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ABSTRACT

Multichannel ASR systems commonly use separate modules to per-
form speech enhancement and acoustic modeling. In this paper, we
present an algorithm to do multichannel enhancement jointly with
the acoustic model, using a raw waveform convolutional LSTM deep
neural network (CLDNN). We will show that our proposed method
offers ∼5% relative improvement in WER over a log-mel CLDNN
trained on multiple channels. Analysis shows that the proposed net-
work learns to be robust to varying angles of arrival for the target
speaker, and performs as well as a model that is given oracle knowl-
edge of the true location. Finally, we show that training such a net-
work on inputs captured using multiple (linear) array configurations
results in a model that is robust to a range of microphone spacings.

1. INTRODUCTION

While state-of-the-art speech recognition systems perform reason-
ably well in close-talking microphone conditions, performance de-
grades in conditions when the microphone is a large distance from
the user. In such farfield cases, the speech signal is subject to degra-
dation due to reverberation and additive noise. To improve recog-
nition, these systems often use multiple microphones to enhance the
speech signal and reduce the impact of reverberation and noise [1, 2].

Multichannel ASR systems often use two separate modules to
perform recognition. First microphone array speech enhancement
is applied, typically via beamforming. Then this enhanced signal
is passed to an acoustic model [3, 4]. One widely used technique
is delay-and-sum beamforming [2], in which signals from differ-
ent microphones are first aligned in time to adjust for the prop-
agation delay from the target speaker to each microphones. The
time-aligned signals are then summed to enhance the signal from
the target direction and to attenuate noise coming from other direc-
tions. Other techniques include Minimum Variance Distortionless
Response (MVDR) beamforming [5, 6] and Multichannel Wiener
Filtering (MWF) [1].

If the end goal is improved ASR performance, treating en-
hancement as disjoint from acoustic modeling might not lead to the
optimal solution. To address this issue [7] proposed a likelihood-
maximizing beamforming (LIMABEAM) technique which does
beamforming jointly with acoustic modeling. This technique was
shown to outperform conventional beamforming techniques such as
delay-and-sum. Like most enhancement techniques, this is a model-
based approach and requires an iterative acoustic model and/or en-
hancement model parameter optimization. Current acoustic models
are generally neural network based where optimization is performed
using a gradient learning algorithm. Combining model-based en-
hancement with an acoustic model that uses gradient learning can

lead to considerable complexity (e.g. [8]).
In this paper, we extend the motivation of doing beamforming

jointly with acoustic modeling [7], but do this within the context
of a deep neural network (DNN) framework following [9]. DNNs
are attractive because they have been shown to do feature extraction
jointly with classification [10]. Since beamforming requires the fine
time structure of the signal at different microphones, we model the
raw time-domain waveform directly. Furthermore, we show experi-
mentally that optimizing both the enhancement and acoustic model
jointly in this framework is effective.

In [9] joint beamforming and acoustic model optimization was
explored for a task exhibiting limited variation in target speaker lo-
cation. Though the network was able to learn spatial filters and im-
prove performance over a similar single channel waveform model,
its performance remained slightly worse than a simple delay-and-
sum beamforming frontend applied to a conventional log-mel acous-
tic model. Recently, we have shown that acoustic models trained
directly on the single channel raw time-domain waveform [11] us-
ing a convolutional, long short-term memory, deep neural network
(CLDNN) [12] can obtain identical accuracy to a similar CLDNN
trained on log-mel features. In this paper, we extend [11] and explore
multichannel raw waveform processing with CLDNNs, thus com-
bining multichannel processing and acoustic modeling. We specif-
ically look at a task with lower signal-to-noise ratio (SNR), longer
reverberation times, and a wider variation in target speaker location
across utterances than [9].

