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Abstract
Joint multichannel enhancement and acoustic modeling us-

ing neural networks has shown promise over the past few years.
However, one shortcoming of previous work [1, 2, 3] is that the
filters learned during training are fixed for decoding, potentially
limiting the ability of these models to adapt to previously un-
seen or changing conditions. In this paper we explore a neural
network adaptive beamforming (NAB) technique to address this
issue. Specifically, we use LSTM layers to predict time domain
beamforming filter coefficients at each input frame. These filters
are convolved with the framed time domain input signal and
summed across channels, essentially performing FIR filter-and-
sum beamforming using the dynamically adapted filter. The
beamformer output is passed into a waveform CLDNN acoustic
model [4] which is trained jointly with the filter prediction LSTM
layers. We find that the proposed NAB model achieves a 12.7%
relative improvement in WER over a single channel model [4]
and reaches similar performance to a “factored” model architec-
ture which utilizes several fixed spatial filters [3] on a 2,000-hour
Voice Search task, with a 17.9% decrease in computational cost.
Index Terms: speech recognition, multichannel, beamforming,
adaptive filtering

1. Introduction
While automatic speech recognition (ASR) performance has im-
proved dramatically in recent years, particularly with the advent
of deep learning [5], performance in realistic noisy and far-field
scenarios is still far-behind clean speech conditions [6, 7, 8] To
improve robustness, microphone arrays are commonly utilized
to enhance the speech signal and eliminate unwanted noise and
reverberation [9, 10].

A widely adopted multichannel signal processing technique
is delay-and-sum (DS) beamforming [10], in which signals from
different microphones are aligned in time to adjust for the prop-
agation delay from the target speaker to each microphone, and
then mixed to a single channel. This has the effect of enhancing
the signal from the target direction and attenuating noise coming
from other directions. However, it is difficult to accurately esti-
mate the time delay of arrival in reverberant environments [11]
and DS beamforming does not take into account the effect of
spatially correlated noise. It is possible to improve performance
using the more general filter-and-sum (FS) technique [12, 13],
where a linear filter is applied to each channel before summing.
Such filters are commonly chosen to optimize signal level objec-
tives such as SNR [10, 14, 15], which differ from the acoustic
model (AM) training objective.

Joint training of enhancement and AM stages has led to
performance improvements, both for Gaussian mixture model
[16] and neural network [2, 3, 17] acoustic models. For example,
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Figure 1: Neural network adaptive beamforming (NAB) model
architecture. It consists of filter prediction (FP), filter-and-sum
(FS) beamforming, acoustic modeling (AM) and multitask learn-
ing (MTL) blocks. Only two channels are shown for simplicity.

[2] trains neural nets to operate directly on multichannel wave-
forms using a single layer of multichannel “time convolution”
FIR filters, each of which independently filters each channel of
the input and then sums the outputs in a process analogous to
FS beamforming. After training, the filters in this multichannel
filterbank learn to jointly perform spatial and spectral filtering,
with typical filters having a bandpass response in frequency, but
steered to enhance or attenuate signals arriving from different
directions. A factored multichannel waveform model is proposed
in [3] which separates the spatial and spectral filtering behavior
into separate layers, and improves performance, but comes at
a large increase in computational complexity. While both of
these architectures have shown improvements over traditional
DS and FS signal processing techniques, one drawback is that the
estimated spatial and spectral filters are fixed during decoding.

To address the limited adaptability and reduce the computa-
tional complexity of the models from [2, 3], we propose a neural
network adaptive beamforming (NAB) model which re-estimates
a set of spatial filter coefficients at each input frame using a neu-
ral network. Specifically, raw multichannel waveform signals are
passed into a filter prediction (FP) LSTM whose outputs are used
as spatial filter coefficients. These spatial filters for each channel
are then convolved with the corresponding waveform input, and
the outputs are summed together to form a single channel output
waveform containing the enhanced speech signal. The resulting



single channel signal is passed to a raw waveform acoustic model
similar to [18], which is trained jointly with the FP LSTM layers.
A similar model was proposed in [17], although filtering was
performed in the frequency domain, as opposed to our model
which processes time domain signals. We will show in the re-
sults section that performing NAB in the time domain requires
estimation of many fewer filter coefficients, and results in better
WER compared to frequency domain filter prediction.

