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ABSTRACT
We investigate the stream merging problem for media-
on-demand servers. Clients requesting media from the
server arrive by a Poisson process, and delivery to the
clients starts immediately. Clients are prepared to re-
ceive up to two streams at any time, one or both being
fed into a bu�er cache. A multicast mechanism exists that

allows multiple clients to receive the same stream. We
present an on-line algorithm, the dyadic stream merging
algorithm, whose recursive structure allows us to derive a
tight asymptotic bound on stream merging performance.
In particular, let � be the request arrival rate, and let L
be the �xed media length. Then the long-time ratio of the

expected total stream length under the dyadic algorithm
to that under an algorithm with no merging is asymp-
totically equal to 3 log �L

2�L
. Furthermore, we establish the

near-optimality of the dyadic algorithm by comparisons
with experimental results obtained for an optimal algo-

rithm constructed as a dynamic program. The dyadic al-
gorithm and the best on-line algorithm of those recently
proposed di�er by less than a percent in their comparison
with an o�-line optimal algorithm. Finally, the worst-case
performance of our algorithm is shown to be no worse than
that of earlier algorithms. Thus, the dyadic algorithm ap-

pears to be the �rst near optimal algorithm that admits
a rigorous average-case analysis.
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1. INTRODUCTION
At a sequence of random times, clients request content
streaming from a given media server, e.g., videos from a
video-on-demand server, with delivery for each client to
begin immediately. To reduce the potentially heavy traÆc
burden created by these media streams, it is clearly desir-
able to combine streams of the same content using mul-

ticast techniques. To see how this can be done and still
preserve immediate-start delivery, we need the following
assumptions: clients can receive two streams in parallel
and each has a cache for bu�ering stream content. Al-
though multimedia streaming embraces video, audio, and
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data streaming, we will keep with video terminology for
simplicity.

As an example, consider a situation in which (i) client
C1 arrives at t1 and requests a video of duration L, and
(ii) client C0 is currently playing the same video from
a stream S0 that began at time t0 < t1. To minimize
duplicate streaming, the video server initiates at time t1
a stream S1 to C1 which it maintains for � := t1�t0 time
units, and at the same time, it delivers S0 to both C0 and
C1; C0 continues to play from S0 whereas C1 caches S0
while playing the video from S1: At time t1 +�, C1 has
played the �rst � time units of the video, and, if the

video at C0 was more than half over at time t1, C1 has
the remainder of the video available in its bu�er cache.
From this point on, C1 plays the video from its bu�er. If
the video playing at C0 was less than half over at time t1,
then at time t1+�, the second � time units of the video
are in C1's cache and S0 begins to feed the last L�2� time

units of the video into C1's bu�er. The video segment in
the bu�er may be thought of as being played from one
end and fed at the other. This process is called stream
merging; in the present case, S1 was discontinued after
being "merged" at time t1+� with the earlier starting S0:

Note that the total streaming time has been reduced from
2L; with no merging, to a minimum achievable value of
L+�: The total streaming time is a simple and e�ective
measure of bandwidth consumption that we will retain
throughout the paper.

Stream merging becomes much more involved as we in-
crease the number of streams that are candidates for merg-
ing, because then the number of ways in which merging
can be done also increases. For example, consider the case
of three clients C0; C1; C2 arriving at times t0 < t1 < t2
and initiating streams S0; S1; S2 for a video of duration
L. Let �i = ti � ti�1 be the interarrival times. Figure 1
illustrates an example in which the ti's are given by 0, 3,
and 4, and L = 10. Consider just those ways in which
we can merge the streams for both C1 and C2. For the
given parameters, the two possible merging patterns are

shown in Figs. 1(a) and 1(b). In Fig. 1(a), S1 and S2 are
merged independently with S0 as described earlier: C1

caches S0 during [t1; t1 + �1] and C2 caches S0 during
[t2; t2 +�2]; at the end of the respective intervals S1 and
S2 are merged with S0:
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Figure 1: Stream merging examples.

