Demonstration of the SI-PLCA decomposition of a
chromagram using L = 60 and sparsity in all parameters
(αz = 0.98, c = 16, m = −10−7, and βh = 10−2).

We employ a similar strategy to that described in Sec-
tion III-A by setting L to an upper bound on the expected
pattern length and constructing a structured prior distribution
that encourages the use of shorter bases. This is accomplished
using a Dirichlet prior across the rows of Wk with a parameter
that depends on the time position τ within each basis:

P
(
Wk |αwτ

)
∝
∏
τ

∏
f

wαwτ−1
kfτ (9)

αwτ is constructed as a piecewise function which is uninforma-
tive, i.e. imposes no constraints, for small τ and then becomes
increasingly sparse:

αwτ =

{
1, τ < c

1 +m (τ − c), τ ≥ c
(10)

where c ∈ [1, L) is the beat at which the prior becomes active,
i.e. the minimum pattern length, and 0 ≤ m � 1 is the
sparseness penalty. This prior only affects patterns longer than
c beats with a penalty that increases with the pattern length.

An example of the effect of this prior is shown in Figure 3.
Most of the information in the second basis is contained within
the first 16 columns, while the other bases have effective lengths
between 30 and 40 beats.

C. Sparse activations

It is often worthwhile to apply sparsity constraints on Hk to
obtain more informative patterns and to avoid converging on
sub-optimal parameter settings. The rationale is that if most of
the activations in Hk are zero, then more of the information
in V will be captured by Wk since bases would be less likely
to overlap during reconstruction.

In general, sparse activations promote the identification
of more informative patterns in Wk at the cost of reduced
time resolution in Hk. This is illustrated by the example in
Figure 1. The second basis pattern is relatively sparse, while the
corresponding element of H contains many non-zero entries.
In fact, the spacing between adjacent activations in hT1 is
smaller than the length of the pattern; i.e. it is continually
mixed with delayed versions of itself. The pattern repeats
about every 8 beats, roughly corresponding to the underlying

meter. In contrast, the bottom two bases are significantly
more dense while the corresponding elements of H contain
only about 4 peaks. The sparsity parameters over H, in
combination with those of W control the trade-off between
these qualitatively different solutions. A sparse H leads to more
musically meaningful bases that are exactly repeated throughout
the piece, while a sparse W leads to temporal patterns in H
that are organized according to the underlying rhythm. This
effect will be explored in more detail in Section VI.

We have found that imposing sparsity constraints on Hk

using an entropic prior [25], [35], ensures more consistent
results than using a Dirichlet prior similar to that used for z.
This is because, unlike the entropic prior, the hyperparameter
of the sparse Dirichlet prior tends to be sensitive to the
dimensionality of the underlying distribution. As a result,
choosing a single prior setting that works well across many
songs is challenging since the dimensionality of H varies with
T . This was not a problem in the previous sections because
the dimensions of W and z are the same across all songs
(assuming a consistent rank K).

An extended discussion about entropic priors for learning
structure of multinomial distributions can be found in [35]. For
the one dimensional SI-PLCA model in Section II-C, the prior
on hTk can be written as follows:

P
(
hTk |βh

)
∝ exp

(
βh
∑
t

hkt log hkt
)
, βh ≥ 0 (11)

Note that this prior is enforced over the activations for each
basis independently, i.e. the rows of H in Figures 1 and 3, not
on the joint activations across all bases.

In the case of two dimensional shift-invariance, it is useful
to factor Hk = P

(
t, r | k

)
into the product of two conditional

distributions: hTk = P
(
t | k

)
, the overall activations as a

function of time used in one dimensional SI-PLCA, and hTr|k =
P
(
r | t, k

)
, the key modulation of each basis at each point in

time. The prior over hTr|k has the same form as equation (11)
with an associated hyperparameter βr.

