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Abstract

Recently, we presented a multichannel neural network
model trained to perform speech enhancement jointly with
acoustic modeling [1], directly from raw waveform input sig-
nals. While this model achieved over a 10% relative improve-
ment compared to a single channel model, it came at a large cost
in computational complexity, particularly in the convolutions
used to implement a time-domain filterbank. In this paper we
present several different approaches to reduce the complexity of
this model by reducing the stride of the convolution operation
and by implementing filters in the frequency domain. These op-
timizations reduce the computational complexity of the model
by a factor of 3 with no loss in accuracy on a 2,000 hour Voice
Search task.

1. Introduction

Multichannel ASR systems often use separate modules to per-
form recognition. First, microphone array speech enhancement
is applied, typically broken into localization, beamforming and
postfiltering stages. The resulting single channel enhanced sig-
nal is passed to an acoustic model [2, 3]. A commonly used en-
hancement technique is filter-and-sum beamforming [4], which
begins by aligning signals from different microphones in time
(via localization) to adjust for the propagation delay from the
target speaker to each microphone. The time-aligned signals
are then passed through a filter (different for each microphone)
and summed to enhance the signal from the target direction and
to attenuate noise coming from other directions [5, 6, 7].

Instead of using independent modules for multichannel en-
hancement and acoustic modeling, optimizing both jointly has
been shown to improve performance, both for Gaussian Mixture
Models [8] and more recently for neural networks [1, 9, 10]. We
recently introduced one such “factored” raw waveform model in
[1], which passes a multichannel waveform signal into a set of
short-duration multichannel time convolution filters which map
the inputs down to a single channel, with the idea that the net-
work would learn to perform broadband spatial filtering with
these filters. By learning several filters in this “spatial filtering
layer”, we hypothesize that the network will learn filters tuned
to multiple different look directions. The single channel wave-
form output of each spatial filter is passed to a longer-duration
time convolution “spectral filtering layer” intended to perform
finer frequency resolution spectral decomposition analogous to
a time-domain auditory filterbank as in [9, 11]. The output
of this spectral filtering layer is passed to a CLDNN acoustic
model [12].

One of the problems with the factored model is its high
computational cost. For example, the model presented in [1]

uses around 20M parameters but requires 160M multiplies, with
the bulk of the computation occurring in the “spectral filtering
layer”. The number of filters in this layer is large and the input
feature dimension is large compared to the filter size. Further-
more, this convolution is performed for each of 10 look direc-
tions. The goal of this paper is to explore various approaches to
speed up this model without affecting accuracy.

First, we explore speeding up the model in the time domain.
Using behavior we observed in [1, 13] with convolutions, we
show that by striding filters and limiting the look directions we
are able to reduce the required number of mulitplies by a factor
of 4.5 with no loss in accuracy.

Next, since convolution in time is equivalent to an element-
wise dot product in frequency, we present a factored model that
operates in the frequency domain. We explore two variations
on this idea, one which performs filtering via a Complex Linear
Projection (CLP) [14] layer that uses phase information from
the input signal, and another which performs filtering with a
Linear Projection of Energy (LPE) layer that ignores phase. We
find that both the CLP and LPE factored models perform simi-
larly, and are able to reduce the number of multiplies by an addi-
tional 25% over time domain model, with similar performance
in terms of word error rate (WER). We provide a detailed analy-
sis on the differences in learning the factored model in the time
and frequency domains. This duality opens the door to further
improve the model. For example increasing the input window
size improves WER, but is much more computationally efficient
in the frequency domain compared to the time domain.

2. Factored Multichannel Waveform Model

The raw waveform factored multichannel network [1], shown in
Figure 1, factors spatial filtering and filterbank feature extrac-
tion into separate layers. The motivation for this architecture
is to design the first layer to be spatially selective, while im-
plementing a frequency decomposition shared across all spatial
filters in the second layer. The output of the second layer is the
Cartesian product of all spatial and spectral filters.