The second possibility is �rst to merge S2 with S1 and

then S1 with S0. In this scenario, which is illustrated in
Fig. 1(b), C1 plays S1 and caches S0 during [t1; t1 +�1]:
Thereafter, C1 plays from its bu�er which is only fed by
S0 during the last L�2�1 time units of the video. Client
C2 caches S1 and plays from S2 during [t2; t2 + �2], at
which point S2 is discontinued, and play proceeds from

C2's bu�er. Client C2 continues to cache S1; but in addi-
tion, it caches the remainder of S0 (in a suitably chosen
region of the cache where the two bu�ering operations can
not overlap). This continues until t2 +�1 +�2 at which
point S1 is shut down and S0 becomes the only active
stream while it is supplying the last L� 2(�1+�2) time

units of the video to the bu�ers of C1 and C2. In this pro-
cess, C2 has played the �rst �2 time units of the video
directly from S2, the next �1 time units from a cached
segment of S1 and the last L��1 ��2 time units from
a cached segment of S0.

Note that, although the streaming at C1 is the same as
before, S1 does not terminate at time t1 + �1 when no
longer needed by C1; the media server must still send S1
to C2 until C2 can switch to S0, which occurs at t2+�1+
�2. Note also that the cost (sum of stream durations) of
the second merging pattern is 16 as compared to the cost

17 of the �rst pattern. In general, however, the best merge
pattern for an arrival at time t depends not only on arrival
times before t; but also on the arrival times after t.

The technique of stream merging originated with Eager,

Vernon, and Zahorjan [12, 11] as a model of the pyra-
mid broadcasting scheme introduced by Viswanathan and
Imielinski [35, 36]. This paradigm provides the multicast
basis for sharing streams and is built upon the assumption
that clients can receive more bandwidth than they need
for play-out. The skyscraper broadcasting scheme [22, 15,

30] is another example of these new techniques. A number
of related techniques go under the names of batching [10,
9, 1], patching [21, 16, 6], tapping [7, 8], and piggy-
backing [2, 18, 19, 28] and the general problem has several
parameters and useful performance metrics. Other pa-
rameters include delay guarantees, receiving bandwidth,

server bandwidth, and bu�er size [20, 15, 30, 31, 13, 14,
24, 25, 23, 26, 27, 29, 32, 5, 17, 33, 34]. The maximum
number of streams is another metric that is of greater
interest in certain circumstances. In this setting, the al-
gorithm of this paper has the properties:

� It is on-line, i.e., the media server does not know
arrival times in advance.

� It gives a zero-delay guarantee, i.e., all video re-

quests are satis�ed immediately.

� It restricts to at most two the number of streams
being received by a client at any one time { the
receive-two model.

� The bu�er size can accommodate up to half of the
video.

The last two assumptions are justi�ed in the papers by
Bar-Noy and Ladner [3, 4], which supply the primary mo-

tivation for the work here. In particular, most of the im-
provement of merging streams is already present in the
receive-two model. The L=2 bu�er size limit comes about
because our algorithm does not attempt merging with an
existing stream that is already at least half over. As Bar-

Noy and Ladner argue, this is not only a convenience, it
rules out potential merges that, if implemented, would
lead to increased average cost, even for only moderately
large arrival rates. For further discussion of the literature
on stream merging, we refer the reader to the mini-survey
of [3].

Many excellent numerical/experimental studies have ap-
peared in the stream-merging literature, but the absence
of mathematical foundations has stood out, at least un-
til the work in [3, 4], which focuses on competitive, or
worst-case, analysis. Here, we give what appears to be

the �rst rigorous average-case analysis of a near-optimal
algorithm.

The paper is organized as follows. In Section 2 we present
the Dyadic Tree algorithm and state our main results.
Section 3 contains numerical experiments that verify the

algorithm's performance and conclusions. The proof of
the main results can be found in Section 4.

2. ALGORITHM & RESULTS
The problem of stream merging can be posed as a prob-
lem on trees (see [3, 4]). A merge tree is a representation
of a stream merging diagram, such as those shown in Fig-
ure 1. Each stream of the merging diagram corresponds
to a node in the corresponding merge tree. Thus, the

number of nodes in the merge tree is equal to the num-
ber of requests placed with the server, i.e., the number
of clients. If stream Sj is merged directly to an earlier
starting stream Si; then the node associated with Sj is a
child of the node associated with Si. It is convenient to
label the nodes with the arrival times of the corresponding

streams.