Sparse activations are especially important in 2D SI-PLCA
with R = F (i.e. allowing all possible key transpositions),
in which case Hk has the same dimensionality as V and
unconstrained optimization often leads to degenerate solutions
where Wk contains a single non-zero element and Hk is an
arbitrary transposition of V . The factorization of Hk makes
it simple to enforce that only one key rotation be active at
any point in time, a necessary constraint for avoiding these
degenerate solutions, by setting βr to a large value.

IV. PARAMETER ESTIMATION

The parameters of the decomposition of equation (6) can be
computed iteratively using an expectation maximization (EM)
algorithm. It is worth noting that in the 1D case without priors,
the SI-PLCA EM algorithm leads to update rules which are
numerically identical to those of NMF based on a Kullback-
Leibler divergence cost function. The full derivation of the
SI-PLCA EM algorithm and an exploration of its relationship
with NMF can be found in [36]. Here, we review it in the
context of the 2D decomposition described in Section II-D
using the prior distributions described in Section III.
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The joint log probability of V and the model parameters θ =
{W, z,H} given the hyperparameters of the prior distributions
described in Section III can be written as follows:

L(θ) =
∑
f,t

vft log v̂ft

+
∑
k

(αz − 1) log zk +
∑
f,k,τ

(αwτ − 1) logwkfτ

+ βh
∑
t,k

hkt log hkt + βr
∑
t,k,r

hr|kt log hr|kt (12)

The EM algorithm finds the settings for θ that maximize
the posterior probability in equation (12) by initializing the
distributions Wk, z, and Hk randomly and then iteratively
performing the expectation and maximization updates given
in the following sections until the parameters converge. This
algorithm is only guaranteed to converge to a local optimum,
so the quality of the factorization depends on the initialization.
In our experiments we found that more consistent results are
obtained by initializing z and Hk to be uniform distributions
while setting the initial Wk randomly by sampling each entry
in the matrix from a uniform distribution and then normalizing.

A. Expectation step
In the expectation step, the posterior distribution over the

hidden variables k, τ , and r is computed for each cell in V .
For notational convenience we represent this distribution as a
set of matrices {Pkτr} for each setting of k, τ , and r. Each
point in the F × T matrix Pkτr corresponds to the probability
that the corresponding point in V was generated by basis k
at time delay τ and relative key transposition r. It can be
computed as follows:

Pkτr ∝ zk
r

↑wkτ ⊗
→τ
hTkr (13)

where ⊗ denotes the outer product. The set of Pkτr matrices
are normalized such that each point in

∑
kτr Pkτr is one.

B. Maximization step
Given the posterior distribution computed in the E-step, the

parameters are updated during the maximization step. First, we
define the operator

〈x〉t,τ ,
x∑
t,τ x

(14)

to normalize x over the dimensions corresponding to t and τ .
The parameter updates can then be written as follows:

zk =

〈∑
τ,r

∑
f,t

V · Pkτr + αz − 1

〉
k

(15)

wkτ =

〈∑
r

∑
t

r

↓V ·
r

↓Pkτr +αwτ − 1

〉
f,τ

(16)

hTk =

〈∑
τ,r

∑
f

←τ
V ·

←τ
Pkτr

〉
t

(17)

hTr|k =

〈∑
τ

∑
f

←τ
V ·

←τ
Pkτr

〉
r

(18)

where · denotes the element-wise matrix product.
Equations (15) and (16) incorporate the Dirichlet prior

distributions over the corresponding parameters. Since the
entropic prior over Hk is not conjugate to the multinomial
distribution, the final setting for hTk and hTr|k requires additional
computation. We use the fast approximation to the entropic
prior described in [37]. Following the update of equation (17),
hTk is refined by iterating the following updates:

γk =
〈
hTk

ν
ν−1
〉
t

(19)

hTk =

〈
βh ν γk +

∑
τ,r

∑
f

←τ
V ·

←τ
Pkτr

〉
t

(20)

where the approximation parameter ν is fixed at 50. The
refinement procedure for hTr|k follows the same derivation.