In addition, we propose two improvements to the NAB
model. First, we explore explicitly feeding activations of the
upper layers of the acoustic model from the previous time step,
which capture high-level information about the acoustic states,
as an additional input to the FP layers. A gating mechanism is
further adopted [19] to attentuate the potential errors in these
predictions. It analyzes the predictions together with inputs and
model states to output a confidence score that scales down the
feedback vectors when necessary. Second, we incorporate a
multitask learning (MTL) strategy to regularize training and aid
in filter prediction. This works by training the NAB model to
jointly predict acoustic model states and clean features, which
has previously been shown to improve acoustic models trained
on noisy data [3, 20].

2. Neural Network Adaptive Beamforming
The proposed neural network adaptive beamforming (NAB)
model is depicted in Figure 1. At each time frame k,
it takes in a small window of M waveform samples for
each channel c from the C channel inputs, denoted as
x1(k)[t], x2(k)[t], · · · , xC(k)[t] for t ∈ {1, · · · ,M}.

2.1. Adaptive Spatial Filtering

A finite impulse response (FIR) filter-and-sum beamformer,
which can be written as:

y[t] =

C−1∑
c=0

N−1∑
n=0

hc[n]xc[t− n− τc] (1)

where hc[n] is the n-th tap of the filter associated with micro-
phone c, xc[t] is the signal received by microphone c at time
t, τc is the steering delay induced in the signal received by a
microphone to align it to the other array channels, and y[t] is the
output signal. N is the length of the filter.

Enhancement algorithms that optimize Equation 1 require
an estimate of the steering delay τc, which is typically obtained
from a separate localization model [21]. The filter coefficients
are often obtained by optimizing signal-level objectives [12, 13].
In the NAB model, we estimate the filter coefficients jointly with
the AM parameters by directly minimizing a cross-entropy or se-
quence loss function. Instead of explicitly estimating the steering
delay for each microphone, τc can be implicitly absorbed into
the estimated filter coefficients. The resulting adaptive filtering
at each time frame k is given by Equation 2, where hc(k)[t] is
the estimated filter for channel c at time frame k.

y(k)[t] =

C−1∑
c=0

N−1∑
n=0

hc(k)[n]xc(k)[t− n] (2)

In order to estimate hc(k)[t], we train an FP LSTM to predict N
filter coefficients per channel. The input to the FP module is a
concatenation of frames of raw input samples xc(k)[t] from all
the channels, and can also include features typically computed
for localization such as cross correlation features [21, 17, 22].

We describe the FP module architecture in more detail in Sec-
tion 3.2. Following Equation 2 the estimated filter coefficients
hc(k)[t] are convolved with input samples xc(k)[t] for each
channel. The outputs of the convolution are summed across
channels to produce a single channel signal y(k)[t].

2.2. Acoustic Modeling

The single channel enhanced signal y(k)[t] is passed to the AM
module shown in Figure 1, which is similar to the CLDNN AM
from [4]. The single channel waveform is passed into a “time
convolution” layer, denoted as tConv, which acts as a time-
domain filterbank containing 128 filters. The tConv output is
decimated in time by max-pooling over the length of the input
frame. Finally, a rectifier non-linearity and stabilized logarithm
compression are applied to each filter output, to produce a frame-
level feature vector at frame k.

Unlike CLDNN models used in [2, 3, 4], we do not include a
frequency convolution layer. The feature vector generated by the
time convolution layer is directly passed to three LSTM layers
with 832 cells and a 512-dimensional projection layer, followed
by a fully connected DNN layer of 1,024 hidden units. A 512-
dimensional linear output low rank projection layer is used prior
to the softmax layer to reduce the number of parameters needed
to classify the 13,522 context-dependent state output targets
used[23]. After processing the frame k, we shift the window of
the overall input signal by a 10 ms hop and repeat this process.

