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Abstract 
This pa.per investigates the asymptotic behavior of a 

single server queue with truncated heavy-tailed arrival 
sequences. 14'-e have discovered and explicitly asymp- 
totically cha.ra.cterized a unique asymptotic behavior of 
t,he queue length distribution. Informally, this distri- 
bution on t,he log scale resembles a stair-wave function 
t h t  lias steep drops a t  specific buffer sizes. This has 
important8 design implications suggesting that  negligi- 
ble increa.ses of the buffer size in certain buffer regions 
can clecrea.se t.he overflow probabilities by order of mag- 
ni t,u des. 

A problem of t,liis type arises quite frequently in 
practice when the arrival process distribution has a 
bounclecl support and inside that  support it is nicely 
ma.t,ched wit,li a. hea.vy-hiled distribution (e.g. Pareto). 
However, our primary interest in this scenario is in its 
possible applic,a.t,ion to  controlling heavy-tailed traffic 
flows. More precisely, one can imagine a network con- 
t,rol procedure in which short network flows are sep- 
ara.tec1 from long ones. If the distribution of flows is 
heavy-tailed t,liis procedure will yield truncated heavy- 
tailed clist,ribution for the short network flows. Intu- 
it,ively, it, can be expected that  with short flows one 
can obta.in iiiuch bet,ter multiplexing gains than with 
t,he original ones (before the separation). Indeed, our 
analysis confirms t,his expectation. 

Keywords: Truncated Heavy- Tailed Distributions; 
Regrrl nr Vn ri af.ion; Network Mult aplexe r; Single Server 
Queue; GI/GI/ l  Q,ueue; Long Range Dependence. 

1 Introduction 
Increasing empirical evidence has demonstrated the 

presence of 1iea.vy-hiled (subexponential) characteris- 
tics in communication network traffic streams. Early 
discoveries on t,lie heavy-tailed nature of Ethernet traf- 
fic wa.s report,ed in [26]. More recently, in [la] the long- 
range depenclriicy of Ethernet traffic was attributed 
t,o t,be hea.vy-t,a,iled file sizes that  are transfered over 
che net,work. Heavy-tailed characteristics of the scene 

length dist,ribution of MPEG video streams were es- 
plored in [li, 241. 

These einpirical findings have encouraged theoret,- 
ical developments in the modeling and analysis of 
heavy-ta.iled phenomena. In this area there have been 
two basic a.pproaches: self-similar processes and fluid 
renewal models with heavy-tailed renewal distribu- 
tions. The investigation of queueing systems with self- 
similar long-range dependent arrival processes can be 
found in [E, 14, 27, 35, 39, 131. 

Basic t,ools for the analysis of fluid renewal models 
with a single heavy-tailed arrival stream a.re the c1a.s- 
sical result,s on subexponential (heavy-hiled) asynip- 
totic behavior of the waiting time distribution in a 
GI/GI/ l  queue [lo, 34, 411 (these results were used 
in [3, 161). Asymptotic expansion refinements of these 
results ca.n be found in [42, 1, 111. Generalizations to  
queueing processes (random walks) with dependent in- 
crements were investigated in [4, 22, 51. 

Queueing models with multiple long range depen- 
dent arr ivd streams are of particular interest for engi- 
neering communication networks. Unfortunately, t,he 
analysis of t(1iese models is much more difficult, clue to  
the complex dependency structure in the aggregate ar- 
rival process [16]. An intermediate case of multiplexing 
a single 1iea.vy-tailed stream with exponential strea.ms 
was invest,igated in [7, 23, 38, 21. 

