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ABSTRACT

In the paper we present a generalized discriminative 

multiple instance learning algorithm (GD-MIL) for 

multimedia semantic concept detection. It combines the 

capability of the MIL for automatically weighting the 

instances in the bag according to their relevance to the 

positive and negative classes, the expressive power of 

generative models, and the advantage of discriminative 

training. We evaluate the GD-MIL on the development set 

of TRECVID 2005 for high-level feature extraction task. 

The significant improvement is observed using the GD-MIL 

over the benchmark. The mean of AP’s over 10 concepts 

using the GD-MIL is 4.18% on the validation set and 3.94 

% on the evaluation set. As the comparison, they are 2.12% 

and 2.63% for the benchmark, correspondingly. 

Index Terms – Multiple instance learning, multimedia 

semantic concept detection, discriminative training 

1. INTRODUCTION 

Enormous digital multimedia is archived and it is growing 

exponentially with the popularity of Internet and personal 

digital multimedia devices. However, efficiently managing 

(e.g. indexing, search and browsing) such giant multimedia 

database at the semantic level is still a challenge. In the past, 

extensive studies on content-based image retrieval have 

been worked on retrieving the image using the low-level 

feature similarity. Retrieving from the video stream at the 

semantic level attracts much attention in the recent years. 

The techniques are being advanced by the annual TREC 

video retrieval evaluation (TRECVID) organized by NIST1.

They exploit the learning algorithms developed in machine 

learning and pattern recognition for detecting multimedia 

semantic concept. For each interested semantic concept, the 

training samples (i.e. key frames) are manually annotated 

based on the visual content. A keyframe is labeled as the 

positive class if it is relevant with the concept. Otherwise, it 

is the negative [3]. Then the supervised learning algorithms 

are applied to train a classifier based on the annotated 

1 http://www-nlpir.nist.gov/projects/tv2005/tv2005.html 

training set. Finally, the classifier is used scoring and 

sorting the video shots. 

In semantic concept detection, the label of the keyframe 

is a weak annotation for image content. It means that the 

semantic annotation is given at the image level, and is not at 

the regions or objects that are exactly relevant with the 

concept. For example, an image annotated as Car may have 

other objects such as building, tree, etc. Thus the positive 

training image has some regions irrelevant with the concept. 

They are the noises for training the positive concept model. 

Ideally, these parts should be removed from the image 

representation. However, annotating at the regions is time 

consuming. Most of the available data is labeled at the 

image level. It is interesting to develop a learning algorithm 

that can automatically de-emphasize the negative regions in 

the training stage. 

Multiple instance learning (MIL) is such a framework 

[6]. It learns the classifier from the weaker annotation, and 

has been successfully applied to content-based image 

retrieval, image classification, and semantic concept 

detection [1, 4, 5, 7]. MIL estimates the positive target 

through the diverse density (DD) [6] or Expectation-

Maximization diverse density (EM-DD) algorithm [8]. But 

the existing target estimation in MIL is based on the 

maximum likelihood (ML). It is not a discriminative training. 

As we know, discriminative training technique can improve 

robustness of the classifiers and play a crucial role on 

classification and information retrieval. Another drawback 

is that it does not incorporate the expressive power of 

generative models widely used in classification. In [4], a 

general MIL is proposed to tackle this issue. But they 

estimate the model parameters using the ML without 

discriminative training. 

In the paper we present a generalized discriminative 

multiple instance learning algorithm (GD-MIL) to address 

the above two shortcomings in the conventional MIL. The 

GD-MIL fuses the capability of MIL for automatically 

weighting the regions according to their relevance to the 

positive and negative classes, the expressive power of 

generative models, and the advantage of discriminative 

training. We evaluate the proposed algorithm on the high-

level feature extraction task based on the development set of 

TRECVID 2005.  
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In the next section, we first give a brief introduction 

about the conventional MIL. Then in Section 3, we discuss 

our GD-MIL approach for estimating the classifier for 

multimedia semantic concept detection. In Section 4, the 

experimental results and analysis are presented. Finally, we 

summarize our findings in Section 5.  

2. MULTIPLE INSTANCE LEARNING 

In MIL, the training samples are provided at the bag level, 

each bag containing multiple instances [6]. But the 

annotation is given for the bag and the instance labels are 

hidden. For our current task of multimedia semantic concept 

detection, the bag is the whole image while the instances are 

its regions. An instance is represented by a D-dimensional 

feature vector, and the union of instances in a bag describe 

the bag. A bag is annotated as the positive if one of its 

instances is relevant with the concept. Otherwise, the bag is 

annotated as the negative. We use the similar notations as in 

[6]. 
iB  is the i-th positive bag whose size is 

iB , and its j-

th instance is 
ijB .

iB  is the i-th negative bag with the size 

iB  and its j-th instance being
ijB . We assume there are M

positive bags and N negative bags in the training set. The 

target, t, being estimated is a single or multiple points at the 

D-dimensional feature space. 