We conduct experiments on a 2,000 hour, multi-condition
trained (MTR) English Voice Search task, with an average SNR
of 12 dB and reverberation time (T60) of 600 ms. A main summary
of our experiments and observations is as follows. First, we train
a single channel raw waveform CLDNN and observe that it im-
proves performance over a log-mel CLDNN on this data set. Next,
we evaluate several multichannel variations of the raw waveform
CLDNN. We compare a multichannel raw waveform CLDNN to
(a) delay-and-sum (D+S) beamforming using oracle knowledge of
the true time delay of arrival (TDOA) of the target passed into a
single-channel CLDNN and (b) aligning the signals in each channel
using the true speech TDOA and then passing the aligned signals
into a multichannel raw waveform CLDNN (which we refer to as
time-aligned multichannel or TAM). When trained and evaluated
on matched microphone array configurations, we find that the raw
waveform CLDNN learns filters which are steered in different direc-
tions similar to [9], and outperforms D+S and multichannel log-mel
models [13], while matching the performance of TAM. Finally,
to make our system robust to variation in array configuration we
train our system on signals from multiple array geometries and find
that the multi-geometry trained network is largely invariant to mi-
crophone spacing, can adapt to unseen channels, and outperforms



traditional beamforming techniques.
The rest of this paper is organized as follows. Section 2 de-

scribes the architecture of multichannel raw waveform CLDNNs.
The experimental setup is discussed in Section 3, while Section 4
presents results and analysis with the proposed architecture. Finally,
Section 5 concludes the paper and discusses future work.

2. MULTICHANNEL RAW WAVEFORM CLDNN

The proposed multichannel raw waveform CLDNN is related to
filter-and-sum beamforming, a generalization of delay-and-sum
beamforming which filters the signal from each microphone using
a finite impulse response (FIR) filter before summing them. Using
similar notation to [7], filter-and-sum enhancement can be written
as follows:

y[t] =

C−1∑
c=0

N−1∑
n=0

hc[n]xc[t− n− τc] (1)

where hc[n] is the nth tap of the filter associated with microphone c,
xc[t], is the signal received by microphone c at time t, τc is the steer-
ing delay induced in the signal received by a microphone to align it
to the other array channels, and y[t] is the output signal generated by
the processing. C is the number of microphones in the array and N
is the length of the FIR filters.

Enhancement algorithms optimizing the model in Equation 1
will generally require an estimate of the steering delay τc obtained
from a separate localization model and will obtain filter parameters
by optimizing an objective, such as MVDR. In contrast, our aim is
to have the network jointly estimate steering delays and filter pa-
rameters by optimizing acoustic modeling performance. Different
steering delays are captured by using a bank of P filters. The output
of filter p ∈ P can be written as follows:

yp[t] =

C−1∑
c=0

N−1∑
n=0

hp
c [n]xc[t− n] (2)

where the steering delay for each microphone is implicitly absorbed
into the filter parameters hp

c [n].
The first layer in our raw waveform architecture models Equa-

tion 2 and performs a multichannel time-convolution with a FIR
spatial filterbank hc = {h1

c , h
2
c , . . . h

P
c } where hc ∈ <N×P for

c ∈ 1, · · · , C. Each filter hp
c is convolved with the input for a spe-

cific channel xc, and the output for each filter p ∈ P is summed
across all channels c ∈ C. The operation within each filter p can be
interpreted as filter-and-sum beamforming, except it does not first
shift the signal in each channel by an estimated time delay of arrival.
As we will show, the network learns the steering delay and filter pa-
rameters implicitly.

However, because the goal of our work is to do multichannel
processing jointly with acoustic modeling, this means that we want
to produce an output that is invariant to perceptually and semanti-
cally identical sounds appearing at different time shifts. We have
shown in [9] and [11] that we can reduce these temporal variations
present in raw waveform by pooling the outputs after filtering, in an
operation analogous to windowing in the short-time Fourier trans-
form. Specifically, the output of the spatial filterbank is max-pooled
across time to give a degree of short term shift invariance, and then
passed through a compressive non-linearity.