The AM and FP modules are trained jointly, however the
FS block has no trainable parameters. The model is unrolled 20
time steps for training using truncated back-propagation through
time. The output state label is delayed by 5 frames, as we have
found that using information about future frames improves the
prediction of the current frame [18].

2.3. Gated Feedback

Augmenting the network input at each frame with the prediction
from the previous frame has been shown to improve performance
[24]. To investigate the benefit of feedback in the NAB model,
we pass the AM prediction at frame k−1 back to the FP model at
time frame k (red line in Figure 1). Since the softmax prediction
is very high dimensional, we feed back the low-rank activations
preceding the softmax to the FP module to limit the increase of
model parameters [25].

This feedback connection gives the FP module high level
information about the phonemic content of the signal to aid
in estimating beamforming filter coefficients. This feedback is
comprised of model predictions which may contain errors, partic-
ularly early in training, and therefore might lead to poor model
training [24]. A gating mechanism [19] is hence introduced
to the connection to modulate the degree of feedback. Unlike
conventional LSTM gates, which control each dimension inde-
pendently, we use a global scalar gate to moderate the feedback.
The gate gfb(k) at time frame k, is computed from the input
waveform samples x(k), the state of the first FP LSTM layer
s(k − 1), and the feedback vector v(k − 1), as follows:

gfb(k) = σ(wT
x ·x(k)+wT

s ·s(k−1)+wT
v ·v(k−1)) (3)

where wx, ws and wv are the corresponding weight vectors and
σ is an elementwise non-linearity. We use a logistic function for
σ which outputs values in the range [0, 1], where 0 cuts off the
feedback connection and 1 directly passes the feedback through.
The effective FP input is hence

[
x(k), gfb(k)v(k − 1)

]
.



2.4. Regularization with Multitask Learning

Multitask learning has been shown to yield improved robustness
[3, 20, 26]. We adopt an MTL module similar to [3] during
training by configuring the network to have two outputs, one
recognition output which predicts CD states and a second denois-
ing output which reconstructs 128 log-mel features derived from
the underlying clean signal. The denoising output is only used
in training to regularize the model parameters; the associated
layers are discarded during inference. In the NAB model the
MTL module branches off of the first LSTM layer of the AM
module, as shown in Figure 1. The MTL module is composed
of two fully connected DNN layers followed by a linear output
layer which predicts clean features. During training the gradients
back propagated from the two outputs are weighted by α and
1− α for the recognition and denoising outputs respectively.

3. Experiments

3.1. Experimental Setup

Our experiments are conducted on about 2,000 hours of noisy
training data consisting of 3 million English utterances. This
data set is created by artificially corrupting clean utterances using
a room simulator, adding varying degrees of noise and reverbera-
tion. The clean utterances are anonymized and hand-transcribed
voice search queries, and are representatives of Google’s voice
search traffic. Noise signals, which include music and ambient
noise sampled from YouTube and recordings of “daily life” en-
vironments, are added to the clean utterances at SNRs ranging
from 0 to 20 dB, with an average of about 12 dB. Reverberation
is simulated using the image model [27] with room dimensions
and microphone array positions that are randomly sampled from
100 possible room configurations with T60s ranging from 400
to 900 ms, with an average of about 600 ms. The first and last
channel of an 8-channel linear microphone array are used, which
has a micophone spacing of 14 cm. Both noise and target speaker
locations vary across utterances; the distance between the sound
source and the microphone array is chosen between 1 to 4 meters.
The speech and noise azimuths were uniformly sampled from
the range of ±45 degrees and ±90 degrees, respectively, for
each noisy utterance.

Our evaluation set consists of a separate set of about 30,000
utterances (over 200 hours). It is created similarly to the training
set under similar SNR and reverberation settings. Care was taken
to ensure that the room configurations, SNR values, T60 times,
and target speaker and noise positions in the evaluation set are
not identical to those in the training set, although the microphone
array geometry between the training and test sets is identical.

