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ABSTRACT

Retransmission-based failure recovery represents a primary
approach in existing communication networks, on all pro-
tocol layers, that guarantees data delivery in the presence
of channel failures. Contrary to the traditional belief that
the number of retransmissions is geometrically distributed,
a new phenomenon was discovered recently, which shows
that retransmissions can cause long (-tailed) delays and in-
stabilities even if all traffic and network characteristics are
light-tailed, e.g., exponential or Gaussian. Since the pre-
ceding finding holds under the assumption that data sizes
have infinite support, in this paper we investigate the prac-
tically important case of bounded data units 0 < L; < b.
To this end, we provide an explicit and uniform character-
ization of the entire body of the retransmission distribu-
tion P[N, > n] in both n and b. This rigorous approxima-
tion clearly demonstrates the previously observed transition
from power law distributions in the main body to exponen-
tial tails. The accuracy of our approximation is validated
with a number of simulation experiments. Furthermore, the
results highlight the importance of wisely determining the
size of data units in order to accommodate the performance
needs in retransmission-based systems. From a broader per-
spective, this study applies to any other system, e.g., com-
puting, where restart mechanisms are employed after a job
processing failure.
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1. INTRODUCTION

Failure recovery mechanisms are employed in almost all
engineering systems since complex systems of any kind are
often prone to failures. One of the most straightforward and
widely used failure recovery mechanism is to simply restart
the system and all of the interrupted jobs from the begin-
ning after a failure occurs. It was first recognized in [5, 13]
that such mechanisms may result in long-tailed (power law)
delays even if the job sizes and failure rates are exponential.
In [7], it was noted that the same mechanism is at the core
of modern communication networks where retransmissions
are used on all protocol layers to guarantee data delivery
in the presence of channel failures. Furthermore, [7] shows
that the power law number of retransmissions and delay oc-
cur whenever the hazard functions of the data and failure
distributions are linearly proportional. Hence, power laws
may arise even if the data and channel failure distributions
are both Gaussian. In particular, retransmission phenom-
ena can lead to zero throughput and system instabilities,
and therefore need to be carefully considered for the design
of fault tolerant systems.

More specifically, in communication networks, retransmis-
sions represent the basic building blocks for failure recovery
in all network protocols that guarantee data delivery in the
presence of channel failures. These types of mechanisms
have been employed on all networking layers, including, for
example, Automatic Repeat reQuest (ARQ) protocol (e.g.,
see Section 2.4 of [3]) in the data link layer where a packet
is resent automatically in case of an error; contention based
ALOHA type protocols in the medium access control (MAC)
layer that use random backoff and retransmission mecha-
nism to recover data from collisions; end-to-end acknowl-
edgement for multi-hop transmissions in the transport layer;
HTTP downloading scheme in the application layer, etc.
It has been shown that several well-known retransmission
based protocols in different layers of networking architec-
ture can lead to power law delays, e.g., ALOHA type proto-
cols in MAC layer [8] and end-to-end acknowledgements in
transport layer [6, 9] as well as in other layers [7].

Traditionally, retransmissions were thought to follow light-
tailed distributions (with rapidly decaying tails), namely ge-
ometric, which requires the further assumption of indepen-
dence between data (packet) sizes and transmission error



probability. However, these two are often highly correlated
in most communication systems, meaning that longer data
units have higher probability of error, thus violating the
independence assumption. Recent work [7, 8] has shown
that, when the data size distribution has infinite support,
all retransmission-based protocols could cause heavy-tailed
behavior and possibly result in zero throughput, regardless
of how light-tailed the distributions of data sizes and channel
failures are. Nevertheless, in reality, packet sizes are upper
bounded by the maximum transmission unit. For example,
WaveLAN’s maximum transfer unit is 1500 bytes. This fact
motivates us to investigate the transmission of bounded data
and approximate uniformly the entire body of the resulting
retransmission distribution as it transits from the power law
to the exponential tail.

We use the following generic channel with failures [7] to
model the preceding situations. This model was first in-
troduced (for U; = 0) in [5] in a different application con-
text. The channel dynamics is described as an on-off process
{(A,U), (Ai,U;) }i>1 with alternating periods when channel
is available A; and unavailable U;, respectively; (A, A;)i>1
and (U, U;);>1 are two independent sequences of i.i.d random
variables. In each period of time that the channel becomes
available, say A;, we attempt to transmit the data unit of
random size L,. We focus on the situation when the data
size has finite support on interval [0,b]. If L, < A;, we say
that the transmission is successful; otherwise, we wait for
the next period A;+1 when the channel is available and at-
tempt to retransmit the data from the beginning. It was
first recognized in [5] that this model results in power law
distributions when the distributions of I = L., and A have
a matrix exponential representation, and this result was rig-
orously proved and further generalized in [7, 9, 2].

It was discovered in [7] that bounded data units result
in truncated power law distributions for the number of re-
transmissions, see Example 3 in [7]. Such distributions are
characterized by a power law main body and an exponen-
tially bounded tail. However, the exponential behavior ap-
pears only for very small probabilities, often meaning that
the number of retransmissions of interest may fall inside the
region of the distribution that behaves as a power law. It
was argued in Example 3 of [7] that the power law region
will grow faster than exponential if the distributions of A
and L, are lighter than exponential. This phenomenon was
further studied in [14], where partial approximations of the
distribution of the number of retransmissions on the loga-
rithmic and exact scales were provided in Theorems 1 and
3 of [14], respectively. In this paper, we present a uniform
characterization of the entire body of such a distribution,
both on the logarithmic as well as the exact scale.

