E85.2607: Lecture 6 – Time-segment Processing
Variable speed replay

How can we modify a sound to make ‘faster’ or ‘slower’?
i.e. song played at half tempo
Why not just slow it down?

- \(x_s(t) = x_o(vt), \ v = \) speedup factor (\(> 1 \rightarrow \) faster)
- equivalent to playback at a different sampling rate (resample in Matlab)

Source: Dan Ellis, EE6820 Lecture 1
Variable speed replay in the frequency domain

- Compress in time → shift frequencies higher
 - “chipmunk” effect
- Beware aliasing
 - LPF before resampling

Source: DAFX: Fig. 7.1
Timescale modification

- Want to change time axis
- Leave pitch alone

Source: DAFX: Fig. 7.4
Chop signal into short segments
Resample individual segments, but keep time axis
 Will this work?

c = 1;
for i = 0:N:length(x)
 y(:,c) = x(i + [1:N]);
 c = c + 1;
end
TSM in the time-domain

- Problem: want to preserve local time structure but alter global time structure
- Repeat or discard segments
 - but: artifacts from abrupt edges
- Cross-fade & overlap-add (OLA)

\[y^m[mL + n] = y^{m-1}[mL + n] + w[n] \cdot x[\lfloor vm \rfloor L + n] \]

Source: Dan Ellis, EE6820 Lecture 1
Aside: Fast convolution (fftfilt)

Use FFT to implement block-wise convolution: $O(N \log N)$ vs $O(N^2)$
Synchronous overlap-add (SOLA)

Idea: allow some leeway in placing window to optimize alignment of waveforms to minimize artifacts

Hence,

\[y^m[mL + n] = y^{m-1}[mL + n] + w[n] \cdot x[\lfloor vm \rfloor L + n + K_m] \]

Where \(K_m \) chosen by cross-correlation (\(\text{xcorr} \)):

\[K_m = \arg\max_{0 \leq K \leq K_u} \frac{\sum_{n=0}^{N_{ov}} y^{m-1}[mL + n] \cdot x[\lfloor vm \rfloor L + n + K]}{\sqrt{\sum(y^{m-1}[mL + n])^2 \sum(x[\lfloor vm \rfloor L + n + K])^2}} \]

Source: Dan Ellis, EE6820 Lecture 1
Assuming input signal has pitch, can get even cleaner TSM

1. Identify pitch period T using auto-correlation
2. Find peaks corresponding to pitch pulse
3. Segment signal using length $2T$ window centered on each pitch pulse

Source: DAFX: Fig. 7.9
1. Set up grid of pitch marks for output segments
2. Match up closest input segment to each output pitch mark
3. Overlap-add...

Source: DAFX: Fig. 7.10
PSOLA gotchas

- PSOLA analysis assumes constant pitch
 - Use more sophisticated pitch tracker
- What if there is no pitch?
 - Fall back to OLA/SOLA
 - Complicates analysis – how to decide whether given section has pitch or not?
- Tends to introduce artifacts on noisy sections
 - Repeating noisy segments introduces artificial periodicity (e.g. repeated transients)
 - Fix by reversing repeated segments

Source: DAFX: Fig. 7.8
Pitch-shifting

- Leave the time-axis alone, but shift frequency-axis
- Approach: Resample to shift both, then correct time axis
- or vice-versa

\[v = \frac{N_2}{N_1} \]

Source: DAFX: Fig. 7.13
Pitch-shifting example

Pitch scaling ($\alpha=1$), time domain signals

Pitch scaling ($\alpha=1$), spectra

Resampling (ratio N/N)

Time Scaling (ratio N/N)

Source: DAFX: Fig. 7.12
Just stretch out the spectrogram?

how to resynthesize?
spectrogram is only $|Y[k, m]|$

Source: Dan Ellis, EE6820 Lecture 1
A look ahead: Phase vocoder

- Time/pitch modification in the time-frequency domain
- Like OLA, but also take DFT of each segment
 - Like STFT, but special attention paid to phase...
- Magnitude from ‘stretched’ spectrogram:
 \[|Y[k, m]| = |X[k, vr]| \]
- But preserve phase increment between slices:
 \[\dot{\theta}_Y[k, m] = \dot{\theta}_X[k, vm] \]
Reading

DAFX 7.1–7.4 TSM, SOLA, PSOLA
DAFX 8.1–8.2 Phase vocoder basics