Input features for raw waveform models are computed using
an input window size of 35 ms, with a 10 ms hop between frames,
similar to [2, 3]. Unless otherwise indicated, all networks are
trained with 128 tConv filters and with the cross-entropy cri-
terion, using asynchronous stochastic gradient descent (ASGD)
[28]. The sequence-training experiments in this paper also use
distributed ASGD, which is outlined in more details in [29]. All
networks have 13,522 CD output targets. The weights for CNN
and DNN layers are initialized using the Glorot-Bengio strategy
described in [30], while all LSTM parameters are uniformly ini-
tialized to lie between -0.02 and 0.02. We use an exponentially
decaying learning rate, which starts at 4e-3 and has a decay rate
of 0.1 over 15 billion frames.

3.2. Filter Prediction Experiments

The baseline NAB model consists of a raw waveform CLDNN
AM [4] and a FP module, without MTL and feedback. The
FP module has two 512-cell LSTM layers and one linear out-
put layer to generate 5 ms filter coefficients (i.e. 81 taps at
16kHz sampling rate) per input channel. This gives a word error
rate (WER) of 22.2%, while the single-channel raw wavform
CLDNN is at 23.5% [3]. In the following subsections, we de-
scribe experiments using variations of this baseline to find the
best FP setup.

3.2.1. Architecture

First, we explore different architectures for the FP module (Fig-
ure 1). Each FP module has first S “shared” 512-cell LSTM lay-
ers, followed by a split stack of P “splitted” channel-dependent
256-cell LSTM layers, to encourage learning an independent
filter prediction model for each channel. Channel-dependent
linear output layers are then added to generate filter coefficients.
The baseline hence has S = 2 and P = 0.

Table 1 shows the WERs using different FP module archi-
tectures. The best performance is obtained using one shared
and one channel-dependent LSTM layer. Further increasing the
total number of LSTM layers does not improve performance,
regardless of the configuration.

Total 2 3

shared (S) 2 1 0 3 2 1
splitted (P ) 0 1 2 0 1 2

WER (%) 22.2 21.8 22.3 22.4 22.3 22.8

Table 1: WER for different architectures of the FP module.

3.2.2. Filter Inputs

Cross-correlation features [21] are often used for localization,
and were also adopted in [17] to predict frequency domain beam-
forming filters. For comparison, we also trained a two channel
NAB model passing the unweighted cross correlation features
extracted from 100 ms frames with 10 ms shift as inputs to the
FP module. With the same baseline structure (S = 2, P = 0),
this model gave a WER of 22.3%, which is similar to the 22.2%
obtained using waveform samples as inputs. Providing more
explicit localization information in the form of cross correlation
features does not help, suggesting that the FP module is able to
learn good spatial filters directly from waveform samples.

3.2.3. Filter Size

The maximum delay between two microphones spaced 14 cm
apart is less than 0.5 ms, suggesting that filters no shorter than
0.5 ms should be sufficient to align the two channels. In this
section we explore varying the length of predicted filters with
the baseline FP module (S = 2 and P = 0). The results are
shown in Table 2. The best performance is obtained using a 1.5
ms filter. It can also be seen that making the filter size too large
hurts performance.

Size (ms) 1.0 1.5 2.0 3.0 5.0 10.0
Size (samples) 17 25 33 49 81 161

WER (%) 22.1 22.0 22.2 22.3 22.2 22.5

Table 2: WER for different beamforming filter sizes.
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Figure 2: Visualizations of the predicted beamformer responses
at different frequency (Y-axis) across time (X-axis) at the target
speech direction (3rd) and interfering noise direction (4th) with
the noisy (1st) and clean (2nd) speech spectrograms.

3.2.4. Multitask Learning and Feedback

The NAB adopts multitask learning to improve robustness by
training part of the network to reconstruct 128 dimensional clean
log-mel features as a secondary objective to the primary task of
CD state prediction. An interpolation weight α = 0.9 is used
to balance the two objectives. Using MTL, the baseline NAB
(S = 2, P = 0 and 5.0 ms filter) reduces WER from 22.2%
to 21.2%. To further improve performance, we add a gated
feedback connection described in Section 2.3 which results in
another 0.2% absolute reduction to yield a final WER of 21.0%.