Specifically, let N, represent the number of retransmis-
sions (until successful transmission) of a bounded random
data unit of size Ly, € [0, b] on the previously described chan-
nel. In order to study the uniform approximation in both
n and b we construct a family of variables L;, such that
P[Ly, < 2] =P[L < z]/P[L <], for 0 <z < bwhen L = L
is fixed. This scaling of L, was also used in [14]. For the
logarithmic scale, our result stated in Theorem 2, provides a
uniform characterization of the entire body of log P[N, > n],
i.e., informally

log P[Ny > n] & —alogn + nlogP[A < b

for all n and b sufficiently large. Note that the first term in
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the preceding approximation corresponds to the power law
part n~ < of the distribution, while the second part describes
the exponential (geometric P[A < b]™) tail. Hence, it may
be natural to define the transition point n, from the power
law to the exponential tail as a solution to n, log P[A < b] =
alog np.

In addition, under more restrictive assumptions, we dis-
cover a new exact asymptotic formula for the retransmission
distribution that works uniformly for all large n, b. Surpris-
ingly, the approximation admits an explicit form (see Theo-
rems 3 and 4)

—z_a-1
e “2% dz,

(1.1)

a oo
PN, ~
[Ny > ] nl(n AP[A > b]-1) /_nlog[P[Agb]

where x Ay = min(z,y) and £(-) is a slowly varying function;
note that the preceding integral is the incomplete Gamma
function I'(z, a).

Clearly, when —nlogP[A < b] | 0, the preceding approx-
imation converges to a true power law I'(a + 1)/(¢(n)n®).
And, when —nlog(P[A < b]) 1 oo, approximation (1.1), by
the property T'(z,a) ~ e”"2* ! as 2 — oo, has a geometric
leading term P[A < b]™. Interestingly, when « is an integer,
one can compute the exact expression for P[N, > n] under
more restrictive assumptions, see Proposition 2.2. Further-
more, our results show that the length of the power law
region increases as the corresponding distributions of L and
A assume lighter tails. All of the preceding results are val-
idated via simulation experiments in Section 3. It is worth
noting that our asymptotic approximations are in excellent
agreement with the simulations.

This uniform approximation allows for a characterization
of the entire body of the distribution P[N, > n], so that one
can explicitly estimate the region where the power law phe-
nomenon arises. Introducing the relationship between n and
P[A > b] also provides an assessment method of efficiency
and is important for diminishing the power law effects in or-
der to achieve high throughput. Basically, when the power
law region is significant, it could lead to nearly zero through-
put (a < 1), implying that the system parameters should be
more carefully adjusted in order to meet the new require-
ments. On the contrary, if the exponential tail dominates,
the system performance is more desirable. Our analytical
work could be applicable in network protocol design, possi-
bly including packet fragmentation techniques [10, 11] and
failure-recovery mechanisms. In particular, since we know
the entire body of the distribution, we could approximate
the mean value of N, and thus, via Wald’s identity, the
mean delay and throughput.

Also, from an engineering perspective, our results further
suggest that careful re-examination and possible redesign of
retransmission based protocols in communication networks
might be necessary. Specifically, current engineering trends
towards infrastructure-less, error-prone wireless technology
encourage the study of highly variable systems with frequent
failures. Hence, our results could be of potential use in im-
proving the design of future complex and failure-prone sys-
tems.

The rest of the paper is organized as follows. After a de-
tailed description of the channel model in the next Subsec-
tion 1.1, we present our main results in Section 2. Then, we
conclude the paper with Section 3 that contains simulation



examples to verify our theoretical work, which is followed by
Section 4, where we include some of the technical proofs.

1.1 Description of the Channel

In this section, we formally describe our model and pro-
vide necessary definitions and notation. Consider transmit-
ting a generic data unit of random size L; over a channel
with failures. Without loss of generality, we assume that
the channel is of unit capacity. The channel dynamics is
modeled as an on-off process {(A;,U;)}i>1 with alternating
independent periods when channel is available A; and un-
available U;, respectively. In each period of time that the
channel becomes available, say A;, we attempt to transmit
the data unit and, if A; > L, we say that the transmission
was successful; otherwise, we wait for the next period A;4+1
when the channel is available and attempt to retransmit the
data from the beginning. A sketch of the model depicting
the system is drawn in Figure 1.

f
Failure-prone
_— channel Ap > Ly
{An,Un}
resend no

Figure 1: Packets sent over a channel with failures

Assume that {U, U;};>1 and {A, A;};>1 are two mutually
independent sequences of i.i.d. random variables.

Definition 1.1 The total number of (re)transmissions for
a generic data unit of length Ly is defined as

Ny £ inf{n A, > Lb}

We denote the complementary cumulative distribution func-
tions for A and L, respectively, as

G(z) £ P[A > z]
and
F(z) £ P[L > z],

where L is a generic random variable that is used to define
the distribution of L.

Throughout the paper we assume that G(z) and F(z) are
absolutely continuous and have infinite support, i.e., G(x) >
0 and F'(x) > 0 for all 2 > 0. Then, the distribution of L,

is defined as

_ P[L <4]

_ <.
PL<p’ °STSP

P[Ly < z] (1.2)
To avoid trivialities, we always assume P[L < b] > 0.

In this paper we use the following standard notations. For
any two real functions a(t) and b(t) and fixed to € R|J{co},
we use a(t) ~ b(t) as t — to to denote lim¢—+, a(t)/b(t) = 1.
Similarly, we say that a(t) 2 b(t) as t — to if Iminf, 4,
[a(t)/b(t)] > 1; a(t) < b(t) has a complementary definition.

2. MAIN RESULTS

In this section, we present our main results. Under mild
conditions, we first prove a general upper bound for the
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distribution of N, in Proposition 2.1. Next, we show that
—log P[N, > n] is actually a power law in the region where
n/logn < o(1/G(b)), which represents the main body of
the distribution, see Theorem 1. Then, in Theorem 2, we
present our first main result, which under more stringent as-
sumptions, characterizes the entire body of the distribution
on the logarithmic scale uniformly for all large n and b, i.e.,
informally we show that

log P[Ny > n] &~ —alogn + nlog P[A < b],

as previously mentioned in the introduction. Our results on
the exact asymptotics are given in the next Subsection 2.1
in Theorems 3 and 4.