The first layer, denoted by tConv1 in the figure, imple-
ments Equation 1 and performs a multichannel convolution in
time using a FIR spatial filterbank. First, we take a small win-
dow of the raw waveform of length M samples for each chan-
nel C, denoted as {z1[t], z2[t],...,zc[t]} fort € 1,..., M.
The signal is passed through a bank of P spatial filters which
convolve each channel ¢ with a filter containing N taps: h. =
{hl,n?, ...,RT}. We stride the convolutional filter by 1 in
time across M samples and perform a “same” convolution, such
that the output for each convolutional filter remains length M.
Finally, the outputs from each channel are summed to create
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Figure 1: Factored multichannel raw waveform CLDNN for P
look directions and C' = 2 channels for simplicity.

an output feature of size y[t] € RM*'*F where the dimen-
sions correspond to time (sample index), frequency (spatial fil-
ter index), and look direction (feature map index), respectively.
The operation for each look direction p is given by Equation 1,
where ‘*’ denotes the convolution operation.

C
Yl =D welt] x hE (1)
c=1

The second convolution layer, denoted by tConv2 in Fig-
ure 1, consists of longer duration single channel filters. This
layer is designed to learn a decomposition with better frequency
resolution than the first layer but is incapable of performing any
spatial filtering since the input contains a single channel. We
perform a time convolution on each of these P output signals
from the first layer, as in the single channel time convolution
layer described in [11]. The parameters of this time convolution
are shared across all P feature maps or “look directions”. We
denote this layer’s filters as g € RL*F*! where 1 indicates
sharing across the P input feature maps. When striding this

convolution by S samples, the “valid” convolution produces an
M—-L+41 . .
output w[t] € R~ 5 *FXF The stride S was set to 1 in

[1]. The output of the spectral convolution layer for each look
direction p and each filter f is given by Equation 2.

wh[t] = yP[t] * g¢ @

The filterbank output is then max-pooled in time thereby
discarding short-time (i.e. phase) information, over the entire
time length of the output signal frame, producing an output of
dimension 1 x F' x P. This is followed by a rectifier non-
linearity and stabilized logarithm compression', to produce a
frame-level feature vector at frame {: z; € RIXEXP \We then
shift the input window by 10ms and repeat this time convolution
to produce a set of time-frequency-direction frames.

The output out of the time convolutional layer (tConv2)
produces a frame-level feature z[{] which is passed to a CLDNN
acoustic model, which contains 1 frequency convolution, 3
LSTM and 1 DNN layer [11, 12].

'We use a small additive offset to truncate the output range and avoid
numerical problems with very small inputs: log(- + 0.01).

3. Speedup Techniques
3.1. Speedups in Time

To understand where the computational complexity lies in the
factored model, we count the number of multiplications in the
spatial convolution layer from Equation 1. A “‘same” convo-
lution between filter h of length N, and input x; of length M
requires M x N multiplies. Computing this convolution for
each channel c in each look direction p results in a total of
P x C x M x N multiplies for the first layer. Using C' = 2,
P =10, M = 81 (corresponding to 5Sms filters) and N = 561
(35ms input size) from [1], corresponds to 908.8K multiplies.

Next, we count number of multiplies for the spectral con-
volution layer, given by Equation 2. A “valid” convolution be-
tween filter g of length L, stride S and input y; of length NV
requires Y=L+ x [, multiplies. Computing this convolution
for each look direction p and each filter f results in a total of
P x F x Lx(N—L+1)/S multiplies. Following [1], using
N = 561 (35 ms input size), L = 401 (25m:s filters) P = 10,
S =1, and F' = 128, this corresponds to 82.6M multiplies.

Layer Total Multiplies In Practice [1]
spatial PxCxMxN 908.8K
spectral | Px Fx L x (N—L+1)/S 82.6M
CLDNN - 19.5M

Table 1: Computational Complexity in Time

The remainder of the CLDNN model uses approximately
20M multiplies [12], leaving the majority of the computation of
the factored model in the spectral filtering layer tConv2.