Finally, we note that the Dirichlet prior distributions com-
plicate the M-step slightly since computing equations (15)
and (16) directly sometimes results in negative values for the
probabilities in z, and Wk. To ensure that the updates result
in valid distributions, any negative elements computed during
the M-step are clamped to zero.

The overall complexity of a single iteration of the EM
algorithm is O(FTKLR), i.e. it scales linearly in the size of
the decomposition. It is often possible to significantly speed
up the computation by dropping Wk and Hk from the model
when zk falls to zero due to the sparse prior distribution.

In the following sections we describe how various configu-
rations of the proposed algorithm can be used in a number of
music signal processing applications, including the extraction
of repeated riffs in popular music, the identification of musical
meter, and long-term segmentation into verse-chorus sections.

V. RIFF IDENTIFICATION

In this section we describe how the proposed SI-PLCA
algorithm can be used to identify repeated motifs in a piece
of music. In order to illustrate the ability of the algorithm to
identify simple repetitions of a single motif, we address the
specific case of riff-driven popular music in which a single
chord progression is repeated throughout an entire song.

The analysis described in this paper can naturally identify
these repeated riffs using decompositions with a single basis
(K = 1) and utilizing sparsity constraints to learn the riff length
and to control the activation structure. The resulting W0 pattern
corresponds to the most commonly repeated progression in
the song and H0 serves as the high level “score”, showing the
location of repetitions throughout the song, including any key
modulations.

Because the analysis is shift invariant, the key transposition
and phase offset of the identified riff are arbitrary and depend
on the random initialization. We therefore post-process W0 and
H0 in order to normalize them to a standard key modulation. We
identify this by summing Hk along the columns and selecting
the largest value, corresponding to the most often utilized
key modulation. We then rotate Wk and Hk to match this
modulation index.

Figure 4 shows example riffs extracted using 2D SI-PLCA
with R = 12, allowing for all possible key modulations,
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Fig. 4: Main riffs identified in (a) Day Tripper by The Beatles and (b) Iron Man by Black Sabbath. The top panels show
chromagram excerpts from each song including two repetitions of the main riff. The bottom panels show the identified riff W0

aligned against the top panels. Blue vertical lines indicate the beginning of the riff.
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Fig. 5: Activations of the Day Tripper riff shown in Figure 4a (bottom panel). Also shown are the original chromagram (top
panel) and its reconstruction (middle panel).

maximum basis length L = 40, αwτ constructed using c = 10
and m = −0.0003 to identify the underlying pattern length,
βr = 1 to enforce that only one key is active at each point in
time, and βh = 0.1 to encourage the identification of complete
patterns. In both cases the analysis correctly identifies the 4
measure, 16-beat long chord progression that closely matches
the contents of V . The key normalization process is accurate
as well, as shown by the match between the ground truth
transcription and the corresponding patterns. However, the

patterns are not properly aligned against the downbeats of the
original song. This is because the repetitions of the riff are for
the most part periodic, and the analysis does not make use of
any phase analysis, resulting in a random phase offset. This
problem could be addressed using additional post-processing
to align W0 and H0 to the downbeat locations in the signal,
however we leave this for future work.

The activations corresponding to Figure 4a are shown in
Figure 5. Throughout most of the song, activations occur every
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Predicted
Class 3 4 5 7

Tr
ue

3 35 15 8 14
4 13 59 1 4
5 0 5 3 4
7 2 0 1 6

TABLE I: Meter classification confusion matrix showing the
distribution of classification errors in the test set. The entries
contain raw sample counts, not percentages.

16 beats, corresponding to the length of the main riff. Because
we limit the decomposition to a single basis, it is forced to
utilize the main riff to reconstruct sections of the song to
which it is not well matched, leading to noisier activations and
larger reconstruction error in those sections. Such activation
patterns are visible during beats 140–200, 300–360, and 550–
610, corresponding to the end of the verse sections which are
mainly in the key of F#.