As shown in [9, 11], when operating on single channel inputs
these time-convolution layers implement a standard time-domain fil-
terbank, such as a gammatone filterbank, which is implemented as

a bank of time-domain filters followed by rectification and averag-
ing over a small window. Since our set of time-convolutional lay-
ers can do this (and as we will show, does in fact do this), we will
subsequently refer to the output of this layer as a “time-frequency”
representation, and we will assume that the outputs of different con-
volutional units correspond to different “frequencies.” Therefore, the
time-convolution layers do both spatial and spectral filtering.

Our multichannel time convolution layers are shown in the
tConv block of Figure 1. First, we take a small window of the
raw waveform of length M samples for each channel C, denoted
as {x1[t], x2[t], . . . , xC [t]} for t ∈ 1, · · · ,M . Each channel c
is convolved by a filter with N taps, and there are P such filters
hc = {h1

c , h
2
c , . . . , h

P
c }. If we assume we stride the convolutional

filter by 1 in time across M samples, the output from the convolu-
tion in each channel is yc[t] ∈ <(M−N+1)×P . After summing the
outputs yc[t] across channels c, we max pool the filterbank output
in time (thereby discarding short term phase information), over the
entire time length of the output signal M − N + 1, to produce
y[t] ∈ <1×P . Finally, we apply a rectified non-linearity, followed
by a stabilized logarithm compression1, to produce a frame-level
feature vector at time t, i.e., z[t] ∈ <1×P . We then shift the window
around the waveform by 10ms and repeat this time convolution to
produce a set of feature frames at 10ms intervals.

fConv

LSTM

LSTM

LSTM

DNN

output targets

x1[t] 2 <M x2[t] 2 <M xC [t] 2 <M

pool + 
nonlin

z[t] 2 <1⇥P

y1[t] 2
<M�N+1⇥P

tConv

CLDNN

. . .h1 2 <N⇥P h2 2 <N⇥P hc 2 <N⇥P

Fig. 1: Multichannel raw waveform CLDNN architecture.

2.1. CLDNN

As shown in the CLDNN block of Figure 1, the output out of the
time convolutional layer (tConv) produces a frame-level feature,
denoted as z[t] ∈ <1×P . This feature is then passed to a CLDNN
model [12], which predicts context dependent state output targets.

1We use a small additive offset to truncate the output range and avoid
numerical instability with very small inputs: log(·+ 0.01).



First, the fConv layer applies frequency convolution to z[t],
using an architecture similar to that proposed in [14]. Specifically,
we use 1 convolutional layer, with 256 filters of size 1 × 8 in time-
frequency. Our pooling strategy is to use non-overlapping max pool-
ing along the frequency axis, with a pooling size of 3 [15].

After frequency convolution, the CNN output is passed to a stack
of LSTM layers, which model the signal across long time scales.
We use 3 LSTM layers, each consisting of 832 cells, and a 512 unit
projection layer [16]. Finally, the output of the LSTM is passed to
one fully connected DNN layer with 1,024 hidden units.

The time convolution layer is trained jointly with the rest of the
CLDNN. During training, the raw waveform CLDNN is unrolled for
20 time steps for training with truncated backpropagation through
time. In addition, the output state label is delayed by 5 frames, as we
have observed that information about future frames improves predic-
tion of the current frame [12].

3. EXPERIMENTAL DETAILS

3.1. Data

Our main experiments are conducted on about 2,000 hours of noisy
training data consisting of 3 million English utterances. This data
set is created by artificially corrupting clean utterances using a room
simulator, adding varying degrees of noise and reverberation. The
clean utterances are anonymized and hand-transcribed voice search
queries, and are representative of Google’s voice search traffic.
Noise signals, which include music and ambient noise sampled from
YouTube and recordings of “daily life” environments, are added
to the clean utterances at SNRs ranging from 0 to 20 dB, with an
average of about 12 dB. Reverberation is simulated using the im-
age model [17] – room dimensions and microphone array positions
are randomly sampled from 100 possible room configurations with
T60s ranging from 400 to 900 ms, with an average of about 600
ms. The simulation uses an 8-channel linear microphone array, with
inter-microphone spacing of 2 cm. Both noise and target speaker lo-
cations change between utterances; the distance between the sound
source and the microphone array is chosen between 1 to 4 meters.