The target, t*, is estimated by maximizing the joint 

probability of the training samples defined in Eq. (1), 
*

1 1max , , , , ,M N
t

t P B B B B t       (1). 

Assuming the bags and instances are independently sampled 

and a uniform prior over the target, Eq. (1) will be, 

* max
M N

i i
t

i i

t P t B P t B             (2). 

It is the general definition of maximum diverse density 

algorithm [6]. To define the conditional probability in Eq. 

(2), a noise-or model is applied. The probability of a 

positive bag is defined as, 

1 1i ijj
P t B P t B              (3). 

Correspondingly, the probability of the negative bag is, 

1i ijj
P t B P t B                  (4). 

The probability of an instance in Eqs. (3-4) is calculated as, 
2

exp , ,c c

ij ijP t B B t c          (5). 

With the definitions of Eqs.(3-5), the target can be found by 

maximizing Eq. (2) using the gradient descent algorithms [6, 

8].  

Eq. (5) is a single Gaussian distribution model of the 

instance with the target as its mean. Because the same 

model is used for the instance of positive bag and that of 

negative, the estimation by optimizing Eq. (2) lacks 

discrimination.  

3. GENERALIZED DISCRIMINATIVE MULTIPLE 

INSTANCE LEARNING 

The generalized discriminative multiple instance learning 

algorithm (GD-MIL) is introduced to provide a MIL 

framework so that 1) the generative model is easy to be 

incorporated, and 2) the model robustness is improved by 

discriminative training. The GD-MIL can be used for any 

generative model and is easy to extend to multi-class 

classification. But here we will use the Gaussian mixture 

model (GMM) as an example to discuss the GD-MIL and its 

estimation for the binary classification or detection problem. 

3.1. Gaussian Mixture Model 

For the positive or negative class, the GMM is used to 

model their feature distribution of the instance. The GMM’s 

are defined as, 

1
, , , , ,

cKc c c c c c c

k k kk
g x w w N x c  (6). 

In the above, x is the instance feature vector, and the 

superscript, c, notes the class (+: positive, -: negative). Kc is 

the mixture number, c

kw  is the weight coefficients, and N(.)

is the Gaussian distribution with the mean c

k
 and 

covariance matrix c

k
 (Here the diagonal matrix is used).  

Thus the parameter set is , , ,c c c

k k kw 1, ck K .

3.2. Generalized Likelihood Ratio 

As the models in Eq. (6) are known, we can determine 

whether an instance, xi, in the bag 
1, ,

X
X x x  is a 

positive or negative according to the following decision rule, 

,

,       

i

i

Positive if l x th
c

Negative Otherwise

               (7), 

with ci being the assigned label for the instance xi, and th

being a threshold (here it is set zero), and  

log , , log , ,i i il x g x w g x w  (8). 

Eq. (8) is the log-likelihood ratio (LLR) between the 

positive and negative classes. To apply the idea of MIL, we 

further define a function as in Eq. (9) so that a positive or 

negative label, C(X), is assigned to the bag, X.

,   max

,                  

i
i

Positive if l x th
C X

Negative Otherwise

  (9), 

i.e. the bag label is decided according to the maximum LLR 

over all instances in the bag. If the maximum LLR is more 

than the threshold, the bag is the positive. Otherwise, it is 

the negative. It is alternate definition for the noise-or model, 

similar as in [9] when extending SVM to handle the MIL. 

However, Eq. (9) is not smoothing and differential. To 

address the issue, a generalized likelihood ratio (GLR) is 

defined in Eq. (10) over a bag to approximate Eq. (9), 

1

1 1
log exp

X

ij
f X l x

X
   (10). 
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 is a positive constant. Eq. (10) is equal to Eq. (9) as  is 

the positive infinite. A bag is assigned as a positive when 

Eq. (10) is more than the threshold. More interestingly, Eq. 

(10) is a differential function over the model parameters.  

The GLR in Eq. (10) combines the evidence of each 

instance in the bag so that the final decision at the bag is 

determined. It bridges the instance-level evidence and the 

bag-level label.  

3.3. GD-MIL Algorithm 

As the GLR is calculated, the probability of a positive bag, 

iB , is approximated using a sigmoid function, 

1
,

1 exp
i

i

P c B
f B

     (11a). 

Thus the probability of a negative bag, 
iB , is calculated as, 

1
, 1

1 exp
i

i

P c B
f B

    (11b). 