Reducing any of the parameters P, N, L, F' or increasing
S will decrease the amount of computation. Previous work
showed that reducing the input window size IV, filter size L or
filter outputs I’ degrades performance [1, 10]. We therefore re-
duce the computational cost (and the number of parameters) by
reducing the number of look directions P and increasing in the
stride S without degrading performance, which we will show
in Section 5. For example, using a stride of S = 4 reduces
the number of multiplies by 4 and has been shown to be a good
trade-off between cost and accuracy in other applications [13].

3.2. Speedups in Frequency

As an alternative to tuning the parameters of the time domain
model, we also investigate implementing the factored model
in the frequency domain in which quadratic-time time-domain
convolutions can be implemented much more efficiently as
linear-time element-wise products.

For frame index [ and channel ¢, we denote X.[l] € C*
as the result of an M-point Fast Fourier Transform (FFT) of
z.[t] and H? € C¥ as the FFT of hE. Note that we ignore
negative frequencies because the time domain inputs are real,
and thus our frequency domain representation of an M -point
FFT contains only X' = M /2 + 1 unique complex-valued fre-
quency bands. The spatial convolution layer in Equation 1 can
be represented by Equation 3 in the frequency domain, where
- denotes element-wise product. We denote the output of this
layer as Y?[I] € C* for each look direction p:

C

VP =" X[l H? 3)

c=1

In this paper, we explore two different methods for imple-
menting the “spectral filtering” layer in the frequency domain.



3.2.1. Complex Linear Projection

It is straightforward to rewrite the convolution in Equation 2 as
an element-wise product in frequency, for each filter f and look
direction p, where W7[l] € ck:

WEI =Y"[l]- Gy ©)

The frequency domain equivalent to the max-pooling op-
eration in the time domain model would be to take the inverse
FFT of W}’ [!] and performing the same pooling operation in the
time domain, which is computationally expensive to do for each
look direction p and filter output f.

As an alternative [14] recently proposed the Complex Lin-
ear Projection (CLP) model which performs average pooling
in the frequency domain and results in similar performance to
a single channel raw waveform model. Similar to the wave-
form model the pooling operation is followed by a point-
wise absolute-value non-linearity and log compression. The 1-
dimensional output for look direction p and filter f is given by:

N
> Wyl K
k=1

3.2.2. Linear Projection of Energy

Z5(l] = log (5)

We also explore an alternative decomposition that is motivated
by the log-mel filterbank. Given the complex-valued FFT for
each look direction, Y [I], we first compute the energy at each
time-frequency bin (I, k):

Y2, k] = [YP[l, K]|? (6)

After applying a power compression with a = 0.1, y? [1] is
linearly projected down to an F' dimensional space, in a process
similar to the mel filterbank, albeit with learned filter shapes:

Zyll) = Gy > (YPI)* ™

As in the other models, the projection weights G € RE*F
shared across all look directions.

The main difference between the CLP and LPE models is

that the former retains phase information when performing the

filterbank decomposition with matrix G. In contrast, LPE op-

erates directly on the energy in each frequency band with the
assumption that phase not important for computing features.

are

3.2.3. Speedups

The total number of multiplies for the frequency domain spatial
layeris 4 x P x C' x K, where 4 comes from the complex multi-
plication operation. The total number of multiplies for the CLP
spectral layer is be 4 X P x F' x K. Since the LPE model oper-
ates on real-valued FFT energies, the total number of multiplies
for the LPE spectral layer is reduced to P X F' x K.

Using 32ms input frames for x.[t] and a 512 point FFT re-
sults in K = 257 frequency-band X.. Keeping the same pa-
rameters as Section 3.1, P = 10, C' = 2 and F' = 128, Table 2
shows the total number of multiplies needed for each frequency
model in practice. Comparing the number of multiplies used in
the spectral filtering layer to the waveform model in Table 2 we
can see that the CLP model’s computational requirements are
about 80-times smaller than the baseline time domain model.
For the LPE model, this reduction is about 250-times.