A root stream is merged with no other stream, i.e., it be-
comes the root in a merge tree. The length of the root
stream is always the full length of the video, L. The
start rule below provides a simple way to determine which

streams are roots. Let t0; t1; : : : be the stream starting
times.
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Start rule: Node t0 is a root. If ti is a root, then
tj = infftk : tk > ti + L=2g is a root.

In other words, the start rule says that a node will be in a
given tree only if the root stream of that tree started less
the L=2 time units ago. As noted earlier, this constraint
simpli�es the algorithmics; there is a sacri�ce in eÆciency,
but only when traÆc is low. For example, suppose we

have a root stream starting at time t0 and an arrival at
time t1 with t0 + L=2 < t1 � t0 + L: If t1 is made a
descendant of t0; then no other node can be merged with
t1 without extending its length to L. Hence, some gain
is achieved only if there are no arrivals in the interval
(t1; t1 + L].

When the arrivals are Poisson, the sequence of merge trees
becomes a renewal process. This fact allows us to focus
our analysis on a single merge tree rooted at t0 = 0. Let
ftng

1

n=0 be a sample path of a Poisson process with rate
� on the non-negative reals, and assume for convenience

that t0 = 0. The total length of all streams in a merge
tree is de�ned as

T � T (L; �) :=

1X
n=0

ln1ftn � L=2g; (1)

where ln denotes the length of the stream initiated by the
arrival at time tn. By de�nition l0 = L. The quantity

T will measure the e�ectiveness of stream merging algo-
rithms.

Our new stream merging algorithm is implicit in the fol-
lowing algorithm for constructing merge trees from a given

root.

The Dyadic Tree Algorithm: The input
is a sequence of n > 0 arrival times t0; : : : ; tn
with t0 = 0, and the output is a tree of n
nodes.

The arrival at time 0 determines the root. To
�nd the children of the root, �rst divide the in-
terval [0; L=2] into dyadic subintervals Ii with
lengths 2�iL=2; i = 1; 2; : : : ; as shown in Fig-
ure 2. If Ii contains at least one arrival time,

then t(i) denotes the earliest such time; other-
wise, t(i) = 0. Each t(i) > 0 is made a child of
the root. Then for each t(i) > 0; the algorithm

is applied recursively to the interval [t(i); 2
�iL]

to determine the subtree rooted at t(i).

L/2L/4L/8
III 134

L/16
I2I5

0

Figure 2: Dyadic partition of the interval.

It is not diÆcult to verify that this can be formulated as an
on-line algorithm, as we show at the end of this section.
In particular, the decision as to whether or not a node

ti should be attached to an existing tree is una�ected
by arrivals after time ti. The following theorem gives
our �rst result, a uniform bound on total stream length.

We postpone the proof until Section 4. Throughout, the
paper we use log to denote log2.

Theorem 1. The total cost of the dyadic tree algo-
rithm satis�es

1

4
L log �L�

1

4
L � ET (L; �) �

3

4
Lj log �Lj+

23

8
L:

The main contribution of the preceding theorem is the up-
per bound that will be proved to be asymptotically tight
in the following theorem. The proof of the lower bound is
supplied in order to help the reader in understanding the

technique that we use. However, in [11] a slightly better
lower bound was obtained

ET (L; �) �
1

2 log e
L log(�L+ 1);

there the authors do not assume any restrictions on the
clients' bu�er space and receiving bandwidth.

For large values of �L Theorem 1 can be strengthened by

the following result, which is proved in Section 4.