With the above definitions, we can formulate the 

objective function being optimized as the log-likelihood 

function of Eq. (2) over the training set, i.e., 

1 1
log , log ,

M N

i ii i
L P c B P c B  (12). 

Eq. (12) is the objective function maximized in our GD-

MIL. Because the likelihood ratio between the positive and 

negative models is embedded into the object function in Eq. 

(12), the model estimation is discriminative training. It 

means that both of the positive and negative samples can 

contribute to the parameter estimation, unlike the maximum 

likelihood algorithm, where the class model is trained only 

from itself samples.  

  The gradients with respect to the parameters, 

, ,c c c

k k kw , are easily derived from Eq. (12), and are 

shown in the following for the (t+1)-th iteration. 

1 1

1

1 ,

         1 ,

t t

t

M

i t ii

N

i t ii

L P c B f B

P c B f B

  (13), 

with, 

1
log log

c
i

t t t

Bc c c c

i j ij ijj
f B b g B g B  (13a), 

and
1

exp exp
c
iBc c c

j ij ikk
b l B l B  (13b). 

The c

jb ’s in the above weight each instance in a bag. Eq. 

(13b) describes that the heavy weight is given to the 

instance with strong discrimination, i.e. the instance with 

higher LLR. We skipped the details of the gradients for 

GMM in Eq. (13a). 

When the gradients in Eq. (13) are gotten, the iterative 

algorithm is used to find the optimal model parameters,  

1 tt t k L             (14) 

k controls the learning rate. 

3.4. Adjusting Control Parameters 

The control parameters, , and k, are empirically set as, 

5.0 , 0.5 , 0.2k  for all concepts based on our 

preliminary results. We cannot find significant performance 

difference when adjusting  and around the above setting. 

The learning rate should be set as: 1) it is bigger enough so 

that the log-likelihood in Eq.(12) monotonically 

convergences to its maximum.  

4. EXPERIMENTAL RESULTS AND ANALYSIS 

We analyze the presented GD-MIL algorithm on the 

development set of TRECVID 2005 for evaluating semantic 

concept detection task. The positive and negative GMM’s 

are trained using the algorithm introduced in Section 3. The 

benchmark is trained without MIL, i.e., train positive GMM 

model on all instances in the positive bags and negative 

model on all instances in the negative bags. We also 

implement the GMIL presented in [4]. But we find it is 

comparable with our benchmark on our dataset and image 

representation method. 

Table 1 Description of the TRECVID 2005 dataset 

 T V E 

Building 41,978 (3,604) 11,173 (1,416) 8,295 (1,064)

Car 41,919 (2,253) 11,325 (767) 8,487 (370) 

Explosion 42,038 (641) 11,301 (81) 8,497 (26) 

Flag-US 42052 (337) 10,970 (51) 8,497 (92) 

Maps 41,988 (594) 11,290  (171) 8,473 (145) 

Mountain 42,073 (385) 11,331 (168) 8,496 (73) 

People 42,021 (996) 11,321 (221) 8,473 (91) 

Prisoner 42,003 (61) 11,332 (43) 8,112 (2) 

Sports 41,753 (1,140) 11,310 (295) 8,498 (135) 

Waterscape 42,043 (819) 11,312 (152) 8,484 (110) 

4.1. Evaluation Metrics 

We compare the results using the non-interpolated average 

precision (AP), an official metric for TREC, 

1

1 Q i
ii

R
AP I

R i
.             (15) 

R is the number of true relevant image documents in the 

evaluation set. Q is the number of retrieved documents by 

the system (Here Q=2000 same as used in TRECVID 

official evaluation). Ii is the i-th indicator in the rank list 

with Q images. It is 1 if the i-th image is relevant and zero 

otherwise. Ri is the number of relevant in the top-i images. 

4.2. Experimental Setup 

The development set of TRECVID 2005 has 74,509 

keyframes extracted from 137 news videos (~80 hours). 10 

concepts are used for official evaluation. We divide the set 

into 3 parts for training, validation, and evaluation, 

respectively. The visual feature is the 12-dimensional 

texture (energy of log Gabor filter) extracted from a 32x32 

grid. Other expressive visual features will be evaluated in 

the future. But here we concern the efficiency of the 
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proposed learning algorithm rather than feature extraction. 

Each keyframe is uniformly segmented into 77 grids. The 

dataset is detailed in Table 1 (Column T: training set, 

Column V: validation set, Column E: evaluation set). The 

positive sample size is shown in the parentheses. For 

example, in the first row and column T, 41,978(3,604) 

means that there are 41,978 images in the training set for the 

concept Building, in which there are 3,604 images labeled 

as Building.