Our main evaluation set consists of a separate set of about 30,000
utterances (over 20 hours). The simulated set is created similarly to
the training set under similar SNR and reverberation settings. Care
was taken to ensure that the room configurations, SNR values, T60
times, and target speaker and noise positions in the evaluation set
are not identical to those in the training set. The microphone array
geometry between the training and simulated test sets is identical.
Most of the results we report will be on this test set.

A second “Rerecorded” test set was obtained by first playing the
evaluation set and the noises individually over speakers in a living
room, using an 8-channel linear microphone array with microphones
placed 4 cm apart. The target speaker was placed in broadside and
off-broadside positions, with directions of arrival (DOAs) of 90 and
135 degrees, respectively. Noise sources were placed at 30, 75, 105,
and 150 degrees. A final noise set was obtained by recording noise
in a cafe during lunch-time using the same microphone array, and is
used to evaluate performance of the system in diffuse noise condi-
tions. The rerecorded utterances and noise are mixed at SNRs rang-
ing 0 to 20 dB using the same distribution as used to generate the
simulated evaluation set.

3.2. Acoustic model details

The CLDNN architecture and training setup follow a similar recipe
to [11, 12]. The baseline log-mel features are computed with a 25ms
window and a 10ms hop. The raw waveform features are computed
with an identical filter size of 25ms, or N = 400 at a sampling rate
of 16kHz. The input window size is 35ms (M = 560) giving a 10ms
fully overlapping pooling window. Both log-mel and raw waveform
features are computed every 10ms. We explore varying the number
of time-convolution filters P , and the number of log-mel outputs.

Single channel models are trained using signals from channel 1,
C = 2 channel models use channels 1 and 8 (14 cm spacing),C = 4
channel models use channels 1, 3, 6, and 8 (14 cm array span, with
adjacent microphone spacing of 4cm-6cm-4cm). Unless otherwise
indicated, all neural networks are trained with the cross-entropy (CE)
criterion, using asynchronous stochastic gradient descent (ASGD)
optimization [18]. The sequence-training experiments in this paper
also use distributed ASGD [19]. All networks have 13,522 context-
dependent (CD) output targets. The weights for all CNN and DNN
layers are initialized using the Glorot-Bengio strategy [20], while
those of all LSTM layers are randomly initialized using a uniform
distribution between -0.02 and 0.02. We use an exponentially de-
caying learning rate, initialized to 0.004 and decaying by 0.1 over
15 billion frames.

4. RESULTS

4.1. Single channel

Our first set of experiments compares raw waveform and log-mel
CLDNN for a single channel. Table 1 shows WER results for both
features as a function of the number of filters P . Notice that the
raw waveform models consistently outperform the corresponding
log-mel models. In addition, for larger numbers of filters, the raw
waveform shows even larger improvements over log-mel than with
the standard 40 filters.

# of Filters (P ) log-mel raw waveform

40 25.2 24.7
84 25.0 23.7
128 24.4 23.5

Table 1: WER for single channel models.

To analyze this further, Figure 2 shows the WER for the above
systems, as a function of SNR, reverberation time and target to mic
distance. For the same number of filters, the raw waveform shows
small but consistent improvement over log-mel at all SNRs, and in-
creasing benefits over log-mel as the reverb time and the target to
microphone distance increases. In [11] we found that log-mel and
raw waveform CLDNN performance matched for a single channel.
However, that data set had a much higher average SNR of about
20dB, and had less reverberation. The figure shows the benefits of
the raw waveform over log-mel are apparent under more adverse
conditions.