Finally, we note that H0 correctly transcribes the key
modulations used within the piece. The song is in the key
of E major, corresponding to key modulation r = 0. The main
riff is transposed to the subdominant (A, r = 5 semitones)
during the verse, visible at beats 110, 270, and 530, and to
the dominant (B, r = 7 semitones) during the bridge, visible
between beats 370 and 430.

In order to extend this algorithm to the more general problem
of identifying recurring motifs scattered throughout a long
piece, a similar anlysis could be used, albeit using a larger
value for K. Additional post-processing would be necessary to
differentiate between bases that correspond to repeated motifs,
and those that are not activated as frequently.

Another application is that of music thumbnailing [17], which
seeks to automatically identify a representative excerpt from
a song. Utilizing the analysis described in this section, the
thumbnail that best represents the identified motif (typically a
good thumbnail since it is the most often repeated pattern found
in the song) simply corresponds to the largest activation in H.
If a longer thumbnail is required, then L or the parameters of
αwτ can be scaled up to identify longer patterns.

VI. METER ANALYSIS

In this section we demonstrate how the structure of SI-PLCA
activations encodes information about the rhythmic content
of a piece of music. However, instead of performing beat or
downbeat tracking as in much music informatics research, e.g.
[38], we use a simple analysis of H to discriminate between
different metrical patterns, similar to the task in [39].

In most western music, there is a strong relationship between
chroma and meter in that chord changes are much more likely to
occur on the downbeat than at any other metrical position. This
observation has been used for downbeat tracking in [40] and to
reinforce chord detection in [41]. Although it is possible that
more accurate meter analysis could be obtained by augmenting
or replacing the mid-level chroma representation with onset-
based features, we choose to focus on this representation in
order to emphasize the versatility of the proposed algorithm
to many applications with minimal modifications.

4.0 1.502.012 6.0 3.0

3/4, 6/4, 6/8, 9/8

16 3.2 1.605.3 2.7 1.33
8 2.0

4.0

4/4

3.3 1.25 1.115.0
2.0 1.6710 2.5

5/4, 10/4

20.5 6.8 4.1 2.9 2.3 1.9 1.6 1.4 1.2 1.1
Period (beats)

1.401.757
3.5 1.17

7/4, 7/8

Fig. 6: Meter templates trained over the data set described in
Section VI.

Our approach is based on [42], where time signatures are
characterized using the autocorrelation of note onset times in
the musical score. Likewise, we hypothesize that songs in the
same time signatures will show consistent periodicity in their
activations, as characterized by the autocorrelation of H. As
in Section V, we reconstruct the song’s features using a single
basis, thus assuming that the time signature remains constant
throughout the song. Given the SI-PLCA decomposition with
K = R = 1, features are computed by taking the 1024 point
power spectrum of hT0 , encoding equivalent information to the
global autocorrelation across the entire song. Example features
can be seen in Figure 6.

In order to evaluate this hypothesis, we constructed a data set
of 342 pop songs in various time signatures. The data set was
broken into four metrical classes as follows: class 3 contains
144 songs in 3/4, 6/4, 6/8, and 9/8 time (i.e. songs in triple
meter), similarly class 4 contains 155 songs in 4/4 time, class
5 contains 25 songs in 5/4 and 10/4 time, and class 7 contains
18 songs in 7/4 and 7/8 time. We evenly split the songs in each
class between training and testing sets and use the training set
to build a simple classifier based on template-matching. The
template for each meter class is found by averaging the power
spectrum features over all training songs in the same class.
Figure 6 shows the trained templates for the four meter classes.
Each class is clearly characterized by a different harmonic
series: the triple meter class (top panel) has its most prominent
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peaks corresponding to periods of 3, 6, and 12, while the 4/4
class (second panel) has peaks at periods of 2, 4, and 8 beats,
etc.