Theorem 2. The total cost of the dyadic tree algo-
rithm satis�es

lim
�L!1

ET (L; �)

L log �L
=

3

4
:

In order to consider the worst-case performance we exam-
ine a slightly di�erent model. Let time be slotted and let
the video have a length of 2n time slots, i.e., a merge tree
is being built on n slots. In each of the slots at most one
stream can be initiated. In [4] it is proved that the worst-

case performance of the optimal algorithm is �(n log n).
On the other hand, the total cost for the Dyadic Tree algo-
rithm satis�es 2T (n=2) + n=2 � T (n) � 2T (n=2) + 3n=2,
with the solution T (n) = �(n log n). Thus, the Dyadic
algorithm is within a constant factor of optimal in worst-
case. A more detailed numeric comparison of the Dyadic

algorithm and the optimal algorithm is made in the next
section.

We conclude this section with a straightforward on-line
implementation of the algorithm.

On-line Dyadic Stream Merging: Let S
be a stack with push and pop operations de-
�ned for pairs of numbers (ta; tr). Each pair
corresponds to a stream: ta is the time at

which the stream was initiated and tr is the
time after which newly arrived streams will not
be allowed to merge with it.
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At time t = 0 push (0; L=2) onto S. At the
time t of a new request, pop the pairs (ta; tr)
from the stack until tr > t. Add the new

stream to the stack by performing push (t; t0),
where t0 = ta+(tr � ta)maxf2�k+1 : 2�k(tr�
ta) < t�tag. The stream started at t is the
child of the stream started at ta.

3. NUMERICS & CONCLUSIONS
This section provides a numerical validation of the asymp-

totic approximation

T
0 � T

0

(L; �) := L log �L:

The �rst example investigates the dependency of the to-
tal cost on the length of the stream for �xed values of the

arrival rate �. The parameter values are set within the
regions that are plausible for real-life systems. In partic-
ular, we set L = 20i minutes, i = 1; : : : ; 9 and plot the
ratio ET=T 0 in Figure 3, where ET is obtained by simu-
lating 10,000 trees for each set of values. Points marked
with "o", "+" and "x" correspond to ��1 equal to 5, 20

and 60 seconds, respectively. Note that for (��1; L) =
(60s; 20min) the merge tree consists of only 11 nodes on
average.
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Figure 3: ET=T 0 as a function of the stream length for

three values of the arrival rate. Expected interarrival

times are 5s ("o"), 20s ("+") and 60s ("x").

In the second example we �x L and look at ET (�; L) as
a function of the �rst argument. The simulation results
of ET=T 0 are plotted in Figure 4. As in the previous case
we simulated 10,000 trees for each point. Values of L are
set to 120, 60 and 30 minutes and denoted respectively by

the symbols "o", "+" and "x". Using approximation T 0

with the appropriate multiplicative factor yields excellent
engineering estimates for all reasonable values of L and �.

Finally, we compare the performance of the Dyadic Tree
algorithm to the performance of the optimal o�-line al-

gorithm. The cost of the latter can be determined by a
dynamic program (see [2]). Let Topt(i; j) be the optimal
cost of the merge tree for streams initiated at 0 � ti <
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Figure 4: ET=T 0 as a function of the arrival rate for

three values of the stream length. The stream length

is set to 120 ("o"), 60 ("+") and 30 ("x") minutes.

� � � < tj < L=2. The optimal merge tree satis�es the
preorder traversal property [4] and, hence,

Topt(0; n)=

min
1�k�n

fTopt(0; k�1)+Topt(k; n)�(L�2tn+tk+t0)g

with Topt(i; i) = L. The last term represents the gain
from a merge of optimal trees rooted at t0 and tk. We

used the fact that the length of the stream t is equal to
2tl� t� tp, where tp is its parent and tl is the last stream
that merges to it (see [3]).

For numerical comparison, let the length of the video be
2 hours and let the value of the expected interarrival time

vary from 5s to 60s in steps of 5s. For every pair (�; L)
we simulated 1,000 trees and based on that computed the
average cost for two algorithms. The increase in expected
cost when using the Dyadic Tree algorithm instead of the
optimal o�-line algorithm is remarkably small as shown

in Figure 5. For all parameter values the increase did not
exceed 8%.

In summary, we have been able to prove the tight average-
case asymptotic behavior 3

4
L log �L for the dyadic stream

merging algorithm, and to show in addition that its average-

case and worst-case performance are comparable to those
of the best on-line algorithms known to date. Average-
case analysis of the stream merging algorithms that arise
in other settings is an obvious avenue of further research.