Recall that the distribution of L, has finite support on
[0,b], given by (1.2). First, we prove the following general
upper bound.

Proposition 2.1 Assume that

log P[L > z] < alogP[A > z]

and let by be such that P[L < bo] > 0, then for any € > 0,
there exists no, such that, for allm > no,b > bo,

logP[Ny > n] < (1 —€) [nlogP[A < b] — alogn].

as r — 00

PROOF. See Section 4. [

Next, we determine the region where the power law asymp-
totics holds on the logarithmic scale.

Theorem 1 If

log P[L > z] ~ alogP[A > 2] as z — oo, (2.1)

then, for any € > 0, there exist positive ng,d, such that for
all n > ng, nlP[A > b] < dlogn, we have

—logP[N, >n]
alogn

O

1] <e (2.2)

PROOF. See Section 4.

Remark 1 Note that this result extends the region of valid-
ity of Theorem 1(i) in [14] since & log n/G(b) >> G(b)™",0 <
n < 1. In addition, n/logn < o(1/G(b)) can be shown to be
the largest region where the power law asymptotics holds.

Next, one can easily characterize the logarithmic asymp-
totics of the very end of the exponential tail of P[N, > n]
for small b and large n. In particular, for fixed b, it can be
shown that log P[Ny > n] ~ nlog(l — G(b)) as n — oo, see
Theorem 1 in [14].

However, our main goal in this paper is to determine the
entire body of the distribution of P[N, > n] uniformly in n
and b. To this end, in the region where nG(b) > §logn, we
need more restrictive assumptions than in (2.1) in order to
approximate log P[N, > n]. The reason why this is the case
is that P[N, > n] behaves like a power law in the region
where n/logn << 1/G(b), while for n/logn >> 1/G(b),
it follows essentially a geometric distribution. Hence, more
restrictive assumptions are required since the geometric dis-
tribution is much more sensitive to the changes in its param-
eters (informally, (1 + €)z)™% ~ 2~ but e~ (1792 5 =),

Definition 2.1 A function £(z) is slowly varying if
Lz)/l(Ax) = 1 as x — oo for any fized A > 0.



We also assume that functions £(x) are positive and bounded
on finite intervals.

Theorem 2 If P[A > z] = ((P[L > z] " Y)P[L > z]'/°,
a>0,z >0, l(x) slowly varying, then for any € > 0, there
exist no, bo, such that for all m > ng,b > by,

—log P[N, > n] 1l <.
—nlogP[A < b] + alogn -

Remark 2 Note that the statement of this theorem can be

formulated in an equivalent form
—log P[N, > n]

nlP[A > b] + alogn

- ‘Sea

since —nlogP[A < b] =~ nlP[A > b] for large b.

Remark 3 This theorem unifies and extends Theorem 1 in
[14]. In particular, it proves the result uniformly in n and b,
while Theorem 1 in [14] characterized the initial power law
part of the distribution (n < G(b)™",0 < < 1) and the
very end with exponential tail (fixed b, n — 00).

PROOF. The case where n < §logn/G(b) is already cov-
ered by Theorem 1 since for ¢ sufficiently small, alogn <
—nlog(l—G(b)) +alogn < (a+¢)logn. Hence, it remains
to prove the result for n > §logn/G(b). To this end, observe
that

P[Nb > n] E[l — (Lb)]

= [ (1- @ HRE))

and by F(b) <1 and the absolute continuity of F'(z),

dF (z)
)’

1

]P’[Nb>n]2/ (1- %) "a
F(b)
NIO) n
2/ (l—é(z_l)zé) dz,
F(b)

where A > 1 is chosen so that AF(b) < 1, since F(b) < 1.
Now, we can use the slowly varying property of £(z) in the
region {F(b)"', A" F(b)'} and thus, for by large enough,
b > bo,

AF(b)

P[N, > n] > / (1 —(1- e)e(F(b)*)zé)" dz.
Fb)

Then, by changing variables u = (1 — €)¢ (F(b) ") 2% and

setting C;Y/ea = (1—€)¢(F(b)™1), we obtain

A/ (1) e(F(b) =) F(b) o a1

PN} > n] > / n
(1—e)e(F(b)=1) F(b) & Ch,e

A (1-€)G(b)
/ (1 —u)"u* du,
(1-€)G(b)

(1—wu) du

=

Cb,e

where G(b) = Z(F(b)_l)ﬁ'(b)é from our main assumption.
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Now, if & > 1, u®~! is monotonically increasing and thus

a(l — ) 1G(b)e—t A/ (1-aG®) )
P[N; n| > L u du
[Ny >n] > Che /(176)%) ( 7 )
e ) 1G(b)* " (1 —u)"t? (1—e)G(b)
Ch,e n+1 M/a(1—eG(b)
_ o= GO oy aamn
Cye(n+1) {(1 (1-e)G(b))
—(1=AVr1 - ({)G(b))TLJrl]
_a(l—9 G (1- (11— 9Ge)"!
- Coe(n +1)
Al/a( — G () n+1
" <1_{ 1—(1-¢€)G(b) ] )

a(l —e)*G(b)>~1
Cb’g(n —+ ].)

The last inequality is implied by standard limit (1—y/n)"™ —
e Y asn— oo, ie.,

( A1 — e)é(b)>”“
1—(1—€e)G(b)

(1-(1-eG®m)" (2.3)

e—Al/o‘(l—e)(n+1)G(b)

= lim
n—oo

lim
n— o0

e—(1—o)(n+1)G(b)

— lim 6—(A1/°‘—1)(1—e)(n+1)é(b) —0,
n— oo
since A/ > 1 and the assumption nG(b) > §logn.