Points in the held out test set are classified according to
the nearest template using a Euclidean distance metric. A grid
search over SI-PLCA parameters was performed to find the
best performing features, achieved using L = 60, c = 10,
m = 5× 10−6, and βh = 0.1. Using these features we obtain
overall classification accuracy of 61%. The confusion matrix
is shown in Table I. Songs in triple meter are most often
confused with songs in 4/4, likely due to the peaks at 2 and
4 beats shared between both classes. This shared periodicity
is a consequence of the ambiguous nature of the compound
6/4 and 6/8 time signatures, in which measures are sometimes
broken into repeated units of 2 and 4 beats instead of 3 and 3.
Triple meter also shows significant confusion with 7/4 time,
despite not sharing any significant peaks. This is primarily a
result of the fact that the 7/4 template is very close to zero in
regions between harmonic peaks, a consequence of overfitting
to the very small amount of training data available. Finally,
class 5 also suffers as a result of overfitting and has the worst
overall performance, also showing significant confusion with
4/4 and 7/4.

When restricted to the simpler task of differentiating between
duple and triple meter, performance improves to 78%. Although
we do not claim that these results are state-of-the-art, especially
given the simplicity of the classifier, they indicate that the
activations in the proposed analysis tend to be very strongly
related to a song’s underlying metrical structure.

For songs containing meter changes, sections dominated by
different time signatures can be identified using an SI-PLCA
decomposition with K larger than one. Each component of this
decomposition will correspond to a different repeated harmonic
pattern, potentially in a different meter.

An example of such a meter change in Pink Floyd’s Money is
shown in Figure 7. The majority of the song is in 7/4 time, with
a shorter section in 4/4. We approximate the chromagram in the
top panel of the figure using a rank 2 SI-PLCA decomposition
with the same parameter settings described above, and visualize
the meter change using the short-time power spectra of the
activations hT0 and hT1 , shown in the middle and bottom panels,
respectively. The spectrum of hT1 features strong spectral lines
at periods of 3.5, 1.75, and 1.17 beats, clearly corresponding
to peaks in the 7/4, 7/8 template in Figure 6. Similarly,
the spectrum of hT0 has a prominent peak at about 2 beats,
indicating duple time, corresponding to the section in 4/4
time. Note that the periodic structure of hT0 is not as well
defined as that of hT1 since it corresponds to an extended guitar
solo, which, unlike basis 1, is not composed of nearly exact
repetitions of a single motif. This leads to noisier activations.

In the following section we continue the discussion of SI-
PLCA decompositions with rank larger than one, however,
we shift the focus to the identification of long-term temporal
structure in music.

VII. STRUCTURE SEGMENTATION

On longer time scales, repetitive patterns in popular music
appear as repetitions of entire sections such as verse, chorus,

A
B
C
D
E
F
G

Pi
tc

h 
cl

as
s

Pink Floyd - Dark Side of the Moon - Money

6.8
3.4
2.3
1.7
1.4
1.1

Pe
rio

d 
(b

ea
ts

)

|STFT(h0 )|2

0 100 200 300 400 500 600 700 800
Time (beats)

6.8
3.4
2.3
1.7
1.4
1.1

Pe
rio

d 
(b

ea
ts

)

|STFT(h1 )|2

Fig. 7: Meter analysis of Money by Pink Floyd using an SI-
PLCA decomposition with K = 2. The bottom two panels show
the short time power spectrum of hT0 and hT1 , corresponding
to sections in 4/4 and 7/4 time, respectively.

and bridge. Given long enough bases, the analysis described in
this paper naturally identifies such long-term temporal structure
within a song, encoded by the activations in H.