For the case of multiplexing more than two heavy- 
tailed arrival processes general bounds were obta.inec1 in 
[9, 291. In [i] a limiting process obtained by multiplex- 
ing an infinite number of On-Off sources with reguhrly 
varying on periods was analyzed. This limiting arrival 
process, so called M / G / m  process [36, 401, appears to  
be quit,e promising for the analysis of a corresponding 
fluid queue. In [23], under specific stability conditions, 
a.n explicit, a.symptotic formula for the behavior of the 
infinite buffer queue length distribution with M/G/co  
arrivals was derived. In the same paper it. was shown 
with s imuhtion experiments that  the derived asymp- 
totic formula yields good approximation for multiplex- 
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iiig finit.ely many heavy-tailed On-Off sources. Asymp- 
t.ot,ic expression for t,he expected value of the first pas- 
sage t,inie i n  a fluid queue with M/G/m arrivals was 
derived in [3T].  New results on a finite buffer queue 
can  be fouiicl i n  [‘Ll, 181. A recent survey of results on 
fluid queues wit,li heavy-tailed arrivals can be found in 
[8] ; for t,he lat,est8 comprehensive list of references see 

In this pqier we examine the idea of separating the 
transmission of long and short network flows. This idea 
of flow separat,ioii was presented in a sequence of pa- 
pers by P. Newman et al. [3O, 311. In these papers 
aut,liors iiiost,ly discuss system and implementation is- 
sues. They e sph in  how ATM switching technology can 
be combined with IP packet (connectionless) routing 
t.0 implement, t,liis idea. ATM virtual circuits (VC) are 
suggest,ed for t,ransmitting long flows, while IP packet 
routing is used for transmitting short flows. One of the 
potentia.1 benefits of having this network architecture 
is t,o a.void C o d y  router table lookups (usually done in 
software) for packets in long flows and use fast ATM 
hardware forwarding for its transimission. 

Here. we focus on some performance aspects that, 
can  arise in  implementing the flow separation idea. We 
use the increasing expected residual life time of heavy- 
tailed distribut,ions to guarantee tlie extraction of long 
Aows wit,li a simple threshold based mechanism. This is 
important, Iieca.use establishing a VC involves complex 
signaling ancl “pays off” only if the flow for which a 
VC is established is indeed long. This is presented in 
Section 2. 

The iiiain focus of our investigation is in characteriz- 
ing the queueing behavior with short (truncated heavy- 
t,a.iletl) arrivals. Our main result in this direction is pre- 
seiit,etl in  Theorem 2 in Section 4; preliminary results 
needed for t,liis t,Iieorein are contained in Section 3.  In- 
formally, the queue length distribution (characterized 
hy Theorem 2 )  on the log scale resembles a stair-wave 
function t h t ,  has steep drops a t  specific buffer sizes. 
This has import,a.nt design implications suggesting t1ia.t 
negligible increases of the buffer size in certain buffer 
regions caa decrease the overflow probabilities by order 
of ina.gnitudes. These steep drops of the queue over- 
flow proba.t.ilit,y represent the increased multiplexing 
gain of the short, flows. Numerical illustrations of our 
resultas is presented in Section 5 (see Figures 2 and 4). 
‘The paper is concluded in Section G .  

2 Flow Separation 
Let, 11s first, define a source (session) model. We a.s- 

suiiie t.1ia.t a. source (session) can be represented as an 
alt,ernat,ing sequence of active (on) and silence (off) 
periods; during a.n activity period (at  least on a fluid 

[20] .  

level) tali(? source produces a constant bit. rate t.raffic of 
rate 7’; each 011 period will he referred as a. flow. Let, 
{T:”,  7 1  2 U}, {r,tff, n 2 0}, be two independent se- 
quences of i.i.d. random variables represent#ing t.he du- 
rations of successive on and off periods. respect,ively; 
e.g., a. sample path realization of this on-off source 
model is shown on the right-hand side of Figure 1. 