Layer Total Multiplies | In Practice

spatial 4x PxCxK 20.6K
spectral -CLP | 4 x P x F'x K 1.32M
spectral - LPE PxFxK 330.2K

Table 2: Computational Complexity in Frequency

4. Experimental Details

We conduct experiments on about 2,000 hours of noisy train-
ing data consisting of 3 million English utterances. This data
set is created by artificially corrupting clean utterances using a
room simulator, adding varying degrees of noise and reverbera-
tion. The clean utterances are anonymized and hand-transcribed
voice search queries, and are representative of Google’s voice
search traffic. Noise signals, which include music and ambient
noise sampled from YouTube and recordings of “daily life” en-
vironments, are added to the clean utterances at SNRs ranging
from O to 20 dB. Reverberation is simulated using the image
model [15] — room dimensions and microphone array positions
are randomly sampled from 100 possible room configurations
with RTgos ranging from 400 to 900 ms. The simulation uses a
2-channel linear microphone array, with inter-microphone spac-
ing of 14 cm. Both noise and target speaker locations change
between utterances; the distance between the sound source and
the microphone array varies between 1 to 4 meters. The speech
and noise azimuths were uniformly sampled from the range of
145 degrees and +90 degrees, respectively, for each utterance.

The evaluation set consists of a separate set of about 30,000
utterances (over 20 hours), and is created by simulating simi-
lar SNR and reverberation settings to the training set. The room
configurations, SNR values, RT5o times, and target speaker and
noise positions in the evaluation set differ from those in the
training set, although the microphone array geometry between
the training and simulated test sets is identical.

All CLDNN models [12] are trained with the cross-entropy
(CE) and sequence training (ST) criterion, using asynchronous
stochastic gradient descent (ASGD) optimization [16, 17]. All
networks have 13,522 context dependent state output targets.

5. Results

5.1. Parameter Reduction in Time

We explore reducing computational complexity of the raw
waveform factored model by varying look directions P and
stride S. Table 3 shows the WER for CE and ST criteria, as
well as the total number of multiplication and addition opera-
tions (M+A) for different parameter settings>. The table shows
that we can reduce the number of operations from 157.7M to
88.2M, by reducing the look directions P from 10 to 5, with no
loss in accuracy. The stride can also be increased up to S = 4
with no loss in accuracy after ST, which reduces multiplies from
88.2M to 42.5M. Finally, removing the f£Conv layer from the
CLDNN, which we have shown does not help on noisier train-
ing sets [18], reduces multiplies further. Overall, we can reduce
multiplies from 157.7M to 35.1M, a factor of 4.5x.

5.2. Parameter Reduction in Frequency

Next, we explore the performance of the frequency domain fac-
tored model. Note this model does not have any £Conv layer.
We use a similar setting to the best configuration from the pre-
vious section, namely P = 5 and F' = 128. The input window

2While Section 3 showed computation in terms of multiplies for sim-
plicity, we report M+A now to be accurate.



P | S | Spatial | Spectral Total WER WER
M+A M+A M+A CE ST

10 | 1 1.1M 124.0M | 157.7M 20.4 17.2
5 1 | 525.6K 62.0M 88.2M 20.7 17.3
3 1 | 3154K 37.2M 60.4M 21.6 -

5 | 2| 525.6K | 31.1M 57.4M 20.7 -

5 | 4| 525.6K | 15.7M 42.5M 20.7 17.3
5 | 6 | 525.6K | 10.6M 36.8M 20.9

5 | 4| 525.6K | 15.7M 35.1M 20.4 17.1

no fConv

Table 3: Raw waveform Factored Model Performance

is 32ms instead of 35ms in the waveform model, as this allows
us to take a M/ = 512-point FFT at a sampling rate of 16khZ>.
Table 4 shows that the performance of both the CLP and LPE
factored models are similar. Furthermore, both models reduce
the number of operations by a factor of 1.9x over the best wave-
form model from Table 3, with a small degradation in WER.

