

1. Summary

- Task: separate an arbitrary number of sound sources from a stereo recording.
- Construct a probabilistic model of the mixed signal utilizing localization cues and prior model of source statistics.
- EM algorithm to learn model parameters for each source.
- Separate sources by applying probabilistic time-frequency masks to the mixture.
- Extension of the Model-based EM Source Separation and Localization (MESSL) algorithm (Mandel and Ellis, 2007).

2. Signal Model

 Observations are related to each source signal by the gain and delay that characterize the direct path and early reflections.

$$\mathcal{E}(t) = \sum_{i} s_i(t - \tau_i^\ell) * h_i^\ell(t) \qquad r(t) = \sum_{i} s_i(t - \tau_i^r) * h_i^r(t)$$

- Model interaural spectrogram and binaural observations as independent mixtures of Gaussians.
- Assume each time-frequency cell is dominated by a single source.
- . Interaural Phase Difference (IPD):

$$\phi(\omega, t) = \angle rac{L(\omega, t)}{R(\omega, t)} \approx \omega(\tau_i^\ell - \tau_i^r) \sim \sum_{\tau} \psi_{i\tau} \mathcal{N}(\omega \tau, \sigma_i)$$

2. Interaural Level Difference (ILD):

$$\alpha(\omega, t) = 20 \log_{10} \left| \frac{L(\omega, t)}{R(\omega, t)} \right| \approx \hat{H}_{i}^{\ell}(\omega, t) - \hat{H}_{i}^{r}(\omega, t) \sim \mathcal{N}(\mu_{i}, \eta_{i})$$

3. Binaural observations:

$$\hat{L}(\omega, t) \approx \hat{S}_{i}(\omega, t) + \hat{H}_{i}^{\ell}(\omega, t) \sim \sum_{c} \pi_{c} \mathcal{N}(\mu_{c} + h_{i}^{\ell}, \Sigma_{c})$$

$$\hat{R}(\omega, t) \approx \hat{S}_{i}(\omega, t) + \hat{H}_{i}^{r}(\omega, t) \sim \sum_{c} \pi_{c} \mathcal{N}(\mu_{c} + h_{i}^{r}, \Sigma_{c})$$

• Each point in spectrogram is explained by a given source, time delay, and source model component.

Source separation based on binaural cues and source model constraints

Ron J. Weiss, Michael I. Mandel and Daniel P. W. Ellis

LabROSA · Dept of Electrical Engineering · Columbia University, New York, USA {ronw,mim,dpwe}@ee.columbia.edu

3. Separation algorithm

• Initialize source delays from PHAT-histogram (Aarabi, 2002), initialize all other parameters to 0.

• Repeat 5–15 times or until convergence:

4. Evaluation

- Speech signals from GRID dataset (Cooke and Lee, 2006)
- Speaker independent GMM trained over all speakers
- Evaluated algorithms in 4 conditions
- Anechoic (A) and reverberant (R) simulations using binaural impulse responses from KEMAR dummy head
- 2 and 3 simultaneous sources selected from 15 GRID utterances
- Compared SNR improvement of separation:

$$20 \log_{10} \frac{||M_i S_i||}{||S_i - M_i \sum_j S_j||} - 20 \log_{10} \frac{||S_i||}{||\sum_{j \neq i} S_j|}$$

• Compare with ground truth mask, baseline MESSL, ICAbased method 2S-FD-BSS (Sawada et al., 2007)

System	2A	3A	2R	3R	Avg
Ground Truth	11.57	11.62	10.60	10.93	11.18
MESSL-SP 64	3.65	3.66	5.21	5.33	4.46
MESSL-SP 32	3.47	3.60	5.12	5.25	4.36
MESSL-SP 16	3.28	3.55	4.94	5.21	4.25
MESSL-SP 8	2.97	3.31	4.47	5.00	3.94
MESSL baseline	4.74	3.83	3.36	3.01	3.73
2S-FD-BSS	4.42	4.82	4.17	3.30	4.18