As before, we use the one-dimensional version of the
algorithm (i.e. R = 1), since long-term key modulations often
indicate new sections in popular music. We assume a one-to-
one mapping between the identified harmonic patterns and the
underlying song structure, i.e. we assume that each pattern
is used within only one segment. The mapping is derived by
computing the contribution of each pattern to the chromagram
by summing equation (6) across all pitch classes:

`k(t) = P
(
t, k
)

=
∑
f v̂kft (21)

V̂k = zkWk ∗ hTk (22)

The quantity in equation (21) corresponds to the probability
that the observation at time t comes from basis k. We assume
that each basis corresponds to a unique segment label and
compute the final segmentation from `k(t) by finding the
optimal setting of k at each time frame. We constrain this
path through equation (21) using a simple transition matrix
designed to smooth out transitions between segments, and
compute the optimal path using the Viterbi algorithm. The
transition matrix is constructed to have a large weight along the
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The Beatles - Abbey Road - Come Together

V̂0

V̂1

V̂2
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Estimated
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Fig. 8: Song structure segmentation using the SI-PLCA
decomposition shown in Figure 1. The pairwise F-measure
of the estimated segmentation is 0.5.

diagonal to discourage spurious transitions between segments.
The off diagonal components are uniform, so no preference is
given to any particular state.

aij =

{
p i = j

1
K−1 (1− p) i 6= j

(23)

p is set to 0.9 throughout the experiments in this section.
Finally, the per-frame segment labels are post-processed to
remove segments shorter than a predefined minimum segment
length.

The Beatles - Revolver - Good Day Sunshine

V̂0

V̂1

V̂2

V̂3

`k (t)

0 100 200 300 400 500 600 700
Time (beats)

Estimated

Ground Truth

Segments

Fig. 9: Song structure segmentation using the SI-PLCA
decomposition shown in Figure 3 (PFM = 0.73).

A. Examples

Figure 8 shows an example of the segmentation process
using the decomposition from Figure 1. The top panel shows
the original chromagram of the song. The following four panels
show the contribution of each pattern to the chromagram, and
the bottom two panels show `k(t) and the final segmentation,
respectively.

There are some interesting differences between the ground
truth segmentation and that derived from the proposed algorithm
in Figure 8. For example, the proposed algorithm breaks
the beginning of the song into repeated subsections: basis
2 (cyan) → basis 0 (dark blue), while the ground truth
labels this sequence as a single segment. When inspecting
the actual patterns it is clear that these ground truth segments
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Fig. 10: PFM as a function of αz (solid line). K = 15, L = 60,
and no other priors are used. The average effective rank and
standard deviation are displayed for each setting of αz . Also
plotted is PFM for αz = 1 for different settings of K (dashed
lines).

are composed of distinct chord patterns, despite serving a single
musical role together (“intro/verse” as annotated in the ground
truth). In fact the cyan and dark blue segments are reused in
different contexts throughout the song in regions with different
ground-truth annotations. The analysis has no notion of musical
role, and tends to converge on solutions in which bases are
reused as often as possible. This can be considered a limitation
of our segmentation algorithm, which could be addressed using
more sophisticated post-processing to combine segment labels
that often occur together.

Another method of addressing this would be to increase
the length L of the convolutive bases (or the corresponding
parameters of αwτ ), in which case the repeated sub-segments
would be merged into a single long segment. This highlights an
inherent trade-off in the proposed analysis between identifying
simple chord patterns that are frequently repeated (short Wk,
many activations in hTk ) as opposed to deriving long-term
musical structure (longer Wk, sparser hTk ). This is a recognized
ambiguity in the concept of musical segmentation [43].

When high-level segments are more closely correlated with
the harmonic structure identified by our method, the proposed
analysis leads to good segmentation. An example of this, based
on the decomposition shown in Figure 3, is depicted in Figure 9.
Note that the ground truth labels make a functional distinction
between “verse” (orange) and “verse/break” (red) which is not
present in our analysis.

B. Experiments

In the following we evaluate the proposed approach to
structure segmentation. We quantify the effect of the various
prior distributions described in Section III and compare our
approach to other state-of-the-art algorithms. The test set
consists of 180 songs from the recorded catalog of The Beatles,
annotated into verse, chorus, refrain, etc. sections by the Centre
for Digital Music.1 Each song contains an average of about 10

1http://isophonics.net/content/reference-annotations-beatles
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Fig. 11: PFM as a function of the αwτ cutoff parameter c
for varying slopes m. The rank is fixed at K = 4 and the
maximum basis length is fixed at L = 120.

segments and 5.6 unique labels. Note that all results reported
in this section are computed over the entire data set.

