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Computers with hard-disk storage and networks with dynamic spectrum access illustrate resources that allow fragmented items

– in these examples, items are files and spectra, respectively. In our discrete model of such systems, the resource is a sequence

of slots. There is a queue of items awaiting allocations of the resource; the queue is served in FIFO order. Specified for each

item are the number of slots needed by the item, and for what period of time. Under the key assumption that an item’s allocation

can not be changed prior to its departure, fragmentation in the form of alternating gaps and allocated resource builds up as items

come and go, regardless of the allocation algorithm adopted. The improvements in resource utilization created by fragmentation

are countered by the added cost of manipulating fragmented items, so how fragmentation evolves is an important performance

issue. Within a baseline probability model of the system operating at capacity, we prove that, in the stationary limit under any

practical algorithm, almost all items are completely fragmented, i.e., items of size i are fragmented into i disjoint slots. In the

full paper, this result is balanced by many experimental results which show that, in reality, the times to approach steady-state

fragmentation are typically exceptionally long, and hence that even nearly complete fragmentation is often of no concern.
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The model: In our baseline probability model the system operates at capacity; effectively, there is an unbounded

queue of waiting items. The resource is a sequence of M > 1 slots and item sizes are integers from 1 to K drawn

from a given distribution q = {q1, . . . ,qK}. To avoid trivialities, we assume that 1 < K ≤ M and that at

least two item sizes have positive probability. Requests to allocate items are served in FIFO order; once allocated,

items remain for times that are independent, each a sample from the same exponential distribution, after which their

allocated slots become available, either extending current gaps or creating new gaps.

A state σ of the stochastic fragmentation process is a sequence of M integers, one per slot: a 0 identifies an empty

slot, and an integer i > 0 means that the slot contains a unit of the i-th item to be allocated. We assume that the

resource is initially completely unoccupied, so item i is the i-th item in the queue at time 0. At state transitions an

allocation algorithm maps a state σ and the size s of the item at the head of the queue/line, the HOL item, into the

same state if it has fewer than s empty slots; otherwise, a new state σ′ is obtained from σ by allocating s of σ’s

empty slots to the units of the HOL item. Algorithms differ by the choices they make for the empty slots.

As a simple example, suppose allocations are made in an increasing scan from slot 1 to slot M of the resource.

Assume that M = 8 and K = 4 and consider the state σ = 0, i1, i2, i1, i3, 0, i2, i2. Slots 1 and 6 are unused, item

i1 has size 2 and is fragmented, as it occupies slots 2 and 4. Item i3 has size 1 and occupies slot 5, and item i2 is

fragmented with a size-1 fragment in slot 3 and a size-2 fragment in slots 7 and 8. Suppose the HOL item has size 4

and hence σ is stable: no further allocations are possible until 1 or more items depart. If item i3 were next to depart,

nothing else would happen, as there would be only 3 available slots; another departure would have to occur before

the HOL item could be allocated. On the other hand, if item i2 were the next departure, then the HOL item would be

allocated to slots 1, 3, 6, and 7, thus producing a new state with 1 unused slot. The new state would be stable if and

only if the next (i.e., the new HOL) item in the queue has size greater than 1; if it had size 1 it would be allocated

slot 8, creating thereby a fully occupied resource and hence a stable state.

Given the allocation algorithm, the fragmentation process embedded at departure epochs is determined by the

parameters M,K, and q, and an initial state. A formal definition of this Markov chain is left to the interested reader.

It simplifies the analogous definition in [CRS+10] for the original continuous version of the model. We briefly

describe this less realistic version as its shortcomings help showcase our new results. Reviews of the two applications

we have mentioned, which apply to both the discrete and continuous versions, can be found in [Knu97, ALC09].



2 E. Coffman, R. Margolies, P. Winkler, G. Zussman

Results past and present: In the continuous model, the resource is represented by the unit interval [0, 1], a con-

venient normalization. The distribution of item sizes is restricted to [0, α], with maximum item size 0 < α ≤ 1.

Note that if we take the resource of the discrete model to be the normalized sequence 1/M, 2/M, . . . , 1, then the

continuous model is approached as K and M increase with the limiting ratio K/M → α as K,M → ∞. There are

two fundamental questions applicable to both the continuous and discrete models.

In the continuous version, depending on the assumed distribution of item sizes, there need not be a positive lower

bound to fragment size, and in this case, the first question to be answered is: For a given α, does a stationary regime

exist? In particular, does fragmentation continue indefinitely with fragments becoming smaller and smaller? For

distributions of practical interest, the answer to the latter question is essentially NO, so a stationary regime does

indeed exist. The proof of this property, however, seems to be very difficult (cf. [CRS+10]). This existence question

adapted to our more realistic discrete model is trivial – the answer is affirmative and comes down to an appeal to

basic theory of finite Markov chains.

The second, equally significant question in the continuous model is: What happens to the extent of fragmentation

as α → 0? Experiments clearly suggest that the fragmentation of items increases without bound, a property that is

not particularly intuitive. But this remains a fundamental open question of fragmentation theory. On the other hand,

the analogous question can in fact be answered in the more realistic discrete model of this paper. The question

becomes: In the stationary regime, do states tend to exhibit nearly total fragmentation,, i.e., are the units of almost

all allocated items in mutually disjoint slots? The answer is provably YES for large M . This result for the discrete

model is the centerpiece of this paper and is given more precisely below.

Total Fragmentation in the Discrete Model: At any time in the stationary process for given q and M , let the

random variable N = N(q,M) count the number of items that are not totally fragmented, i.e., the number of

items with one or more fragments of width at least two. The theorem below describes the stationary behavior of

the fragmentation process embedded at departure epochs. In the order given, the assertions made in the theorem are

progressively stronger but less general. All three hold regardless of the allocation algorithm, even one that can look

ahead in the queue of waiting items and exploit the sizes of future items in making current allocations.

Theorem 1 For given K and q, we have EN/M → 0 as M → ∞. If in addition, q1 > 0, a stronger result holds:

There exists a constant C = C(q,K) such that, for all M sufficiently large, EN < C. Finally, if we also fix K = 2,

then EN ≤ 2(1− q1)/q1.

The last inequality can be replaced by an equality for an allocation algorithm that always exploits two adjacent

empty slots in allocating a size-2 item, whenever such slots exist.

The more difficult proofs of the first two assertions are based on the notion of bonds. A bond exists between any

pair of adjacent slots which are both empty or both occupied by units of the same item. The basic idea exploits the

fact that, in statistical equilibrium, the rate at which bonds are created by arriving items must equal the rate at which

they decrease at departures. For example, with B(t) the number of bonds at time t, the proof of the second assertion

shows that bonds are destroyed at a rate proportional to B(t), but created at only a constant rate.

Final Remarks On the surface, our theory makes it hard for the engineer to justify the use of fragmentation to

improve resource utilization. But there are potentially critical mitigating factors, that must be considered as well,

especially when considered in conjunction with efficient defragmentation techniques. For example, the constant C
in the second result can be expected to grow quickly as a function of the maximum item size K , so that for many

practical applications “all M sufficiently large” refers to values that are far beyond those expected in practice. In the

full paper, our experimental studies with uniform distributions qi = 1/K, 1 < K ≤ M , quantify this observation.
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