Table 2 AP values (%) and the number of relevant 
keyframes @ 2000 (Pos.#) for GD-MIL(Column GD-MIL
and benchmark (Column REF) (Pos.#: the former number is 
for GD-MIL and the latter is for the benchmark) 

V E Class 

GD-MIL REF Pos.# GD-MIL REF Pos.#

Building 7.47 5.63 449/399 11.88 10.89 469/444

Car 3.93 2.26 250/194 6.34 1.93 188/111

Explosion 0.58 0.25 26/21 0.41 0.40 13/15

US_Flag 0.13 0.04 9/7 0.84 0.83 37/34

Maps 3.72 0.68 67/37 5.61 4.97 114/104

Mountain 6.09 2.45 111/70 3.93 0.90 56/36

People 2.05 2.03 79/82 1.66 4.02 44/51

Prisoner 0.27 0.97 15/18 0.0 0.0 0/0 

Sports 5.47 2.29 148/110 3.67 1.18 87/41

Waterscape 12.12 4.55 95/80 5.08 1.17 63/45

Avg. 4.18 2.12 3.94 2.63  

(a) Building (b) Waterscape 

Figure 1 Precision-Recall curves for 2 concepts, Building (a)

and Waterscape (b) (GD-MIL: thick solid line. Benchmark: 

thin dash line).

4.3. Experimental Results 

The single Gaussian GMM models are used in all 

experiments. The experimental results on the validation and 

evaluation sets over 10 concepts are shown in Table 2. The 

best results for each concept on each set are highlighted. 

The GD-MIL (Column GD-MIL) performs better than the 

benchmark (Column REF) on 9 concepts out of 10. The 

average AP value over 10 concepts is 4.18% on the 

validation set and 3.94% on the  evaluation set for the GD-

MIL. As the comparison, the benchmark only has AP values 

2.12% and 2.63%, correspondingly. Thus singnificant 

improvements in terms of AP are obtained. 

After the MIL training, we expect the learned model is 

more pure. We mean the positive model has less affection 

from the negative instances in the positive bags. So we 

expect it will help improve the recall. The column Pos.# in 

Table 2 gives the number of relevant keyframes at the top-

2000. Obviously, the GD-MIL retrieves more relevant 

docuemnts than the benchmark. 

The AP only gives a coarse view of the classifier 

performance. For more details at every operating point, the 

Precision-Recall (PR) curve is used for evaluating the 

classifier. We plot the PRcurves in Figure 1 for two selected 

conceopts, i.e. Building and Waterscape, so that we can get 

a overall view of the GD-MIL. Once again, the 

improvements using the GD-MIL are obviously seen. 

5. CONCLUSION 

In the paper we present a generalized discriminative 

multiple instance learning algorithm (GD-MIL) for 

multimedia semantic concept detection. It combines the 

capability of the MIL for automatically weighting the 

instances in the bag according to their relevance to the 

positive and negative classes, the expressive power of 

generative models, and the advantage of discriminative 

training. We evaluate the GD-MIL on the development set 

of TRECVID 2005 for high-level feature extraction task. 

The significant improvement is observed using the GD-MIL. 

The mean of AP’s over 10 concepts using the GD-MIL is 

4.18% on the validation set and 3.94% on the evaluation set. 

As the comparison, they are 2.12% and 2.63% for the 

benchmark, correspondingly. In the future, we will evaluate 

the GD-MIL on more image features, and give a 

systematically comparison with other existing MIL 

algorithms. 

6. REFERENCES 

[1] C. Yang & T. Lozano-Perez, “Image database retrieval with 

multiple-instance learning techniques,” Proc. of ICDE’00.

[2] J. Ramon & L. D. Raedt, “Multi instance neural network,” 

Proc. of workshop at ICML’00 on Attribute-Value and Relational 

Learning: Crossing the boundaries, 2000. 

[3] M. Naphade, et al., “A light scale concept ontology for 

multimedia understanding for TRECVID 2005,” IBM Research 

Report RC23612 (W0505-104), May, 2005. 

[4] M. Naphade & J.R. Smith, “A generalized multiple instance 

learning algorithm for large scale modeling of multimedia 

semantics,” Proc. of ICASSP’05.

[5] O. Maron & A. L. Ratan, “Multiple-instance learning for 

natural scene classification,” ICML’98.

[6] O. Maron & T. Lozano-Perez, “A framework for multiple 

instance learning,” Neural Information Processing Systems, 1998.

[7] Q. Zhang, et al., “Content-based image retrieval using 

multiple –instance learning,” ICML’02.

[8] Q. Zhang & S.A. Goldman, “EM-DD: an improved multiple-

instance learning technique,” Neural Information Processing 

Systems, 2001.

[9] S. Andrews, I. Tsochantaridis, & T. Hofmann, “Support 

vector machines for multiple-instance learning,” Neural

Information Processing Systems, 2004.

2904