We model on periods as being regula.rly va.rying. 
The class of functions of regular variation cy E R 
was invent,ed by Karamata [25].  These functions pro- 
vide a. framework for the asyniptotic inversion of t,he 
Lapla.ce Transform (see the main reference book [(j]). 
Paret,o dist,ributions a.re the hest known example from 
this family. Formally, we say that  a distribution func- 
tion F is regularly varying, 1 - F E R-, if it. is given 
by 

l ( Z )  F ( z )  = 1 - - CY 2 0, z a  

where l ( x )  : 119, i Iw+ is a function of slow va.ria.t,ion, 
i.e., lim.r-m l (Sz ) / l ( z )  = 1, S > 1. Fuiict,ions of regu- 
lar varia.t.ion have played a role in the queueing theory 
since t,he cla.ssica1 result of Cohen [IO] on tlie a.symp- 
totic propert,y of a workload distribution in a G I / G I / l  
queue. 

Next., we propose a simple, threshold based algo- 
rithm for separating the flows (see Figure 1). We as- 
sume that at, the beginning of each flow (on period) we 
start  a clock that measures the duration re of that  flow. 
When re exceeds a threshold B we term tlie remainder 
of that  flow as being long, and from that  time on we 
handle t,liat flow separately in a connection oriented 
fashion. 
2.1 

Regula.rly varying distributions are characterized b y  
increasing expected residual life time. In ot,lier words, 
soniet,liing t,lia.t had lasted for a significant amount, of 
time B is expected to continue t,o exist, for a,ii a.mount. 
of time proportional to B.  This is foriiially expressed 
in the following lemma. Throughout the paper we will 
use the cust,omary notation f (z )  - g ( x )  as 2 - cc to 
denote liiii,r+m f (z ) /g(z)  = 1 

Lemma 1 IfP[70n > z] = I ( z ) / z ” ( ~  R-cu)lcu > 1: 
then 

Optimizing the Choice of B 

B 
a - 1  

FJT”” - B(ron > B] - - as B - m .  

Proof: Follows from Karamata’s theorem. 0 
Thus. by going back to our threshold based flow 

sepa,ra.t,ioii a.lgorithm we see that the long flows a,re iii- 
deed goiiig to be long, i.e. their expectation is roughly 
going t,o lie B / ( a  - 1). This is important, beca.use es- 
tablishing a virtual connection for a long flow is more 
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long flows 

t / 
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Figure 1: Threshold based flow separation. 

complex (than coniiectioiiless transmission) and in gen- 
eral "pays off' only if tlie duration of t,he flow is long. 
Using Lemma. 1 we can optimize the choice of B such 
t1ia.t t,lie reinaiiicler of the flow which is transmitted via 
a. VC 11a.s a. desired expected value. 

In passing. we would like to  mention that an im- 
porta.nt issue is t o  decide when to close down a VC; 
e.g., this ca.n be clone by having an  appropriate silence 
detector. 

2.2 Queueing Short Flows 
It. is rea.soiialile to espect tha t  a sequence of short 

flows, since long flows are estracted, will yield much 
liet,ter queueing performance. Because of that ,  i t  will 
be quite inefficient, t o  assign to the sequence of short 
flows a capa.cit,y t,lia.t is equal to its peak rate. Hence, if 
we a.ssign a. ca.pa.cit,y c < I' to each session, it is impor- 
hiit.  t,o lie able to estiina.te buffer overflow probabilities 
and optimize t,he buffer design. 

Also, in the interest of increased utilization, nmny 
short, sessions can share the same link capacity and 
1itiEer spa.ce. For a. large number of sources it is often 
good t,o a.pprosiinate the arrivd process as an M / G / w  
arrival process (see [ 2 3 ] ) ,  i.e., to assuine that the be- 
ginnings of short, flows arrive according to a Poisson 
arriva.1 process of ratme A = (sum of tlie rates of all 
multiplexed sessions). At this point, the analysis of 
;I fluid queue wit8Ii truncated 1iea.vy-tailed M/G/ocI ar- 
rivals qipears t,o lie a very difficult problem. In order t o  
ma1;e t.he a.nalysis feasible, we assume tha t  short flows 
are a.rriving iiista.iit,aneously wit,li Poisson rate A .  This 
queueing syst,em will provide an upper bound on tlie 
performance of a corresponding fluid queue. Then, tlie 
queue lengt,li distribution observed at the flow arrival 
times evolves as 