Segmentation performance is measured using the pairwise
recall rate (PRR), precision rate (PPR), and F-measure (PFM)
metrics proposed in [44] which measure the frame-wise
agreement between the ground truth and estimated segmentation
regardless of the exact segment label. We also report the
entropy-based over- and under-segmentation scores (So and
Su, respectively) as proposed in [45].

1) Number of patterns: Since our segmentation algorithm
assumes a one-to-one relationship between patterns and seg-
ments, the appropriate choice of the number of patterns K is
critical to obtaining good performance. We evaluate this effect
by segmenting the data set with varying settings for K with
αz = 1, and by fixing K to 15 and varying αz . In all cases,
L is set to 60 and no other priors are used.

The results are shown in Figure 10. For αz = 1, segmentation
performance decreases as K increases, peaking at K = 4.
Performance improves when the sparse prior is applied for
most settings of αz . The average effective rank and its standard
deviation both increase with decreasing αz (increasing sparsity).
The best performance is obtained for αz = 0.98, leading to an
average effective rank of 3.2± 0.5. These results demonstrate
the advantage of allowing the number of patterns to adapt to
each song.

2) Pattern length: As described in Section VII-A, the
length of the patterns used in the decomposition has a large
qualitative effect on the segmentation. To measure this effect,
we segmented the entire corpus varying the cutoff parameter
c between 10 and 120 beats under different settings of the
sparseness penalty m. The results are shown in Figure 11.

The best performance occurred with small m, corresponding
to the use of bases of roughly fixed length c. Fixing m = 10−4

and varying c (blue curve) results in poor performance for small
c since the ground truth segments are often divided into many
distinct short segments. Performance improves with increasing
c, until it reaches a peak at c = 70. When c grows larger than
the average segment length in the ground truth (78 beats) the
performance decreases.

Decreasing m to 10−6 (green curve), i.e. allowing the basis
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System PFM PPR PRR So Su

Mauch et al [46] 0.66 0.61 0.77 0.76 0.64
SI-PLCA-αz 0.60 0.57 0.69 0.62 0.56
SI-PLCA 0.59 0.60 0.61 0.57 0.57
QMUL [44] 0.54 0.58 0.53 0.50 0.57
Random 0.47 0.43 0.56 0.39 0.41

TABLE II: Segmentation performance on the Beatles data
set. The number of labels per song was fixed to 4 for SI-
PLCA, QMUL, and Random. The average effective ranks for
SI-PLCA-αz and Mauch et al were 3.9 and 5.5, respectively.

length more freedom to adapt to particular songs, shows slightly
reduced segmentation performance in the best case, but less
overall sensitivity to the exact value of the cutoff. The worst
performance occurs at the other extreme of m very close to
zero (red curve). In this case αwτ ≈ 1 for all τ , corresponding
to bases of roughly fixed length L for all settings of c.

Eliminating the sparse prior over Wk and varying L leads to
nearly identical segmentation performance to using m ≤ 10−4.
We can therefore conclude that there is no advantage to allowing
for varying pattern length in this task. Following this trend, we
have also found that βh > 0 has minimal effect on performance,
so it is not used in the remaining experiments. These results
are not surprising since the segmentation is derived from the
combination ofW and H. Shifting the sparsity from one factor
to another does not have any significant impact on `k(t).

3) Comparison to the state-of-the-art: We compare the
proposed segmentation system with other state-of-the-art ap-
proaches, including Levy and Sandler’s HMM-based segmen-
tation system2 [44] (QMUL) and a more recent system from
Mauch et al [46] based on analysis of self-similarity matrices
derived from beat-synchronous chroma. As in Section VII-B1,
we found that QMUL has optimal PFM when the number of
segments is set to 4.

