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Abstract

Supervised (linear) embedding models like Wsabie [5] and PSI [1] have proven
successful at ranking, recommendation and annotation tasks. However, despite
being scalable to large datasets they do not take full advantage of the extra data
due to their linear nature, and typically underfit. We propose a new class of models
which aim to provide improved performance while retaining many of the benefits
of the existing class of embedding models. Our new approach works by iteratively
learning a linear embedding model where the next iteration’s features and labels
are reweighted as a function of the previous iteration. We describe several variants
of the family, and give some initial results.

1 (Supervised) Linear Embedding Models

Standard linear embedding models are of the form:

f(x, y) = x⊤U⊤V y =
∑

ij

xiU
⊤

i Vjyj .

wherex are the input features andy is a possible label (in the annotation case), document (in the
information retrieval case) or item (in the recommendationcase). These models are used in both
supervised and unsupervised settings. In the supervised ranking case, they have proved successful
in many of the tasks described above, e.g. the Wsabie algorithm [5, 4, 6] which approximately opti-
mizes precision at the top of the ranked list has proven useful for annotation and recommendation.

These methods scale well to large data and are simple to implement and use. However, as they
contain no nonlinearities (other than in the feature representation inx andy) they can be limited in
their ability to fit large complex datasets, and in our experience typically underfit.

2 Affinity Weighted Embedding Models

In this work we propose the following generalized embeddingmodel:

f(x, y) =
∑

ij

Gij(x, y) xiU
⊤

i Vjyj.

whereG is a function, built from a previous learning step, that measures the affinity between two
points. Given a pairx, y and feature indicesi andj, G returns a scalar. Large values of the scalar
indicate a high degree of match. Different methods of learning (or choosing)G lead to different
variants of our proposed approach:
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• Gij(x, y) = G(x, y). In this case each feature index pairi, j returns the same scalar so the
model reduces to:

f(x, y) = G(x, y) x⊤U⊤V y.

• Gij(x, y) = Gij . In this case the returned scalar fori, j is the same independent of the
input vectorx and labely, i.e. it is a reweighting of the feature pairs. This gives themodel:

f(x, y) =
∑

ij

GijxiU
⊤

i Vjyj .

This is likely only useful in large sparse feature spaces, e.g. if Gij represents the weight
of a word-pair in an information retrieval task or an item-pair in a recommendation task.
Further, it is possible thatGij could take a particular form, e.g. it is represented as a low
rank matrixGij = g⊤i gj. In that case we have the modelf(x, y) =

∑
ij g

⊤

i gjxiU
⊤

i Vjyj.

While it may be possible to learn the parameters ofG jointly with U andV here we advocate an
iterative approach:

1. Train a standard embedding model:f(x, y) = x⊤U⊤V y.

2. BuildG using the representation learnt in (1).

3. Train a weighted model:f(x, y) =
∑

ij Gij(x, y) xiŪ
⊤

i V̄jyj .

4. Possibly repeat the procedure further: buildḠ from (3). (So far we have not tried this).

Note that the training algorithm used for (3) is the same as for (1) – we only change the model.

In the following, we will focus on theGij(x, y) = G(x, y) case (where we only weight examples,
not features) and a particular choice ofG1:

G(x, y) =
m∑

i=1

exp(−λx||Ux− Uxi||
2) exp(−λy||y − yi||

2) (1)

wherex andy are the sets of vectors from the training set.

G is built using the embeddingU learnt in step (1), and is then used to build a new embedding
model in step (3). Due to the iterative nature of the steps we can computeG for all examples
in parallel using a MapReduce framework, and store the training set necessary for step (3), thus
making learning straight-forward. To decrease storage, instead of computing a smoothG as above
we can clip (sparsify)G by taking only the topn nearest neighbors toUx, and set the rest to 0.
Further we takeλy suitably large such thatexp(−λy||y − yi||

2) either gives 1 foryi = y or 0
otherwise2. In summary, then, for each training example, we simply haveto find the (n = 20 in
our experiments) nearest neighboring examples in the embedding space, and then we reweight their
labels using eq. 1. (All other labels would then receive a weight of zero, although one could also
add a constant bias to guarantee those labels can receive non-zero final scores.)

3 Experiments

So far, we have conducted two preliminary experiments on Magnatagatune (annotating music with
text tags) and ImageNet (annotation images with labels). Wsabie has been applied to both tasks
previously [4, 5].

On Magnatagatune we used MFCC features for both Wsabie and our method, similar to those used in
[4]. For both models we used an embedding dimension of 100. Our method improved over Wsabie
marginally as shown in Table 1. We speculate that this improvement is small due to the small size

1Although perhapsG(x, y) =
∑m

i=1
exp(−λx||Ux − Uxi||

2) exp(−λy||V y − V yi||
2) would be more

natural. Further we could also considerGorig(x, y) =
∑m

i=1
exp(−λx||x−xi||

2) exp(−λy||y−yi||
2) which

does not make use of the embedding in step (1) at all. This would likely perform poorly when the input features
are too sparse, which would be the point of improving the representation by learning it withU andV .

2This is useful in the label annotation or item ranking settings, but would not be a good idea in an information
retrieval setting.
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Table 1: Magnatagatune Results

Algorithm Prec@1 Prec@3

k-Nearest Neighbor 39.4% 28.6%
k-Nearest Neighbor (Wsabie space) 45.2% 31.9%
Wsabie 48.7% 37.5%
Affinity Weighted Embedding 52.7% 39.2%

Table 2: ImageNet Results (Fall 2011, 21k labels)

Algorithm Prec@1

Wsabie (KPCA features) 9.2%
k-Nearest Neighbor (Wsabie space) 13.7%
Affinity Weighted Embedding 16.4%
Convolutional Net [2] 15.6%(NOTE: on a different train/test split)

of the dataset (only 16,000 training examples, 104 input dimensions for the MFCCs and 160 unique
tags). We believe our method will be more useful on larger tasks.

On the ImageNet task (Fall 2011, 10M examples, 474 KPCA features and 21k classes) the improve-
ment over Wsabie is much larger, shown in Table 2. We used similar KPCA features as in [5] for
both Wsabie and our method. We use an embedding dimension of 128 for both. We also compare
to nearest neighbor in the embedding space. For our method, we used the max instead of the sum
in eq. (1) as it gave better results. Our method is competitive with the convolutional neural network
model of [2] (note, this is on a different train/test split).However, we believe the method of [3]
would likely perform better again if applied in the same setting.

4 Conclusions

In conclusion, by incorporating a learnt reweighting function G into supervised linear embedding
we can increase the capacity of the model leading to improvedresults. One issue however is that
the cost of reducing underfitting by usingG is that it both increases the storage and computational
requirements of the model. One avenue we have begun exploring in that regard is to use approximate
methods in order to computeG.
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