wliere r,, a.re Poisson inter-arrival times and 
i,ii,B ikf 

r,l - T;7x1(T;7L < B )  + ~ i ( ~ ; ? ~  2 B ) .  
Chara.ct,erizing the stationary asympt.otic behavior 

of P[Qf > x ]  as bot11 z and B go to tw is the main 
question that we will explore in the rest of the pa- 
per. To answer this question, we first investigate large 
deviatioiis of truncated heavy-tailed sums in the next, 
section. Then, by using this large deviation result, in 
the subsequent section we characterize the beha.vior of 
P[QE > .I-]. 

3 Large Deviations of Truncated 

Let {I-? I;, i 2 l} be a sequence of non-nega.tive 
i.i.cl. random variables wit,li densit,y f(x) = l ( z ) / x "  E 
RdU,(-i > 1. Next, for each B > 0, construct. a.n 
i.i.d. sequence { Y E ,  xB, i 2 1) with density f B ( x )  = 

Theorem 1 Let Sf = Cy=l E',B, 11 2 1. If f ( z )  = 
l ( z ) / z " .  (E a > 1, then far  a n y  constant I< > 
0 ,  fixed k = 0 ,  1, .  . ., fixed 0 < 6 < 1, niad uniformly 
for a l l  1: + 1 5 17. 5 K log B ,  

Heavy- Tai 1 e d S u 111s 

f(z)/iF[O 5 Y 5 B], 0 5 z 5 B. 

as B - ,x8. where 

x;a. ' . z;;ldzI . . . dZk+l. s (3 1 

<-l<?f 
h k ( 6 )  = 

{)<I, 5 1 , 1 <  15 k + l  
cl + . . . + z ~ + ~  >k+6 

Remarks: ( i )  Note tha t  the int.erva1 k + 1 5 n 5 
K log B is not the largest one for which ( 2 )  holds, but it 
suffices our needs. (ii) Also, note tha t  h.k(E) ,k  = 0,  1, 
are explicitfly given by 

lhj(6) = ( l - P - l ) ,  
(cy - 1)IP-l 
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/?1(6) = ( ( ( Y  - 2 ) ( a  - l)"")-l { ( a  - 2)(6" - 6) 
- ( ( t  - 2 ) b " (  1 + b)-"+l.,Fl (1 - U, a ,  2 - a ,  (1 + 
+(n  - 2)6( 1 + 6)-"+12Fl (1 - a ,  a ,  2 - a ,  6 ( 1 +  
+ ( I \  - l )hL ' (  1 + 6)-3F1 (2 - a ,  a ,  3 - a ,  (1 + 
- ( ( V  - 1)6'( 1 + 6)-"2F1 (2 - a ,  a ,  3 - a ,  6(1+ 

where ? F I  ib  the Hypergeometric function. 
proof: Olisrrve that  for any y > 0, P[S,B 2 ( k  + 6)BI 
can  he decomposed as follows 

(5) 

, 

IF[.s: 2 ( k  + 6)B] 
= JP[S;: 2 ( k  + 6 ) ~ ,  m a s  5 y] 1<a<n 

Now. let. LIS choose 0 such that  ( k +  l ) / (k+ 'L)  < 0 < 1, 
ancl y = B B .  Then. for all sufficiently large B such 
t,liat, li log B < SB1-', we have tha t  nBB < 6B, which 
i nip lies 

Nest,, t8he est,imate of P(k+z)n follows from 

To finish t,he proof we need to  estimate P(k+l),. Ob- 
serve t,liat for ally 0 < t < 6 there exists sufficiently 
large B,, s u c h  t,Iia.t. for all B > B,, 

11 

( 9 )  

on the set. {maxk+a<isnKB 5 y}. Hence, for B > B, 

q k + l ) , l ( B )  = P [s! 2 (k + S)B,Y? > Y , .  . . , 

1 
= /" fB(Yl)dYl / fB(Y?)dy:! 