Then, using the standard property of slowly varying func-
tions (see [4]) that £(z) < Hz", for any n > 0 and some
sufficiently large constant H, we derive Cp /(1 — €)®
LFOD)™H™ < VHFE(b)™ <1729 < HG(b)™** and thus, by
(2.3), obtain

a—l+ea n+1

P[Ny > n] > (75)7) (1 (- E)G(b)) '
~ a—1l+ea n+1
_ %(1 . e)é(b)) o

where we define ag = a/H. Next, by taking the logarithm,
log P[N, > n] >logam + (a(l + €) — 1) log G(b)

+ (n+1)log(1 — (1 —€)G(b)) — log(n + 1)
>logan — (a(l+¢€)—1)logn

+ (a(1+¢€) —1)log(dlogn)

+ (n+1)log(l — (1 — €)G(b)) — log(1 + €)n,

where in the last inequality we used log G/(b) > log(d logn) —
logn. Then, we can pick no such that, for all n > nyo,
log(dlogn) > (log(1l +€) —log ar) /(a(1 4 €) — 1). Hence,
log P[Ny > n] > — a(l +€)logn + (n+ 1)log(1 — (1 — €)G(b))
> —a(l+e)logn +n(l +¢)log(l — G(b))
—(1+e€) (alogn —nlog(l — G(b))).
Finally, dividing by (alogn — nlog(l — G(b))) > 0 yields
log P[Np > n]
alogn —nlog(l — G(b))

>—(1+e€)

Symmetric arguments hold for the case where o < 1. We
omit the details. [



2.1 Exact Asymptotics

In this section, under more restrictive assumptions, we
derive the exact approximation for P[N, > n] that works
uniformly for all n, b sufficiently large (Theorems 3 and 4).
Although some of the assumptions can be relaxed, we refrain
from such generalizations here in order to gain analytical
tractability. Interestingly enough, this characterization is

e 72z,

explicit in that
/;n log P[A<b]
(2.4)

where A y = min(z,y) and £(-) is slowly varying. Implic-
itly, the argument of £(z) is altered depending on whether
nP[A > b] < C or nP[A > bl > C for some constant
C. Hence, we can choose C' = 1 since ¢(n A 1/P[A >
b)) =~ £(n A C/P[A > b]) for large n,b. Note that when
—nlogP[A < b] | 0, the power law dominates, whereas when
—nlogP[A < b] — oo, the integral determines the tail with
the geometric (exponential) leading term.

We would like to point out that approximation (2.4) actu-
ally works well when P[A > b}fl is large rather than simply
b; this can be concluded by examining the proofs of the the-
orems in this section. Hence, formula (2.4) can be accurate
for relatively small values of b provided that A is light-tailed.
This may be the reason why we obtain such accurate results
in our simulation examples in Section 3 for b < 10.

First, in Theorem 3, we precisely describe the region where
the distribution of N, exhibits the power law behavior, nP[A >
b] < C, for any fixed constant C. Then, Theorem 4 covers
the remaining region, nlP[A > b] > C, where P[N, > n]
approaches the geometric tail. Proposition 2.3 gives an ex-
plicit exact asymptote for the exponential tail with b possi-
bly small and n — oo.

a
nel(n ANP[A > b]-1)

P[Nb > n] ~

~
~

Theorem 3 Let P[L > 2]7! = L(P[A > z] P[4 > z]~°,
a >0,z >0, and C > 0 be a fired constant. Then, for
any € > 0, there exists no such that for all n > no, and
nlP[A > b] < C,

P[Ny > n]n®l(n)
al'(—nlogP[A < b, &)

—1 <e (2.5)

where I'(x, @) is the incomplete Gamma function defined as
0 —z_a—1

fz e 2% dz.

PRrROOF. This result can be proved using similar techniques
as in [9]. We omit the details. [

Remark 4 Related result was derived in Theorem 3 of [14]
where it was required that n < G(b)”",0 < n < 1. Note
that here we broaden the region where the result holds by
requiring n < C/G(b), which is larger than n < G(b)™".
Furthermore, this is the largest region where the exact power
law asymptotics O(n~®/€(n)) holds since for nG(b) > C,
I'(nG(b),a) <T(C,a) = 0 as C — oo.

Remark 5 Note here that the incomplete Gamma function
D(e,z) = [ 2*7te™*dz can be easily computed using the
well known asymptotic approximation (see Sections 6.5.32
in [1]), as z — o0,

a—1_—zx a—1
e

(a=1)(a—2) n

1+ 2

INa,z) ~x =
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Now, we characterize the remaining region where
nP[A > b] > C. Informally speaking, this is the region
where P[N, > n] has a lighter tail converging to the expo-
nential when n >> G(b)™'. In the following theorem, we
need more restrictive assumptions for £(x); see the discus-
sion before Theorem 2. In particular, we assume that £(x)
is slowly varying, eventually differentiable and monotonic.

Theorem 4 Assume that P[L > z]™' = 4(P[A > ] HP[A >
x]™% a >0,z >0, where {(x) is such that L(xlogz)/l(x) —
1, as x — o0 and let C > a > 0 be a fized constant.
Then, for any € > 0, there exist bo,no, such that for all
n > mno,b > bo,nP[A > b] > C,

P[Ny > n]n®L(P[A > b] 1)
al'(—nlogP[A < 0], )

—1|<e (2.6)

Remark 6 Note that many slowly varying functions satisfy
the condition ¢(xlogz)/¢(x) — 1, as * — oo. For exam-
ple, it is easy to check that (logz)®, (loglogz)?, 8 > 0, and
ellog2)” ,0 < v < 1, satisfy the preceding condition.

Remark 7 Observe that Theorems 3 and 4 cover the entire
distribution P[N, > n] for all large n and b. Interestingly,
the formula for the approximation is the same except for the
argument of the slowly varying part, which equals to n and
P[A > b]™!, respectively. Furthermore, when nP[A > b] = C
the formulas are asymptotically identical as £(n) ~ £(P[A >
b™!) as n — oo and nP[A > b] = C.