Model | Spatial | Spectral | Total | WER | WER
M+A M+A M+A CE ST
CLP 10.3K | 655.4K | 19.6M | 20.5 17.3
LPE 103K | 165.1K | 19.1M | 20.7 | 17.2

Table 4: Frequency Domain Factored Model Performance

5.3. Comparison between learning in time vs. frequency

Figure 2 shows the spatial responses (i.e., beampatterns) for
both the time and frequency domain spatial layers. Since the
LPE and CLP models have the same spatial layer and we have
found the beampatterns to look similar, we only plot the CLP
model for simplicity. The beampatterns show the magnitude re-
sponse in dB as a function of frequency and direction of arrival,
i.e. each horizontal slice of the beampattern corresponds to the
filter’s magnitude response for a signal coming from a particular
direction. In each frequency band (vertical slice), lighter shades
indicate that sounds from those directions are passed through,
while darker shades indicate directions whose energy is atten-
uated. The figures show that the spatial filters learned in the
time domain are band-limited, unlike those learned in the fre-
quency domain. Furthermore, the peaks and nulls are aligned
well across frequencies for the time domain filters.

The differences between these models can further be seen
in the magnitude responses of the spectral layer filters, as well
as in the outputs of the spectral layers from different look direc-
tions plotted for an example signal. Figure 3 illustrates that the
magnitude responses in both time and CLP models look qualita-
tively similar, and learn bandpass filters with increasing center
frequency. However, because the spatial layers in time and fre-
quency are quite different, we see that the spectral layer outputs
in time are much more diverse in different spatial directions
compared to the CLP model. In contrast to these models, the
LPE spectral layer does not seem to learn bandpass filters.

At some level, time-domain and frequency-domain repre-
sentations are interchangeable, but they result in networks that
are parameterized very differently. Even though the time and
frequency models all learn different spatial filters, they all seem
to have similar WERs. In addition, even though the spatial layer
of the CLP and LPE models are different, they too seem to have

3A 35ms input requires a 1024-point FFT, and we have not found
any performance difference between 32 and 35ms raw waveform inputs.

(a) Factored model, time (b) Factored model, frequency
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Figure 2: Beampatterns of Time and Frequency Models

similar performance. There are roughly 18M parameters in the
CLDNN model that sits above the spatial/spectral layers, which
accounts for over 90% of the parameters in the model. Any dif-
ferences between the spatial layers in time and frequency are
likely accounted for in the CLDNN part of the network.

(a) - Spectral Layer, Raw

(b) - Spectral Layer, CLP (¢) - Spectral Layer, LPE

(c) - Spectral Features, LPE
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Figure 3: Time and Frequency Domain Spatial Responses

5.4. Further improvements to frequency models

In this section we explore improving WER by increasing the
window size (and therefore computational complexity) of the
factored models. Specifically, since longer windows typically
help with localization [5], we explore using 64ms input win-
dows for both models. With a 64ms input, the frequency mod-
els require a 1024-point DFT. Table 5 shows that the frequency
models improve the WER over using a smaller 32ms input, and
still perform roughly the same. However, the frequency model
now has an even larger computational complexity savings of
2.7x savings compared to the time domain model.

Feat Spatial | Spectral | Total | WER
M+A M+A M+A ST
time 906.1K | 33.8IM | 53.6M | 17.1
freq-CLP | 20.5K 1.3M 202M | 171
freq-LPE | 20.5K | 329.0K | 19.3M | 16.9

Table 5: Results with a 64ms Window Size

6. Conclusions

In this paper, we presented several approaches in both time and
frequency to speed up the factored raw-waveform model from
[1]. Frequency optimizations allows us to reduce computational
complexity by a factor of 3, with no loss in accuracy.
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