4. PROOFS
We start by introducing a recursive procedure for labeling
the arrival times in (0,L/2). For the purposes of the proof
these labels replace the ti labels. The procedure can be
thought of as a function EL : T 7! ! that maps a set T of
arrival times to the space of indices !. Each index ! con-

sists of a number of digits equal to the depth of the node
in the merge tree that corresponds to the given arrival.
In general, ! = !1!2 : : : !n, where !i 2 N for i = 1; 2:::,
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Figure 5: Performance of the algorithm in comparison

with the optimal o�-line algorithm. The length of the

stream is equal to 2 hours.

and the parent of the node labeled ! is a node labeled
with the pre�x !0 = !1 : : : !n�1. The algorithm labels
the arrivals as follows. The interval (0; L=2) is divided
into dyadic intervals in increasing order from the root as
shown in Figure 2. If a point t is the �rst point in the

subinterval Ii then its label is i. Label the rest of the
points in (t; 2�iL) recursively by using the parent's label
as a pre�x for childrens' labels. An example of how the
points are labeled is shown in Figure 6.

124

21 13 11

111

13 11

111

21

24 1

Figure 6: An illustration of the labeling algorithm.

In this example there are seven points that need to

be labeled. On the �rst call of the procedure three

points are assigned labels (1,2 and 4). The recursive

algorithm is applied until all points are labeled.

4.1 Proof of Theorem 1
Lower bound: By applying the above labeling procedure,
it is not hard to verify that (1) becomes

T (L; �) = L+

1X
n=1

ln1ftn � L=2g

= L+

1X
n=1

X
!=!1:::!n

l!1:::!n ; (2)

where l!1:::!n is the length of the stream starting at the

point labeled !1 : : : !n. If for a particular realization of
the Poisson process there is no point with label !1 : : : !n,
then l!1:::!n = 0.

Next, we estimate the expected values of l!1:::!n . Let
�; f�ng

1

n=1 be a set of i.i.d. exponential random variables
with mean ��1, and consider �rst the streams that are

children of the root, i.e., the streams whose indices consist
of a single digit. Given that, for a particular realization of
the Poisson process, there exists a stream with label !1,
its length must be at least 2�!1L=2, since it is at least
that much later than the root. Therefore,

l!1 �
L=2

2!1
1

�
9n :

L=2

2!1
� tn <

L=2

2!1+1

�

�

�
L=2

2!1
� inf

�
tn �

L=2

2!1
: tn >

L=2

2!1

��+

so after taking into account the memoryless property of
the Poisson process, we conclude that

El!1 � E

�
L=2

2!1
� �1

�+

:

A node with label of form !1!2 is a child of the node
with label !1. Considering the preceding inequality, the
recursive nature of the merging algorithm and the size of
the problem in which node !1 is the root one obtains

El!1!2 � E

0
B@
�
L=2

2!1
� �1

�+
2!2

� �2

1
CA

+

= E

�
L=2

2!1+!2
� �2 �

�1

2!2

�+

:

The recursive structure of the merging algorithm shows
that for a stream with an arbitrary index !1!2 : : : !n,

El!1 :::!n � E

 
L=2

2!1+���+!n
� �n �

n�1X
i=1

�i

2!i+1+���+!n

!+

with the understanding that the sum in the above expres-
sion is equal to zero if n = 1. IfW :=

P
1

i=0
�i2

�i then the
expected value of an individual stream length is further
lower bounded by

El!1 :::!n � E

�
L=2

2!1+���+!n
�W

�+

: (3)

Now observe that the number of indices with a digit sum
equal to k is 2k�1, i.e.,

1X
n=1

X
!=!1:::!n

1

(
nX
i=1

!i = k

)
= 2

k�1
; (4)

since the above sum is equal to the number of ways one

can partition a set of cardinality k. Rearrange the sum
in (2), use the bound (3) and apply (4) to �nd

ET (L; �) = L+

1X
k=1

X
P

!i=k

El!1 :::!n

� L+

1X
k=1

2
k�1

E

�
L=2

2k
�W

�+

� L+

1X
k=1

2
k�1

�
L=2

2k
�

2

�

�+

;
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where the last step follows from Jensen's inequality. Fi-
nally, simple manipulations yield

ET (L; �) � L+
L

4

1X
k=1

�
1�

2k+2

�L

�+

= L+
L

4

blog �L

4
cX

k=1

�
1�

2k+2

�L

�

�
L

4
log �L�

L

4
;

from which we conclude that the lower bound holds.