. . . j! fB(Yk+lWYk+l. (10) 

m a s  xB < y  B 
yk+l > y1 k+257.<71. 

5 P [$+I 2 ( k  + 6 - E)B] 
B 

B(6-,) B ( ~ + ~ - c ) - Y I  

B(k+6-~)-yi...-yk 

By upper bounding I (z)  with i ts  maximum value in t,he 
interval [B(6 - t ) ,  B], and by changing tlie va.ria.bles 
yi = XiB. 1 5 i 5 k + 1 we obtain 

as B - 'w, where for the last asymptotic relation we 
have usrcl nmxB[6-,)<z5B I ( z )  - 1(B) as B - IX), 

which follows from Theorem 1.2.1, p. 6, 161. Nest ,  
by observing that  h k ( 6 )  is continuous in 6, by passing 
c .+ 0 in (11) we obtain the asymptotic upper bound 

For the lower bound we observe tha t  for sufficiently 
large B (>  B,) 

{Sf++l 2 ( k  + 6)B}  c {Y? > y, .  . . ,'-&I > Y}, 

P ( k + l ) l ,  2 P[YB 5 BO]"-"lP [sf+l 2 ( k  + 6 ) B  , 
Y? > 9 , .  . . ,Y&, > y] 

= P[YB 5 B0]"-"-1P [s'f+l 2 [ k  + S)B]  

which implies 

( 1 3 )  

where i 11 t,he 
last relation we have used infB65,5B 1 ( ~ )  - 1(B) ,  as 
B - K (Theorem 1.2.1, p. 6, [GI) .  Finally, hy combin- 
ing (12 )  and (13) we finish tlie proof of the theorem. 
0 

4 Asyiiiptotic Queueing Behavior 

cally tlescribed as 
O b s r n r  that  queueing recursion (1) can he generi- 

(14) Qf+i = (Qf + A:+1 - C:,+I)+, 
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where { A B ,  A:, 11 2 1) and {C, C,, n 2 0) are two 
independent i.i.d. sequences, and A: has a bounded 
(truncated) support. Note that (14) represents the cus- 
t,oiiier wa.it,ing times in a GI/GI/l queue. 

Wit,liout. loss of generality we can assume that for 
any B > 0 

.‘I: := A,,.l(A,& 5 B )  + Bl(A,, > B), 
where {,4, -4,, 11 2 1) is an i.i.d. process. Accord- 
ing t,o t,he c1assica.l result of Loynes’ [28], under the 
stability condit,ioii EA, < Zn, recursion (14) admits 
a unique stationary solution, and for all initial condi- 
tions P[Qf 5 x] converges to  the stationary distribu- 
t8ioii P[QB 5 . c ] .  For the rest of this paper we will 
assume t,lia.t a.11 t,he queueing systems under considera- 
tion a.re in their stationary regimes. When B = CO we 
denote Q” simply as Q. 

Theorem 2 If E(A - C )  < 0 ,  f o r  all n > 0 ,  P[C > 
J:] 5 e-”“‘, ’1 > 0,  a n d  A has a regularly varyzng dastrz- 
bufioil P[A > x] = l ( z ) / z a ,  CY > 1, then 

as B -, m, ~ d e r e  h k ( S ) , O  < S < 1, rE = O , 1 , 2 , .  . . are 
ezp  la c i t ly co i i i p ~ i  t a ble f r o m  (3). 

Reinark: I f  k = 0 and 6 << 1, i.e., the buffer size 
b = 6B is much smaller then the truncation point B 
t,heii by (4), as int,uitively expected, Theorem 2 gives 
a.pprosimately the same result as Cohen’s (or Pakes’) 
result. 