Analyzing the center frequencies (bin index containing the peak
magnitude response) of the learned and log-mel filters in Figure 3,
we see a similar trend to [9, 11] where the raw waveform model puts
more filters with low center frequency compared to the mel scale. It
appears that giving more resolution in lower frequencies is benefi-
cial, particularly in noisy and reverberant conditions.
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Fig. 2: WER breakdown.
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4.2. Multichannel

4.2.1. Comparison to log-mel

In this section, we analyze the behavior of raw waveform and
log-mel CLDNNs as we increase the number of channels. The
multichannel log-mel system is trained by computing log-mel for
each channel, and treating these as separate feature maps into the
CLDNN. Table 2 shows the results for 2, 4 and 8 channels. All of
these experiments are run using P = 128 filters. Notice that log-
mel shows improvements with more channels, which is consistent
with [13], but does not improve as much as raw waveform. Since
log-mel features are computed from the FFT magnitude, the fine
time structure (stored in the phase), and therefore information about
inter-microphone delays, is discarded. Log-mel models can there-
fore only make use of the weaker inter-microphone level difference
cues. However, the multichannel time-domain filterbanks in the raw
waveform models utilize the fine time structure and improve more
as the number of channels increases.

Feature 1ch 2ch (14cm) 4ch (4-6-4cm) 8ch (2cm)

log-mel 24.4 22.0 21.7 22.0
raw 23.5 21.8 21.3 21.1

Table 2: WER for multichannel models, all use 128 filters.

Multi-microphone processing can help to enhance the signal and
supress the noise. Therefore, we should expect to see improvements
in WER, especially under more challenging conditions. A break-
down of WER in Figure 4 shows that this is indeed the case.
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Fig. 4: WER breakdown for multichannel models.

4.2.2. Increasing number of filters

To help understand what the multichannel tConv filters are doing,
Figure 5 plots the multichannel filter coefficients and the correspond-
ing spatial responses, or beampatterns, after training. The beampat-
terns show the magnitude response in dB as a function of frequency
and direction of arrival, i.e. each horizontal slice of the beampattern
corresponds to the filter’s magnitude response for a signal coming
from a particular direction. In each frequency band (vertical slice),
lighter shades indicate sounds from those angles are passed through,
while darker shades indicate directions whose energy is filtered out,
also known as a “null direction”.

Similar to [9], the network tends to learn very similar filter co-
efficients in each channel, but shifted relative to each other, consis-
tent with the concept of the steering delay τc described in Section
2. Most filters have bandpass response in frequency, often steered to
have stronger response in a particular direction. Approximately 80%
of the filters in the model shown in Figure 5 demonstrate a signifi-
cant spatial response, i.e. show a difference of at least 6dB between
the direction with the minimum and maximum response at the filter
center frequency.
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Fig. 5: Trained filters and spatial responses for a 2 channel network.

Because each filter has a fixed directional response, the number
of filters limits the ability of the network to exploit directional cues.
By increasing the number of filters, we can potentially improve the
spatial diversity of the learned filters and therefore allow the network



to better exploit directional cues. We can observe this in Figure 6, a
scatter plot of filter maximum response frequency vs. null direction.
Notice in the histogram at the bottom of the figure that as we increase
the number of filters from 40 to 256, the diversity of null directions
increases.
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Fig. 6: Scatter plot of filter maximum response frequency vs. null
direction for models with 40, 128, and 256 filters. “Null direction” is
computed as the direction of minimum response for filters where the
minimum response is at least 6dB below the maximum. (Filters for
which minimum and maximum directional responses differ by less
than 6dB are not included in the plot.)

Now that we have shown how increasing the number of filters
helps to improve spatial diversity, Table 3 shows how increasing the
filters affects WER. For 2 channels, improvements saturate at 128
filters, while for 4 and 8 channels we continue to get improvements
at 256 filters. As we increase the number of input channels, more
complex spatial responses can be learned, and therefore the network
can benefit from more filters.