PROOF. Recall that

P[N, > n] = E[1 — G(Ly)]"

b A e 4F (@)
Y - n dF(x)
/0 (1~ 6@)" G5
b
+/IO (1-G(z)" dg((;) 2.7)

Next, without loss of generality, we assume that ¢(x) is
eventually non-decreasing. Now, from the fact that ¢(z)
is eventually differentiable (x > z¢) and slowly varying, it
is easy to show that ¢'(z)z/f(z) — 0 as * — oo. Hence,
using the preceding observation, it follows that dF(z) =
(1+0(1)aG(z)* 17 (1/G(z))dG(z) as  — co. Thus, for
the upper bound we have

]P’[Nb>n]

< (1=G@)" ~ 1+ [ (- G L)

=(1-aG "4 (1+e)t? el 1—2z)" oz’ _d:

= (1= CEa)" + 1+ [ 0= p
TR Oé(1+6)1/2 ' — )2 ldz

< (1=G(20)" + F(b)¢(1/G (o)) /@(b) (=2 b

(2.8)

where the equality follows from the absolute continuity of
G(x) and change of variables, whereas the last inequality
follows from the monotonicity of ¢(xz). Next, by changing



the variables z = 1 — e~ %/™

(2.8)

, we compute the integral in

/oo 6—u(n+1)/n(1 _
7nlog(17é(b)) n

/oo €7u(1 _67U/n)a71du
7'nlog(17@(b)) n ’

where for the inequality we use e */"™ < 1. Thus, for a > 1,
from the preceding expression using the inequality 1—e™* <
z, for x > 0, and since £(zlogx)/¢(z) — 1, we obtain the
upper bound for (2.8)

—u/nya—1
c ) du

<

PN, > n] < (1 — G(20))" +
ofl+eg (% e (M) du
F(b)nl(1/G(b)) /-nlog(l—c(b» (”) !

= (1 — é(l‘o))n +

F(b)ne£(1/G(b)) /nlog(lc(b)) d
< e—né(zo)+

a(l+e) ~
Fonetya@) e (1= G0), o).

Now, from the continuity of G(z), we can pick zo such that
G(xz0) = —G(b)log G(b) and observe that

P[Ny, > n]n®4(1/G(b)) e "ICIn(1/G(b)) L1

al'(=nlog(1 — G(b)),a) — al'(-nlog(l — G(b)),a)
Next, we show that the first expression on the right is negligi-
ble. Observe that I'(—nlog(1—-G(b)),a) > I'((1-5)nG(b), @)
for b large enough. Then, using the asymptotics I'(u, a) ~

u* te™™ as u — 0o, we have

a—1_—u(1-46)

u® e
sup

ST = owa) =

From the preceding bounds and letting u = nG(b), we have

PN, > nnL(1/G(b) _ o e~ (10g(1/G(®)~1) o
al(-nlog (1= G(b),@) = =\ (nG(0)*"1G(1)°
+ ﬁ (2.9)

where we use the properties of the slowly varying functions
[see Theorem 1.5.6 in [4]], £(z) >z, for x large and § > 0,
to upper bound £(1/G(b)). Now, we pick by large enough
such that §log(G(b)™') — 1 = 6. > 0. Therefore, the
preceding expression inside O(-) in (2.9) is upper bounded
by

(14 9SG0
G(b)a—l+5
= (1 + e)ue” s G(b) (1770

< supue "8 (14 €)G(b)C 07279,
u>0

Fb)
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where we are using our assumption that v > C. Also, since
C > «, we can pick 6 = (C — a)/ (2(C +1)). And thus, for
bo large enough, O(sup,~, ue” "8 (1 + €)G(b)C~/?) <.
Hence, a

P[Ny > n]n®£(1/G (b))
ol (—nlog (1 — G(b)) , @)

<e+(1+e) =142

which completes the proof after replacing € with €/2.

Next, we prove the lower bound starting from (2.7). Pro-
ceeding with similar arguments as in the proof for the upper
bound, we obtain

P[Ny > n]
—(1-¢"? /b (1 — Ga) 2 @) dG ()

((1/G(2)F ()
G(z0)
(1- o2 /G N

2y az® 'dz
£(1/2)F(b)
a(l - E)_1/2 /*(n+1)10g G(zo) e (1 — e*ﬁrl)a—l
T F(b)L/GY) S n+1

2

du,
(n+1) log(1-G (b))

where we use the monotonicity of £(z). Next, using the
inequality (1—e~*) > (1—§)z, for some § > 0 and all z > 0
small enough, we have

P[Nb >n— 1]
_ o \1/2 _ sya—1 —nlog G(zg) a—1
>ell-97(1-9) / e (3) du
F(b)e(1/G(b)n —nlog(1—G(b)) n

Oé(]. _ 6)7 /—nlogG(zo)
F(b)nag(l/c(b)) —nlog(l—@(b))

_ a(l — 6)7 /°°
FORUL/G®) | ioss-co)
- /—nlogc<wo>

where we set (1—6)*~! = (1—¢)/2. Then, by continuity, we
pick zo such that I'(—nlog G(z0),a) < el'(—nlog G(b), @)
and thus

—u a—1
e “u“ du

—u, a-1
e "u du

—u a—1
e “u” du]

P[Ny > nn®£(1/G (b))
ol (—nlog (1 — G(b)) , @)

> (1—ce).

Now, if a < 1, the lower bound follows similarly as the
preceding upper bound while for the upper bound we use
symmetric arguments. []

From the preceding two theorems we observe that
P[N, > n] behaves as a true power law when nP[A > b] — 0
(n << P[A > b]7!) and has an exponential tail (geometric)
when nP[A > b] — oo (n >> P[A > b]™'). More specifi-
cally:

(i) If nlP[A > b] — 0, then clearly —nlogP[A < b] — 0 and
we have by Theorem 3, as n — oo, nP[A > b] — 0,

_® pgy= et
Z(n)n“r( ) Ln)n>

(ii) If nlP[A > b] — oo, then —nlogP[A < b] — oo and thus,
as n — 00,b — 0o, nP[A > b] — oo,

]P’[Nb > TL] ~

B[Ny > n] ~ S G (1 - Gb)",

(1/G(b))n
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Figure 2: Ezample 1(a). Ezact asymptotics for a > 1.

which follows from Theorem 4 and the asymptotic expansion
of the Gamma function (see Remark 5 of Theorem 3).