Initially, we assume that A and C are integer valued, 
aiid t1ia.t t,lie distribution of C has a bounded support 

By using a well known connection between the queue 
length distribution and the supremum of the corre- 
sponding ra,iidoiii walk with increments X f  = A: - 
Cn,, [15], Cha.pter XII, (or [33], Section 24) the prob- 
abi1it.y geiiera.ting function q B ( z )  of QB can be repre- 
seiit,ed a.s 

P[C< e] = 1, c < 00. 

where gf ( 2 )  = g+BizE is the generating function of 
an  ascending ladder height random variable for which 
g f (1 )  < 1 iff ELY,” < 0. Equation (16) can be written 
in its equivalent form 

b=O 

n-here g f 2 * k  rc-’presents the k-fold convolution of gf, . 

Lemma 2 If P[A > i ]  zs regularly varying, P[C I 
c] = 1, c < CO, and IEA < E, then f o r  every E > 0, 
there a r i d  constants K ~ ( E ) ,  I<z(c) ,  such that for a l l  
B > liI(c) + Iiz(c),  i E [ K I ( E ) ,  B] 

and for i E [ K ~ ( E ) ,  B - K ~ ( E ) ]  

Proof: Due to  space limitations this proof is given in 

Proof of Theorem 2: Let {Y,”, n 2 1) be a se- 
quence of random variables distributed as P[l<; = i] = 
g:,/gf( l ) ,  and let S,” = 

D91. 0 

liB. Then,  from (17) 

P[Q: > ( k  + WI 

= (1 - Y+B(1)) 

(18) 
03 

(S+B(l))”P[S,B > ( k  + S ) B ] .  
n = k + l  

Next, observe that due to  the stability condition IEA < 
IEC 

Hence, we can choose IC sufficiently large such that for 
n.(B) := [Ii logB] 

2 (!/+B(W~[S,B > ( k  + S)BI 
n =n ( a )  

Thus,  by using stochastic dominance, Lemma 2, Theo- 
rem 1, (19) and estimate (20) we conclude tha t  for any 
€1 > 0 a.nd all sufficiently large B > B,, the infinite 
sum in (18) is bounded with 

P[Qf > (X: + S)B] 

Finally, by replacing 
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in (21 )  and by passing €1 to  0 we obtain 

In a very similar way one can obtain a lower bound 

we skip t,he det,ails. Finally, the combination of (23) 
aad (24) concludes the proof for the case of A and C 
integer valued and C bounded. 

Due to the space constraint the remainder of the 
proof is presented in the extended version of this paper 
[19] (a.11 of t,he numerical examples presented in the 
following sec.t,ion will have A integer valued and C G 1). 
0 

5 Numerical Results 
In t,liis section we illustrate with numerical examples 

t,he a.cc,ura,cy of our main result (Theorem 2) in approx- 
imat.ing the queue length distribution with truncated 
heavy-t,a.iled arrivals. 

The  following examples are based on a discretized 
version of the scenario described by equation (1) for 
t,he case c = 1.7' = 1, i.e., we assume tha t  the flows of 
size rFiB a.rrive instantaneously according to  a Poisson 
process. For iiumerical purposes we consider a discrete 
(slott,ed) t.ime a.pproximation of a Poisson process in 
which arrivals per slot are indicated with { I n ,  n 2 0) 
Bernoulli i.i.tl. sequence (independent of T ~ ~ , ~ )  with 
success prolmliility PIIn = 11 = 1 - PIIn = 0] = p ;  
I,, = 1 inclica.tes t,lia.t flow of size TFJ' arrives in a 
pa.rt.icula,r slot,. Then,  the evolution of the queue per 
one t,inie slot is given by 

Q f + L  = (Qf + T : ~ ' ~ I ~  - 1)'. (25) 
Note t,liat, in t,liis system the inter arrival time of flows is 
geomet,ric with parameter p ;  this approximates well the 
exponential interarrival times of the Poisson process. 
For siniplicit,y we define A: = T , " " I ~ I ~ ;  Af is a trun- 
ca.ted heavy-tailed random variable with support [0, B], 
1,et. p' = ELI: and let a g ( Z )  = ~ , f ! ,  ziaBl U? = 
P[.4: = i] lw a proba.bility generating function (pgf) of 
A:. Simila.rly, let Q B ( Z )  = CEO z iqB ,  qB = P[Af = i ]  
be a. pgf of Q:. Then,  