Upper bound: Consider the streams that are children of

the root. For such streams we have

l!1 � 3
L=2

2!1
; (5)

since stream !1 has to be extended to accommodate the
requirements of the streams in its subtree. The inequality
is tight when there is an arrival right after time 2�!1L=2
and an arrival just before time 2�!1L. Next we examine

the streams that can be reached from the root in exactly
two steps. An upper bound on their length is

l!1!2 � 3

 
L=2

2!1
� infftn �

L=2

2!1
: tn >

L=2

2!1
g

2!2

!+

; (6)

whereupon the memoryless property of the Poisson pro-
cess gives

El!1!2 � 3E

�
L=2

2!1+!2
�

�2

2!2

�+

:

Note that (5) and (6) are of the same form. In the �rst in-
equality the size of the problem is L=2 while in the second
the size is 2�!1L=2� infftn � 2�!1L=2 : tn > 2�!1L=2g.
Since the merging algorithm is recursive, for streams that
have depth n � 2 in the merge tree one can conclude that

El!1 :::!n � 3E

 
L=2

2!1+���+!n
�

nX
i=2

�i

2!i+���+!n

!+

� 3E

�
L=2

2!1+���+!n
�

�

2!n

�+

: (7)

It is easy to verify that the number of indices with the
digit sum k and last digit i is equal to 2k�i�1, i.e., for
1 � i � k � 1

1X
n=2

X
!=!1:::!n

1

(
nX

j=1

!j = k; !n = i

)
= 2

k�i�1
: (8)

The length of the root stream is always L so (5), (7) and

(8) yield

ET (L; �)

= L+

1X
!1=1

El!1 +

1X
k=2

k�1X
!n=1

El!1 :::!n1

(
nX

j=1

!j = k

)

� L+ 3

1X
k=1

L=2

2k
+ 3

1X
k=2

k�1X
i=1

2
k�i�1

E

�
L=2

2k
�

�

2i

�+

�
5

2
L+

3

4
L

1X
k=2

k�1X
i=1

2
�i
E

�
1� �

2k+1�i

L

�+

:

A simple computation shows that

E (1� �)
+
= 1� �

�1
(1 � exp (��))

and, therefore, by changing the order of summation one

obtains

ET (L; �)

�
5

2
L+

3

4
L

1X
k=2

k�1X
i=1

2
�i

�
1�

2k+1�i

�L

h
1�e

��L2�k�1+i
i�

=
5

2
L+

3

4
L

1X
i=1

1X
m=2

2
�i

�
1�

2m

�L

h
1� e

��L2�m
i�

=
5

2
L+

3

4
L

1X
m=2

�
1� 2

m�log �L
h
1� e

�2�m+log �L
i�

:

Finally, straightforward but tedious calculations show thatP
1

j=1

�
1� 2j

h
1� e�2�j

i�
� 1=2 which in conjunction

with the preceding inequality and the monotonicity of the

function 1� 2x(1� e�2�x) yields

ET (L; �) �
5

2
L+

3

4
L

1X
j=2�dj log �Lje

�
1� 2

j
h
1� e

�2�j
i�

�
3

4
Lj log �Lj+

23

8
L:

This concludes the proof.