Filters 2ch (14cm) 4ch (4-6-4cm) 8ch (2cm)

128 21.8 21.3 21.1
256 21.7 20.8 20.6
512 - 20.8 20.6

Table 3: WER for raw and log-mel multichannel CLDNNs.

4.2.3. Sequence training

Finally, we evaluate the result of our multichannel raw waveform
CLDNN after sequence training. Table 4 shows the WER, where
the number of filters used for each channel is also indicated. The
table shows a relative improvement of 6%, 11% and 11% over single
channel raw model for 2, 4 and 8 channel models respectively.

4.3. Comparison to oracle knowledge of speech TDOA

Note that the models presented in the previous subsection do not ex-
plicitly estimate the time delay of arrival of the target source arriving
at different microphones, which is commonly done in beamforming

Method Filters (P ) WER - CE WER - Seq

raw, 1ch 128 23.5 19.3
raw, 2ch 128 21.8 18.2
raw, 4ch 256 20.8 17.2
raw, 8ch 256 20.6 17.2

Table 4: Multichannel WER after sequence training.

[2]. TDOA estimation is useful for two reasons: First, time aligning
and combining signals steers the array such that the speech signal
is enhanced relative to noise sources coming from other directions.
Second, explicitly time aligning signals can make the overall system
robust to differences in microphone geometry between the training
and testing environments.

In this section, we analyze the behavior of raw waveform
CLDNNs when the signals are time aligned using the true TDOA
calculated using the room geometry. For the delay-and-sum ap-
proach, we shift each signal by the TDOA, average them together,
and pass the result into a 1-channel raw waveform CLDNN. For the
time-aligned multichannel (TAM) approach, we align the signals in
time and pass them as separate channel inputs to a multichannel raw
waveform CLDNN. Thus the difference between the multichannel
raw waveform CLDNNs described in Section 2 and TAM is solely
in how the data is presented to the network (whether or not they are
first explicitly aligned to “steer” toward the target speaker direction);
the network architectures are identical.

Table 5 compares the WER of D+S, TAM, and raw waveform
models when we do not shift the signals by the TDOA. First, notice
that as we increase the number of channels, D+S continues to im-
prove, since finer spatial sampling of the signal makes it possible to
steer a narrower beam, leading to increased suppression of noise and
reverberation energy arriving from other directions. Second, notice
that TAM always performs better than D+S, as TAM is more general
than D+S because it allows individual channels to be filtered before
being combined. But notice that the raw waveform CLDNN, with-
out any explicit time alignment or localization (TDOA estimation),
does as well as TAM with the time alignment. This shows us that the
trained un-aligned network is implicitly robust to varying TDOA.

Feature 1ch 2ch (14cm) 4ch (4-6-4cm) 8ch (2cm)

D+S, tdoa 23.5 22.8 22.5 22.4
TAM, tdoa 23.5 21.7 21.3 21.3

raw, no tdoa 23.5 21.8 21.3 21.1

Table 5: WER with true TDOA.

However, one of the drawbacks of not estimating the TDOA is
the network is not robust to mismatches in microphone geometry
between training and test. To understand this better, Table 6 shows
the WER for different networks trained on 2 channels (channels 1
and 8, with 14cm spacing), but evaluated both on matched channel
spacing (channels 1 and 8) and mismatched spacing (e.g., channels
2 and 7 with 10cm spacing, channels 3 and 6 with 6cm spacing, and
channels 4 and 5 with 2cm spacing). As a reference, we also show
results for the single channel raw waveform case. Notice that when
evaluating mismatched channels, D+S degrades slightly because the
mismatched channels are more closely spaced, decreasing the spa-
tial resolution of the D+S filter and therefore the degree of noise
suppression. However, the performance with D+S for mismatched
channels does not significantly degrade compared to a single chan-
nel. In contrast, both TAM and raw waveform degrade significantly.