Using Ma.thema.tica 2.2 we will invert (26) and com- 
pa.re it to  t.he approximation suggested by equation 

(IS),  Theorem 2. We will choose ~ " ~ 1 ~  to be truncated 
Pareto distribution, i.e., 

d 
p + 1  P[? = i] = -, i 2 1, 

where d is a normalization constant, and 
T ~ ~ ~ , B  - - T o n l [ T o n  < B] + B 1 [ T O f L  2 B]. 

Then,  = 1 - p aiid 

0 

- 2  

- 4  

- - 
f -6 
I 

d - 8  
- 
-1 -10 

-12 

-14 

I 
0 100 z o o  300 4 0 0  500 600 

buffer sire x 

Figure 2: Illustration for Example 1 

Example 1 For the choice of arrival para.meters B = 
3 0 0 , o  = ' 2 . 8 , ~  = 0.3, we compute d = l/C;(o + 
1) = 0.273345, where C(e) is Zeta function. Next, 
u t  = 0 .7 , aP  = pd/ ia+' ,  1 5 i 5 B - 1,uE = 
1 - Ef&' a i , p B  = 0.34088. For these va.lues we nu- 
merica.lly invert (28); the exact inverted values of 
P[QB > x] are plotted with a gray line in Figure 2. 
The  values of approximation (15) are plotted on the 
same figure with dashed black lines. From the fig- 
ure we ca.n easily see tha t  the approximation is al- 
most identical to  the exactly computed probabilities. 
Furthermore, if Qf (6) denotes our approximation aiid 
QF(6) := P[QB > (k + 6)B], then the relative error 
e k ( 6 )  := IQ:(&) - Qf(&)I/Qf(6) is present.ed in Fig- 
ure 3; from the figure we observe tha t  for buffer sizes 
2 E [GO,  267] U [309,582] the relative approximation er- 
ror is sma.ller than l%! 

Example 2 Here, we choose B = 300,a = 3 . 5 , ~  = 
0.88. Then,  d = 0.83435, a0 = 0.12, a? = p d / P + ' ,  1 5 
i 5 B - I ,  p B  = 0.9400. An excellent agreement be- 
tween the approximation is evident from Figure 4 (sim- 
ilarly, as in the preceding experiment, the gray line 
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relative error 

0.006 

t 0 , 0 0 4  

I J 

buffer 5 1 z e  x 
150 200 250 100 

relative error 
0.01, 

Figure 3: Illustration for Esa.mple 1. 

represents the exact values and black dashed lines rep- 
resent the a.pproximation). 

6 Coiiclusioii 
In this pa.per, we have shown that heavy-tailed dis- 

t,ributioiis present a natural mathematical framework 
for t.he investiga.tion of flow separation. The  increasing 
expectmecl residua.1 life time of heavy-tailed distributioiis 
is used t80 opthiize the design of a threshold for the flow 
sepa.ra,tion. 

Our iimiii result (Theorem 2) gives an  explicit 
a.syinptot,ic characterization of an  intriguing behav- 
ior of t8he queue length distribution that results from 
queueing short, (truncated heavy-tailed) flows. Infor- 
ma.lly, this distributioii on the log scale resembles a 
stnir-wnw function that has steep drops at specific 
buffer sizes. This has important design implications 
suggesting t1ia.t. negligible increases of the buffer size in 
cert,a.in buffer regions can decrease the overflow prob- 
abilit,ies by order of magnitudes. These steep drops of 
t,lie queue overflow probability represent the increased 
multiplexing ga.in of the short flows. 

Besides it,s applicability to  the flow separation prob- 
kin. the investigated framework is of independent in- 
terest for ot,lier networking scenarios where truncated 
hea.vy-ta.iled distributions might arise. 
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