4.2 Proof of Theorem 2
The upper bound is a direct consequence of Theorem 1.

Below we provide the proof of the lower bound. Let P� �
P (�; �) := 1 � e��� denote the probability of having at
least one Poisson arrival in an interval of length �. By
conditioning on an arrival in both (2�!1�1L; 2�!1�1L+�)
and (2�!1L� �; 2�!1L) one obtains

El!1 � P
2
�

�
3L=2

2!1
� 3�

�+

:

Extending the above reasoning to the streams with two-

digit labels yields a lower bound on their expected lengths

El!1!2 � P
3
�

�
3L=2

2!1+!2
�

3�

2!2
� 3�

�+

:

In the above inequality we conditioned on the position
of the stream !1!2, its parent and the last stream that
will merge to it. Due to the recursive structure of the
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algorithm, for a stream with an arbitrary label !1 : : : !n
the lower bound has the following form

El!1 :::!n � P
n+1
�

 
3L=2

2!1+���+!n
�

nX
i=2

3�

2!2+���+!n
� 3�

!+

� P
n+1
�

�
3L=2

2!1+���+!n
� 6�

�+

Next, the preceding inequality, (1) and (4) result in

ET �
1X
k=1

2
k�1

P
k+1
�

�
3L=2

2k
� 6�

�+

�

blog�LcX
k=1

P
k+1
�

�
3L

4
� 3�2

k

�

�
3

4
P
log�L+1
� Lblog �Lc � 6��L

Finally, setting � = ��1 log log �L and using log e > 1
yield

lim
�L!1

P
log�L
� = lim

�L!1

�
1� e

� log log �L
�log�L

= 1

and, therefore,

T

L log �L
�

3

4
P
log �L+1
�

blog �Lc

log �L
� 6

log log �L

log �L
�!

3

4

as �L!1. This concludes our proof.

5. ACKNOWLEDGMENTS
This work is supported by the NSF Grant No. 0092113.

6. REFERENCES
[1] C. C. Aggarwal, J. L. Wolf, and P. S. Yu. On

optimal batching policies for video-on-demand
storage servers. In Proceedings of the IEEE
International Conference on Multimedia Computing
and Systems (ICMCS '96), 1996.

[2] C. C. Aggarwal, J. L. Wolf, and P. S. Yu. On

optimal piggyback merging policies for
video-on-demand systems. In Proceedings of the
ACM SIGMETRICS Conference on Measurement
and Modeling of Computer Systems (SIGMETRICS
'96), pages 200{209, 1996.

[3] A. Bar-Noy and R. Ladner. Competitive on-line
stream merging algorithms for media-on-demand.
Available at
www.cs.washington.edu/homes/ladner/papers.html.
A conference version appeared in Proceedings of
SODA'01, 2000.

[4] A. Bar-Noy and R. Ladner. EÆcient algorithms for
optimal stream merging for media-on-demand.
Available at
www.cs.washington.edu/homes/ladner/papers.html,
2000.

[5] Y. Cai and K. A. Hua. An eÆcient
bandwidth-sharing technique for true video on
demand systems. In Proceedings of the 7-th ACM

International Multimedia Conference,
(MULTIMEDIA '99), pages 211{214, 1999.

[6] Y. Cai, K. A. Hua, and K. Vu. Optimizing patching
performance. In Proceedings of the IS&T/SPIE
Conference on Multimedia Computing and
Networking (MMCN '99), pages 204{215, 1999.

[7] S. W. Carter and D. D. E. Long. Improving
video-on-demand server eÆciency through stream
tapping. In Proceedings of the 6-th International
Conference on Computer Communication and
Networks (ICCCN '97), pages 200{207, 1997.

[8] S. W. Carter and D. D. E. Long. Improving

bandwidth eÆciency of video-on-demand servers.
Computer Networks, 31(1-2):99{111, 1999.

[9] T. Chiueh and C. Lu. A periodic broadcasting

approach to video-on-demand service. In
Proceedings of the SPIE Conference on Multimedia
Computing and Networking (MMCN '95), pages
162{169, 1995.

[10] A. Dan, D. Sitaram, and P. Shahabuddin. Dynamic
batching policies for an on-demand video server.
ACM Multimedia Systems Journal, 4(3):112{121,
1996.

[11] D. Eager, M. Vernon, and J. Zahorjan. Minimizing
bandwidth requirements for on-demand data
delivery. In Proceedings of the 5-th International
Workshop on Advances in Multimedia Information
Systems (MIS '99), Indian Wells, CA, October
1999.