3.2.5. Final NAB Setup

A final NAB model with the best configurations is hence built,
which has: a) the FP structure of S = 1 and P = 1; b) raw wave-
form inputs; c) output filter size of 1.5 ms; d) MTL objective
interpolation weight of α = 0.9; e) gated feedback connec-
tions. Instead of using 128 filters for the spectral filtering layer
(tConv in Figure 1), we use 256 filters as it has been shown
to give further improvements [2]. With the final configurations,
the NAB model achieves a WER of 20.5%, a 7.7% relative
improvement over the original NAB model at 22.2% without
these modifications. Among them, MTL and gated feedback
together give the most error reductions. Figure 2 illustrates the
frequency responses of the predicted beamforming filters at the
target speech and interfering noise direcitons. The SNR for this
utterance is 12dB. The responses in the target speech direction
have relatively more speech-dependent variations than those in
the noise direction. This may indicate that the predicted filters
are attending to the speech signal. Besides, the responses at high
speech-engergy regions are generally lower than others, which
suggests the automatic gain control effect of the predicted filters.

3.3. Comparisons to Other Models

3.3.1. NAB in Frequency Domain

Since adaptive beamforming was first proposed in the frequency
domain [17], we compare the NAB model in both time and fre-
quency domains. In the frequency domain NAB setup, we have
an LSTM which predicts complex FFT (CFFT) filters for both
channels. Given a 257-pt FFT input, this amounts to predicting
4 × 257 frequency points for real and imaginary components

for 2 channels, which is much more than the size in the time
domain from Table 2. After the complex filters are predicted
for each channel, element-wise product is done with the FFT
of the input for each channel, equivalent to the convolution in
Equation 2 in the time domain. The output of this is given to a
single channel CLDNN in the frequency domain, which does
both spectral decomposition with a complex linear projection
(CLP) and acoustic modeling. We refer the reader to [31] for
more details about the CLP model. Table 3 shows the WER
and computational complexity of the raw waveform and CFFT
NAB models. While using CFFT features greatly reduces com-
putational complexity, the performance is worse than the raw
waveform model. One hypothesis we have is that CFFT requires
predicting a higher dimensional filter, which we can see from
Table 2 leads to a degradation in performance.

Model WER (%) Param (M) MultAdd (M)

raw 20.5 24.6 35.3
CFFT 21.0 24.7 25.1

Table 3: Comparison between time and frequency NAB models.

3.3.2. Comparison to Other Multichannel Methods

We also compare the performance of the NAB model to the un-
factored [2] and factored raw waveform models [3], which have
been shown to offer superior performance to single channel mod-
els and other signal processing techniques such as DS and FS.
Table 4 shows that compared to the unfactored model, predicting
filters per time frame to handle different spatial directions in the
data helps. Second, while the factored model can potentially han-
dle different directions by enumerating many look directions in
the spatial filtering layer, the adaptive model can achieve similar
performance with much less computational complexity.

Model WER (%) Param MultAdd

CE Seq. (M) (M)

unfactored [2] 21.7 17.5 18.9 27.2
factored [3] 20.4 17.1 18.9 35.1
NAB 20.5 17.2 24.0 28.8

Table 4: Comparison between factored and adaptive models.

4. Conclusions
In this paper we have presented a NAB architecture for mul-
tichannel waveform signals. This model implements adaptive
filter-and-sum beamforming jointly with AM training. Unlike
previous work, the beamforming filters adapt to the current input
signal and also account for AM’s previous predictions through
gated feedback connections. To improve the generalization of
the model, MTL is adopted to regularize the training. Experi-
mental results show that incorporating explicit FS structure is
beneficial and the proposed NAB has similar performance to the
factored model [3] but with much lower computational cost. In
future work, we will further explore this adaptive architecture in
conditions such as moving sources or interfering speakers.
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