Interestingly, one can compute the distribution of P[N;, >
n] exactly when the parameter « takes integer values.

Proposition 2.2 If P[L > z] = P[A > x|, for allz > 0
and « is a positive integer, then

i al n! P[A > b]*~*

PN > n] (@— )+

1 )
= P[A < b]"*".
P[L < b] & (A<
PrOOF. It follows directly from (2.7) using integration by
parts. [

Finally, in the following proposition, we describe the tail
of P[N, > n] for fixed and possibly small b. Furthermore,
the assumptions of this proposition could be weakened at
the expense of additional technical complications, which we
avoid here for reasons of simplicity.

Proposition 2.3 Let b be fized. If P[L > z] = P[A > z]%,
a>0,z >0, then

a  P[A> B> MP[A < b
P[L < b] n+1

PROOF. See Section 4.

]P’[Nb > TZ] ~

as n — 0.

O

3. SIMULATION EXPERIMENTS

In this section, we illustrate the validity of our theoret-
ical results with simulation experiments. In all of the ex-
periments, we observed that our exact asymptotics is liter-
ally indistinguishable from the simulation. In the following
examples, we present the simulation experiments resulting
from 10® (or more) independent samples of Ny, ;,1 <4 < 10%.
This number of samples was needed to ensure at least 100
independent occurrences in the lightest end of the tail that
is presented in the figures (Np; > Timax), thus providing a
good confidence interval.
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Figure 3: Ezample 1(b). Ezact asymptotics for a < 1.

Example 1. This example illustrates the exact asymp-
totics presented in Theorems 3 and 4, i.e., approximation
(2.4), which combines the results from both theorems. We
assume that L and A follow exponential distributions with
parameters A = 2 and pu = 1, respectively. It is thus clear
that F(z) = e72* = G(z)*, where o = 2 and {(z) = 1.
Now, approximation (2.4) states that P[N, > n] is given by
(1 — e ?)712n72I'(ne~",2). Note that we added a factor
P[L < b~!' = (1 — e ?*)7!, as in Propositions 2.2 and 2.3,
for increased precision when b is small; we add such a factor
to approximation (2.4) in other examples as well. We sim-
ulate different scenarios when the data sizes L, are upper
bounded by b equal to 1, 2 and 4. The simulation results
are plotted on log-log scale in Fig. 2.
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Figure 4: Ezample 2. Ezxponential tail asymptotics.
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Figure 5: FEzample 3. Power law region increases for

lighter tails of L, A.

From Fig. 2, we observe that the numerical asymptote
approximates the simulation exactly for all different scenar-
ios, even for very small values of n (large probabilities). We
further validate our approximation by considering scenar-
ios where L, A are exponentially distributed but o < 1; in
fact, this case tends to induce longer delays due to larger
average data size compared to the channel availability peri-
ods. In this case, we obtain a = 0.5 by assuming A = 1 and
1 = 2. Again, the simulation results and the asymptotic for-
mulas are basically indistinguishable for all n, as illustrated
in Fig. 3.

For both cases, we deduce that for b small the power law
asymptotics covers a smaller region of the distribution of Ny
and, as n increases, the exponential tail becomes more evi-
dent and eventually dominates. As b becomes large - recall
that b — oo corresponds to the untruncated case where the
power law phenomenon arises - the exponential tail becomes
less distinguishable.

Example 2. This example demonstrates the exact asymp-
totics for the exponential tail as n — oo and b is fixed, as
in Proposition 2.3. Note that this proposition gives the ex-
act asymptotic formula for the region n >> 1/G(b) and lends
merit to our Theorems 2 and 4. Informally, we could say that
a point ny, such that —ny log(1 — G(b)) ~ npyG(b) = alogny,
represents the transition from power law to the exponen-
tial tail. We assume that L, A are exponentially distributed
with A = 2 and g = 1 (as in the first case of Example 1).
Roughly speaking, we can see from Fig. 4 that the exponen-
tial asymptote appears to fit well starting from ny ~ ae’,
i.e., np ~ 6,15,100 for b = 1,2, 4, respectively.

Example 3. This example highlights the importance of
the distribution type of channel availability periods G(z) =
P[A > z]. We consider some fixed b, namely b = 8 and
assume that the matching between data sizes and channel
availability, as defined in Theorems 3 and 4, is determined by
the parameter o = 4. We assume Weibull!distributions for
L, A with the same index k and pur,pa respectively, such
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Figure 6: FEzample 4. Ezact asymptotics where EA > ELy.

that @ = (ua/pr)®. The simulations include three dif-
ferent cases for the aforementioned distributions: Weibull
with index k = 1 (exponential) where uz, = 1 and pa = 4,
Weibull (normal-like) with index £ = 2 (ur = 1,p4 = 2)
and Weibull with & = 1/2 (ur = 1,u4 = 16). Fig. 5 il-
lustrates the exact asymptotics from equation (2.4), shown
with the lighter dashed lines; the main power law asymp-
tote appears in the main body of all three distributions. We
observe that heavier distributions (Weibull with k£ = 1/2)
correspond to smaller regions for the power law main body
of the distribution P[N; > n]. On the other hand, the case
with the lighter Gaussian like distributions for k = 2 follows
almost entirely the power law asymptotics in the region pre-
sented in Fig. 5. This increase in the power law region can
be inferred from our theorems, which show that the transi-
tion from the power law main body to the exponential tail
occurs roughly at ny ~ G(b)~*. Hence, the lighter the tail
of the distribution of A, the larger the size of the power law
region.