[12] D. Eager, M. Vernon, and J. Zahorjan. Optimal and
eÆcient mergind schedules for video-on-demand
servers. In Proceedings of the 7-th ACM
International Multimedia Conference,
(MULTIMEDIA '99), pages 199{203, Orlando, FL,
November 1999.

[13] D. L. Eager, M. Ferris, and M. K. Vernon.
Optimized regional caching for on-demand data
delivery. In Proceedings of the Conference on
Multimedia Computing and Networking (MMCN
'99), pages 301{316, 1999.

[14] D. L. Eager and M. K. Vernon. Dynamic skyscraper

broadcasts for video-on-demand. In Proceedings of
the 4-th International Workshop on Advances in
Multimedia Information Systems (MIS '98), pages
18{32, 1998.

[15] L. Gao, J. Kurose, and D. Towsley. EÆcient
schemes for broadcasting popular videos. In
Proceedings of the 8-th IEEE International
Workshop on Network and Operating System
Support for Digital Audio and Video (NOSSDAV
'98), 1998.

[16] L. Gao and D. Towsley. Supplying instantaneous
video-on-demand services using controlled

multicast. In Proceedings of the IEEE International
Conference on Multimedia Computing and Systems
(ICMCS '99), 1999.

7



[17] L. Gao, Z. Zhang, and D. Towsley. Catching and
selective catching: eÆcient latency reduction
techniques for delivering continuous multimedia

streams. In Proceedings of the 7-th ACM
International Multimedia Conference,
(MULTIMEDIA '99), pages 203{206, 1999.

[18] L. Golubchic, J. C. S. Liu, and R. R. Muntz.

Reducing I/O demand in video-on-demand storage
servers. In Proceedings of the ACM SIGMETRICS
Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS '95), pages
25{36, 1995.

[19] L. Golubchic, J. C. S. Liu, and R. R. Muntz.
Adaptive piggybacking: A novel technique for data
sharing in video-on-demand storage servers. ACM
Multimedia Systems Journal, 4(3):140{155, 1996.

[20] K. A. Hua, Y. Cai, and S. Sheu. Exploiting client
bandwidth for more eÆcient video broadcast. In
Proceedings of the 7-th International Conference on
Computer Communication and Networks (ICCCN
'98), pages 848{856, 1998.

[21] K. A. Hua, Y. Cai, and S. Sheu. Patching: a
multicast technique for true video-on-demand
services. In Proceedings of the 6-th ACM
International Conference on Multimedia
(MULTIMEDIA '98), pages 191{200, 1998.

[22] K. A. Hua and S. Sheu. Skyscraper broadcasting: A
new broadcasting scheme for metropolitan

video-on-demand systems. In Proceedings of the
ACM SIGCOMM '97 Conference on Applications,
Technologies, Architectures, and Protocols for
Computer Communication, pages 89{100, 1997.

[23] L. Juhn and L. Tseng. Fast broadcasting for hot
video access. In Proceedings of the 4-th International
Workshop on Real-Time Computing Systems and
Applications (RTCSA '97), pages 237{243, 1997.

[24] L. Juhn and L. Tseng. Harmonic broadcasting for
video-on-demand service. IEEE Transactions on
Broadcasting, 43(3):268{271, 1997.

[25] L. Juhn and L. Tseng. Staircase data broadcasting
and receiving scheme for hot video service. IEEE
Transactions on Consumer Electronics,
43(4):1110{1117, 1997.

[26] L. Juhn and L. Tseng. Enhancing harmonic data
broadcasting and receiving scheme fo popular video
service. IEEE Transactions on Consumer
Electronics, 44(2):343{346, 1998.

[27] L. Juhn and L. Tseng. Fast data broadcasting and
receiving scheme for popular video service. IEEE
Transactions on Broadcasting, 44(1):100{105, 1998.

[28] S. W. Lau, J. C. S. Liu, and L. Golubchic. Merging

video streams in a multimedia storage server:
complexity and heuristics. ACM Multimedia
Systems Journal, 6(1):29{42, 1998.
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