Method 14cm 10cm 6cm 2cm

raw, 1ch 23.5 23.5 23.5 23.5

D+S, 2ch, tdoa 22.8 23.2 23.3 23.7
TAM, 2ch, tdoa 21.7 22.1 23.2 30.6

raw, 2ch 21.8 22.2 23.3 30.7

Table 6: WER as a function of microphone spacing for 2 channel
systems trained on data with 14cm spacing.

The filters learned for TAM (not shown) appear qualitatively
very similar to the raw waveform plot in Figure 5. Specifically,
it steers nulls for matched channels but lets everything in for mis-
matched channels. While estimating TAM shifts the speech signal,
this means both the target speech and the noise are shifted. The TAM
network learns to filter out the noise according to its position relative
to the target speaker signal. When we change the microphone spac-
ing during test, and the position of target speaker and noise change,
the network cannot adapt to this change of delay.

4.4. Adapting to mismatched array spacing

To make the network more robust to mismatched channels, we cre-
ated a new 2 channel data set where we randomly sampled, with
replacement, pairs of 2 channels from the original 8 channel array
to create a “multi-geometry” data set. Performance of this model is
shown in Table 7.

Here, we see that when we train a single network on multiple
array geometries, the network learns to handle varying microphone
spacings. In addition, Table 8 indicates if we repeat a single chan-
nel twice during decoding, the network recovers the performance of
single channel. This shows that the same network can be used for
single and multichannel tasks. In addition, this shows that an MTR-
type approach to beamforming, where we give the network a variety
of microphone configurations during training, allows the network to
be robust to different configurations during test.

Method 14cm 10cm 6cm 2cm

raw, 2ch 21.8 22.2 22.3 30.7
raw, 2ch, multi-geo 21.9 21.7 21.9 21.8

Table 7: WER when trained on pairs of channels. All models use
128 filters.

Method 1ch, repeated twice

raw, 1ch 23.5
raw, 2ch 33.9

raw, 2ch, multi-geo 23.1

Table 8: WER when trained on pairs of channels and decoding sin-
gle channel repeated twice.

Figure 7 shows example filters learned when trained on multi-
geometry data. The filters appear qualitatively quite different to
those shown in Figure 5. Specifically, the filters no longer exhibit
strong spatial responses, i.e. they do not appear to steer nulls in dif-
ferent directions. Indeed, only 30% of the filters have a significant
spatial response, less than half of those in the corresponding model
trained on a fixed array geometry shown in Figure 5.

In other words, the network appears to handle candidate beam-
forming patterns for varying steering directions and varying mic con-
figurations, and appears capable to infer the optimization with the
upper layers of the network. This is in sharp contrast to the model-
based estimation model and, since effective from empirical results, a
more practical setup to combine enhancement and acoustic modeling
in a single framework with a consistent optimization criterion.
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Fig. 7: Trained filters and their spatial responses for a 2 channel
multi-geometry trained model. Note that the beampatterns are plot-
ted assuming the widest microphone spacing of 14 cm.

Finally, we evaluate numbers after sequence training. We also
show numbers on the “Rerecorded” data set. We see that the multi-
geometry trained model is robust to microphone mismatches.

Method WER - Simulated WER - Rerecorded

raw, 1ch 19.3 23.8
raw, 2ch 18.2 23.7

D+S, 2ch, tdoa 19.2 23.3
raw, 2ch, multi-geo 17.8 21.1

Table 9: WER after sequence training, simulated and rerecorded.

5. CONCLUSIONS

In this paper, we presented a technique for doing beamforming
jointly with acoustic modeling, using a raw waveform CLDNN. We
showed that our raw waveform CLDNN offered improvements over
log-mel CLDNNs, for both single and multiple channels. Analysis
showed that the raw waveform model learns to do spatial filtering,
and does as well as both D+S and TAM trained with the true TDOA.
Finally, by training on multiple array geometries results in a model
that is robust to a wide range of microphone spacings. The effective
empirical results shown in this paper indicate that doing beamform-
ing jointly with acoustic modeling within a single neural network
framework appears to be a more practical setup compared to many
model-based approaches.
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