Example 4. In this example, we deal with the case where
the system availability periods are longer than the mean size
of the data. This is true for a system that does not fail fre-
quently and the packet sizes are small on average, where
one would expect high throughput and lighter distributions
for the retransmissions. However, our simulations demon-
strate the dominant power law body when b is larger than
the mean data size, i.e., we allow longer, albeit infrequent,
packets to be transmitted over the channel. In this sce-
nario, L, A are both exponentially distributed with A = 5
and p =1, yielding EL, =~ 0.2 << EA = 1. Fig. 6 indicates
the emergence of the power law in the main body of the dis-
tribution when the value of b is larger, namely b = 10. On
the other hand, when b = 1, the exponential tail dominates
and the power law basically disappears. From Fig. 6, we can

'In general, a Weibull distribution with index k has a com-
plementary cumulative distribution function P[X > z] =

k
e~ @/ where w1 is the parameter that determines the
mean.



10”
107}
— 10}
=
A
=}
£ 3
&~ 107k
107t}
m— Simulation
‘‘‘‘‘ Exact Asymptote
10° 10" 10° 10°

Retransmissions: n

Figure 7: Ezample 5(a). Uniform approzimation from
(2.4) for the case where L follows the Gamma distribution.

verify that, for even a small number of retransmissions, e.g.,
n = 10, P[N, > 10] increases from 107° to roughly 1072
- an almost 1000-fold increase - as b grows from 1 to 10.
This dramatic change of the distribution of NV, for relatively
modest increase of the maximum data size b emphasizes the
importance of carefully adjusting the data characteristics
(e.g., fragmentation) to the channel statistics.

Example 5. In this last example, we study the case
where there is a more general functional relationship be-
tween the distributions of availability periods A and data
sizes L, as Theorems 3 and 4 assume. In particular, we con-
sider the case F(z) = G(x)*/¢(G(z) '), where £(x) is slowly
varying. We validate the approximation (2.4) in this more
general setting.

In particular, the availability periods A are exponentially
distributed with parameter g while the data sizes L fol-
low the Gamma distribution with parameters (), k); the tail
of the Gamma distribution function is defined as A*I"(k)~*
[ e a*tda = I'(Ax, k) /T'(k) and, therefore, the tail dis-
tribution of L can be approximated by F(z) ~ (\*~1/T'(k))
xzFle™*® for large x. We can easily verify that F(z) =
flptlog G(z) 1)G(x)®, where o = \/p and

f(z) :)\k’ll“(k)’l/ e *(z/A+z)" 2.

0
Hence, the slowly varying function in Theorems 3 and 4
is £(z) = 1/f(u"'logz). Also, from the preceding inte-
gral representation for f(z), it can be easily shown that
£(z) =~ T(k)a*"Flog'™* z, which is indeed slowly varying,
and F(z) ~ (o"1/T(k))log(G(z) " 1G(x)*. We take
A =2,k =2and p = 2 and run simulations for b = {2, 3,4}.
In Fig. 7, we demonstrate the results using the approxima-
tion (2.4). Surprisingly, our analytic approximation works
nicely even for small values of n and b although the condi-
tions in our theorems require n and b to be large.

In Fig. 8, we elaborate on the preceding example. To
this end, we plot two asymptotes: (i) the ‘Initial Asymp-
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Figure 8: Example 5(b). The asymptotes from Theorems 3
and 4 for the case where L follows the Gamma distribution.

tote’ corresponding to the power law asymptote provided by
Theorem 3 and (ii) the ‘Tail Asymptote’ from Theorem 4.
Combining the two, we derive the approximation (2.4), as
we have already shown in Fig. 7. Hereby, we see from Fig. 8
that both asymptotes are needed to approximate the entire
distribution well, i.e., the ‘Initial Asymptote’ fits well the
first part of the distribution, whereas the ‘Tail Asymptote’
is inaccurate in the beginning but works well for the tail.
Recall that these two asymptotes differ only in the argu-
ment of the slowly varying function ¢(-), which is equal to n
for the ‘Initial Asymptote’ and G(b)~" for the tail.

4. PROOFS

In this section, we present the proofs of Propositions 2.1,
2.3 and Theorem 1.

PRrROOF. Proof of Proposition 2.1.
By assumption, there exists 0 < ¢ < 1 such that for all
T > Te

(4.1)
Next, since P[Ny, > n|Ly] = (1 — G(Ls))",
P[N, > n] = E[1 — G(Ly)]"
= E[1 — G(Ly)]" "
= (1= G®)" I [ENl — G(Lo))" 1(Ls < o)

FE[1 - G(Ly)]"1(Ly > 1’0)]

(1= G®)" 2 [(1 - Glao)™

IN




where 1,, = 1 — G(20) and the last inequality follows from
(4.1).

Now, by extending the preceding integral to co, we obtain

MM>Msf%a—mwmﬂﬂﬁﬁ@
+ /OOO (1 - F(x)ﬁ)m dF(x)}
= 7 (1 GO
x [n;;gp(b) +E (1 - F(L)ﬁ)"e]
< 71— GE)

1
X [77;; (b) + E e ) “ )] )

where we use the elementary inequality 1 —x < e™*, = > 0,
and thus

(1 — _(b))n(l—é) —neUO‘(ll_e)
PNV, < Ee
N> ) < B=GO— Lz p o) + ,
) (4:2)
where F(L) = U is uniformly distributed on [0, 1] by Propo-

sition 2.1 in Chapter 10 of [12].
Next, we upper bound the expectation in the preceding
expression by

1 1 1
Ee—neUQ(l_e) — / e—:vo‘(l_e) n€dl‘
0

—zza(l—e)—ldz

all—¢) [ _. ai-o-1
,W/O e 722017971,
- ST - ),

which follows from the definition of the Gamma function
[(a) = [;° e "t*~'dt. Therefore, by replacing the preceding
bound in (4.2), we obtain

where H. = a1 — €)T'(a(l — €))e 1179 /F(by). Now, for
any e > 0, we can choose ng, such that for all n > no,
Moy < eHen —a(1=9) 50 that

H.

