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1. Summary

• Task: separate an arbitrary number of sound sources from a
stereo recording.

• Construct a probabilistic model of the mixed signal utilizing
localization cues and prior model of source statistics.

• EM algorithm to learn model parameters for each source.

• Separate sources by applying probabilistic time-frequency masks
to the mixture.

• Extension of the Model-based EM Source Separation and
Localization (MESSL) algorithm (Mandel and Ellis, 2007).

2. Signal Model

•Observations are related to each source signal by the gain and
delay that characterize the direct path and early reflections.
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•Model interaural spectrogram and binaural observations as
independent mixtures of Gaussians.
• Assume each time-frequency cell is dominated by a single

source.
1. Interaural Phase Difference (IPD):
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2. Interaural Level Difference (ILD):
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3. Binaural observations:
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• Each point in spectrogram is explained by a given source, time
delay, and source model component.

3. Separation algorithm

• Initialize source delays from PHAT-histogram (Aarabi, 2002), initialize all other parameters to 0.

• Repeat 5–15 times or until convergence:

4. Evaluation

• Speech signals from GRID dataset (Cooke and Lee,
2006)

• Speaker independent GMM trained over all speakers
• Evaluated algorithms in 4 conditions
• Anechoic (A) and reverberant (R) simulations using

binaural impulse responses from KEMAR dummy head
• 2 and 3 simultaneous sources selected from 15 GRID

utterances

• Compared SNR improvement of separation:
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• Compare with ground truth mask, baseline MESSL, ICA-

based method 2S-FD-BSS (Sawada et al., 2007)

System 2A 3A 2R 3R Avg
Ground Truth 11.57 11.62 10.60 10.93 11.18
MESSL-SP 64 3.65 3.66 5.21 5.33 4.46
MESSL-SP 32 3.47 3.60 5.12 5.25 4.36
MESSL-SP 16 3.28 3.55 4.94 5.21 4.25
MESSL-SP 8 2.97 3.31 4.47 5.00 3.94
MESSL baseline 4.74 3.83 3.36 3.01 3.73
2S-FD-BSS 4.42 4.82 4.17 3.30 4.18

5. Discussion

•MESSL outperforms MESSL-SP in anechoic conditions.
• Because there is no convolutive noise, interaural model alone

is often a very good fit to observations.
• Loose fit of source model in low frequencies causes errors.

•MESSL-SP outperforms MESSL in reverberant conditions.
• Source model is a good fit to the direct path.
• Helps resolve ambiguities in interaural parameters resulting

from reverberant noise.

• Each observation contributes qualitatively different information to
final masks.
• IPD is very informative in low frequencies, but is uninformative

in some high frequency subbands.
• ILD primarily adds information about high frequencies.
• Source model introduces correlations across frequency and

emphasizes reliable time-frequency regions.
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