We compare these to the proposed system using fixed rank
K = 4 (SI-PLCA) and a variant using sparse z with αz =
0.985 and K = 15 (SI-PLCA-αz). L was fixed at 70 for both
systems, and the minimum segment length was set to 32. Also
included is a baseline random segmentation in which each song
is divided into fixed length segments of 32 beats, and each
segment is given one of 4 randomly selected labels.

The results are shown in Table II. The system from Mauch
et al performs best, followed by SI-PLCA-αz , SI-PLCA, and
QMUL. All systems perform significantly better than the base-
line. All of the segmentation systems have roughly comparable
pairwise precision and Su. The differences are primarily in
the recall (and So) with Mauch et al outperforming SI-PLCA-
αz by 8% (14%), and SI-PLCA-αz in turn outperforming
QMUL by 16% (12%). The proposed segmentation algorithm
showed similar performance characteristics, in many cases
roughly comparable with the other top performers, in the
Music Structure Segmentation task of the most recent Music
Information Retrieval Evaluation Exchange (MIREX).3

The primary shortcoming of the proposed algorithm lies in its
tendency to over-segment as seen in the example in Figure 8.

2Available online: http://vamp-plugins.org/plugin-doc/qm-vamp-plugins.html
3http://www.music-ir.org/mirex/wiki/2010:MIREX2010 Results

This could be addressed using a set of heuristics to merge
segment labels that frequently follow one another, however
we leave this for future work. Many of the other qualitative
differences in performance between Mauch et al and SI-PLCA-
αz are a result of more accurate boundary detection in the
former system, due in part to special care taken to only allow
segments to begin at likely measure boundaries. In contrast, the
proposed system often has poor alignment to the underlying
measure structure, as seen in the examples in Figures 4 and 9.

VIII. CONCLUSION

We describe an unsupervised algorithm for identifying re-
peated patterns in music audio using shift-invariant probabilistic
latent component analysis. The analysis can be used to extract
a temporal structure information across different time scales by
varying its parameter settings. We demonstrate that the use of
sparse prior distributions over the SI-PLCA parameters can be
used to automatically identify the bases that are most relevant
for modeling the data and discard those whose contribution is
small. We also demonstrate a similar approach to estimating the
optimal length of each basis. The use of these prior distributions
enables a more flexible analysis and eliminates the need to
specify these parameters exactly in advance.

Finally, we show how the approach can be successfully
applied to motif finding, meter analysis, and structure seg-
mentation of popular music. In all cases, there is potential
for improvement using more sophisticated post-processing
mechanisms, e.g., downbeat alignment for riff extraction, a
better classifier for meter identification, or clustering of pattern
contributions for segmentation, but such additions are beyond
the scope of this paper. To encourage the investigation of these
and other ideas, we make the source code freely available
online.4

Beyond these applications, there are many other scenarios
where the proposed method can prove useful, both in the
analysis of individual songs and music collections. For example,
it can be used to search for common motifs throughout a corpus
of music as in [47], and applied to the retrieval of cover songs
and other musical variations. Similarly, as demonstrated by
Mauch et al in [46], knowledge of repeated patterns can be
used to improve automatic chord recognition performance, by
helping to smooth over feature variations. In the context of the
proposed analysis this amounts to simply analyzing the bases
Wk instead of independently analyzing each realization of the
corresponding motif in the chromagram.

Finally, our main focus for future work will be on extending
the algorithm to be invariant to time-warping (i.e. non-linear
shift-invariance), thus allowing the robust identification of all
instances of a given pattern despite variations in length. In
the context of the feature representation used in this paper,
this extension will prove most useful in the presence of beat-
tracking inconsistencies. Furthermore, it will free the analysis
from requiring an event-synchronous feature representation, by
allowing the use of fixed-hop size feature sequences. This may
prove important for the analysis of expressive music signals,

4http://marl.smusic.nyu.edu/resources/siplca-segmentation/
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e.g. classical music, where beats are difficult to track, or non-
musical signals, such as speech or environmental sound, which
are not naturally aligned to a regular time grid.
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