P[N, >n] < (1—G(b))"" 7 {nﬁé toeio

A n(l—e) H€ He
P[Ny, > n] < (1 - G(b)) |:Ena(1—€) + na(l—e)]
_ = n(l—e) H.
= (1-G(b)) g (L+e)

And by taking the logarithm in the preceding expression,
we obtain

log P[Ny, > n] < log (He( €)) +n(1 —¢€)log(1 — G(b))
a(l—c¢)logn
= log (He(l +¢))

1

+ (1 —¢) [nlog(1 — G(b)) — alogn] .
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Next, since —nlog(1 — G(b)) > 0 and alogn >0, n > 1,

log P[Ny > n) log He
—nlog(l — G(b)) + alogn ~ —nlog(l — G(b)) + alogn
-(1-¢
log H.
< —(1—e).
~— alogn (1—¢)

Since arlogn is increasing in n, we can choose no such that
for any n > no, log He/alogn < ¢, and thus,

log P[N} > n] <

—nlog(l — G(b)) + alogn ~

_(1 - 26)7

which completes the proof by replacing € with €/2. [

PrOOF. Proof of Theorem 1.
Note that the upper bound follows from Proposition 2.1. For
the lower bound, we have, for x > xo,

P[Ny > n] =E[1 — G(Ly)]"
> E[l — F(Ly)a0%a ]

b _ 17 dF(x)
> 1—F a(l+e)
2 /% (1-F@)™ )" T
F(z0) e
1a(l+e)dz
_ 1 n _a(lte) la(
(1o all b ol
F(b) « 11+e

where the last equality follows from the absolute continuity
of F(z) and change of variables. Next, by setting z = 1 —

e /" and a. = a(1 + €) we obtain
1
—nlog(l—F‘(zD)ae>
« u
PIN > € —u(n+1)/n 1_e n ac—1 )
[ b > ’IL] - F(b)n / € ( € ) du

7n10g(1713(b)0%e>

Now, by continuity, for any 6 > 0, we can choose zo such
that — log(1 — F(x0)'/ %) =4, 1mply1ng

on
P[Ny > n] > % / e (1 —e n)* du,
dlogn

where we use our assumption nG(b) < §logn to upper
bound the lower limit of the integral; for the last inequality,
note that e™*/™ > 1—wu/n > (1—3§). Next, by F(b) < 1 and
using 1 — e ¥ > (1 — )y, for all y small enough, it follows
that

on
P[Ny > n] > L;dw e "u du
" slogn
. (14e)5logn

> (1 = 9)™he _a(z) he (logn)™ ! e “du
" Slogn

— 7066(1 — 0)%he (logn)o‘e_ln_‘s (1 — n_ae) ,
nae

where in the second inequality we use n > (1 + €)logn for
n large and the monotonicity of u®~!; also, we set h. =



max(1, (1+¢)*~1). Therefore, for n large such that n ¢ <
0, we obtain the lower bound

ac(l —8)* T he (logn)*~!

noe ns

P[Ny > n] >

Now, logn > logno and we can choose d < eq, such that
1/n® > 1/n°*, implying

he,6

BNy > ) 2 ot

where we set hes = ac(1 — 8)* T h (logne)*~'. And by
taking the logarithm, we obtain
log P[Ny > n] > log he,s — a(1 + 2€) log n.

Finally, since logn is increasing in n, we can choose ng
such that for all n > ng, aelogn > —logh.s , i.e.,

log P[Ny > n] > —a(1 + 3¢) logn,
which completes the proof by replacing € with €/3. [

PrROOF. Proof of Proposition 2.3.
Similarly as before, by the assumption,

P[Ny > n] =E[1 — G(Ly)]"
—E[l — F(Ly)3]"

= [ (1-Fp) L.

And by setting F(az)é

1

= 2z, we obtain

n_a—1 adz

P[Ny > n] = e (1-2)"z FO)
=F0) /G<b) (1—2)"2""dz,

following the assumption G(z)* = F(x). Next, we break
the preceding integral into two parts

G(b)(1+¢)
/ (1—2)"2""dz
G(b)

1
—|—/ (1—2)"2"tdz| .
G(b)(14¢)

To obtain the lower and upper bounds, we consider two
different cases for .

P[Nb > n] =

F(b)

1) fa>1,
e I
P[Ny > n] > —— baf/ 1—2)"dz.
F(b) G ()
since z*~! is monotonically increasing. Then,
P[Nb > n]
a _ w1 (1 _ Z)n+1 é(b)(1+€)
> 2 gyt |-
F(b) n+law

G-yt [ (1= Gma o)
B0 P (2ew ) ]'

Next, by recalling that (1 — G (b)(1+¢€))/(1
b is fixed, we have as n — oo,

—G(b)) < 1 and

a GO -Ge)t
P[Ny > n] = 20) ] . (4.3)
Also, for the upper bound,
N>l < - l@marar [ =)
P[Ny >n] < —— 1+e¢ ai/ 1—2)"dz
’ o 0
1
+/ (1-2)"dz|, (4.4)
G(b)(1+e)

since 27! < 1. Next, we evaluate the expression in the
brackets,

e ac1 (1—2)"T! G(b) (1—z)nt? G(b)(1+€)
G(b € U=z 1=z
( (_)(1+ ) n+1 G)(te) nt1 )
:Gw)nﬁfd (1= GE)™' = (1 - GH)a+e)]
(- Gm)+ )
M n+1
_(Q=-Ge)t
T o+l

oo (oo (o))

()]

Similarly as before, (1 — G(b)(1+¢))/(1 —G(b)) < 1 and by

taking the limit as n — oo in (4.4), we have

a G (1-G n+1 -t
MM>mNF@G@ O'i@i (L+e "

Therefore, by letting € — 0,

PN, > n] < Fa G(b)* (1 —

G(o)*!
(b) n+1 '

Finally, by equations (4.3) and (4.5), we have

a GO (1 -Go)"
F(b) n+1 '

(4.5)

P[Nb > n] ~

(ii) If o < 1, similar arguments work, we omit the de-
tails. [
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