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Abstract

This paper investigates the asymptotic behavior of a
single server queue with truncated heavy-tailed arrival
sequences. We have discovered and explicitly asymp-
totically characterized a unique asymptotic behavior of
the queue length distribution. Informally, this distri-
bution on the log scale resembles a stair-wave function
that has steep drops at specific buffer sizes. This has
important design implications suggesting that negligi-
ble increases of the buffer size in certain buffer regions
can decrease the overflow probabilities by order of mag-
nitudes. ’

A problem of this type arises quite frequently in
practice when the arrival process distribution has a
bounded support and inside that support it is nicely
matched with a heavy-tailed distribution (e.g. Pareto).
However, our primary interest in this scenario is in its
possible application to controlling heavy-tailed traffic
flows. More precisely, one can imagine a network con-
trol procedure in which short network flows are sep-
arated from long ones. If the distribution of flows is
heavy-tailed this procedure will yield truncated heavy-
tailed distribution for the short network flows. Intu-
itively, it can be expected that with short flows one
can obtain much better multiplexing gains than with
the original ones (before the separation). Indeed, our
analysis confirms this expectation.

Keywords: Truncated Heavy-Tailed Distributions;
Regular Variation; Network Multiplezer; Single Server
Queue; GI/GI/1 Queue; Long Range Dependence.

1 Introduction

Increasing empirical evidence has demonstrated the
presence of heavy-tailed (subexponential) characteris-
tics in communication network traffic streams. Early
discoveries on the heavy-tailed nature of Ethernet traf-
fic was reported in [26]. More recently, in [12] the long-
range dependency of Ethernet traffic was attributed
to the heavy-tailed file sizes that are transfered over
the network. Heavy-tailed characteristics of the scene
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length distribution of MPEG video streams were ex-
plored in [17, 24].

These empirical findings have encouraged theoret-
ical developments in the modeling and analysis of
heavy-tailed phenomena. In this area there have been
two basic approaches: self-similar processes and fluid
renewal models with heavy-tailed renewal distribu-
tions. The investigation of queueing systems with self-
similar long-range dependent arrival processes can be
found in [32, 14, 27, 35, 39, 13].

Basic tools for the analysis of fluid renewal models
with a single heavy-tailed arrival stream are the clas-
sical results on subexponential (heavy-tailed) asymp-
totic behavior of the waiting time distribution in a
GI/GI/1 queue [10, 34, 41] (these results were used
in [3, 16]). Asymptotic expansion refinements of these
results can be found in [42, 1, 11]. Generalizations to
queueing processes (random walks) with dependent in-
crements were investigated in (4, 22, 5].

Queueing models with multiple long range depen-
dent arrival streams are of particular interest for engi-
neering communication networks. Unfortunately, the
analysis of these models is much more difficult due to
the complex dependency structure in the aggregate ar-
rival process [16]. An intermediate case of multiplexing
a single heavy-tailed stream with exponential streams
was investigated in [7, 23, 38, 2].

For the case of multiplexing more than two heavy-
tailed arrival processes general bounds were obtained in
[9, 29]. In [7] a limiting process obtained by multiplex-
ing an infinite number of On-Off sources with regularly
varying on periods was analyzed. This limiting arrival
process, so called M/G /oo process [36, 40], appears to
be quite promising for the analysis of a corresponding
fluid queue. In [23], under specific stability conditions,
an explicit asymptotic formula for the behavior of the
infinite buffer queue length distribution with M/G/
arrivals was derived. In the same paper it was shown
with simulation experiments that the derived asymp-
totic formula yields good approximation for multiplex-



ing finitely many heavy-tailed On-Off sources. Asymp-
totic expression for the expected value of the first pas-
sage time in a fluid queue with M/G/co arrivals was
derived in [37). New results on a finite buffer queue
can be found in [21, 18]. A recent survey of results on
fluid queues with heavy-tailed arrivals can be found in
[8]; for the latest comprehensive list of references see
[20].

In this paper we examine the idea of separating the
transimission of long and short network flows. This idea
of flow separation was presented in a sequence of pa-
pers by P. Newman et al. [30, 31]. In these papers
authors mostly discuss system and implementation 1s-
sues. They explain how ATM switching technology can
be combined with IP packet (connectionless) routing
to implement this idea. ATM virtual circuits (VC) are
suggested for transmitting long flows, while IP packet
routing is used for transmitting short flows. One of the
potential benefits of having this network architecture
is to avoid costly router table lookups (usually done in
software) for packets in long flows and use fast ATM
hardware forwarding for its transimission.

Here, we focus on some performance aspects that
can arise in implementing the flow separation idea. We
use the increasing expected residual life time of heavy-
tailed distributions to guarantee the extraction of long
flows with a simple threshold based mechanism. This is
important because establishing a VC involves complex
signaling and “pays off” only if the flow for which a
VC is established is indeed long. This is presented in
Section 2.

The main focus of our investigation is in characteriz-
ing the queueing behavior with short (truncated heavy-
tailed) arrivals. Our main result in this direction is pre-
sented in Theorem 2 in Section 4; preliminary results
needed for this theorem are contained in Section 3. In-
formally, the queue length distribution (characterized
by Theorem 2) on the log scale resembles a stair-wave
function that has steep drops at specific buffer sizes.
This has important design implications suggesting that
negligible increases of the buffer size in certain buffer
regions can decrease the overflow probabilities by order
of magnitudes. These steep drops of the queue over-
flow probability represent the increased multiplexing
gain of the short flows. Numerical illustrations of our
results is presented in Section 5 (see Figures 2 and 4).
The paper is concluded in Section 6.

2 Flow Separation

Let us first define a source (session) model. We as-
sume that a source (session) can be represented as an
alternating sequence of active (on) and silence (off)
periods; during an activity period (at least on a fluid
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level) the source produces a constant bit rate traffic of
rate r; each on period will be referred as a flow. Let
{rer,n > 0}, {rf/ ,n > 0}, be two independent se-
quences of 1.i.d. random variables representing the du-
rations of successive on and off periods, respectively;
e.g., a sample path realization of this on-off source
model is shown on the right-hand side of Figure 1.
We model on periods as being regularly varying.
The class of functions of regular variation R_,. 0 € B
was invented by Karamata [25]. These functions pro-
vide a framework for the asymptotic inversion of the
Laplace Transform (see the main reference book [6]).
Pareto distributions are the best known example from
this family. Formally, we say that a distribution func-
tion F is regularly varying, 1 — FF € R_, if it is given
by
F(z)=1- l(—£)~

o >0,
e -

where {(z) : Ry — R is a function of slow variation,
e, limy .o {(82)/l(z) = 1,6 > 1. Functions of regu-
lar variation have played a role in the queueing theory
since the classical result of Cohen [10] on the asymp-
totic property of a workload distribution in a GI/GI/1
queue.

Next, we propose a simple, threshold based algo-
rithm for separating the flows (see Figure 1). We as-
sume that at the beginning of each flow (on period) we
start a clock that measures the duration 7. of that flow.
When 7. exceeds a threshold B we term the remainder
of that flow as being long, and from that time on we
handle that flow separately in a connection oriented
fashion.

2.1 Optimizing the Choice of B

Regularly varying distributions are characterized by
increasing expected residual life time. In other words,
something that had lasted for a significant amount of
time B 1s expected to continue to exist for an amount
of time proportional to B. This is formally expressed
in the following lemma. Throughout the paper we will
use the customary notation f(x) ~ g(x) as 2 — oo to
denote lim,_. f(z)/g(z) =1

Lemma 1 If P[r°" > z] = l(z)/x*(€ Roo), & > 1,
then

E[r*" — B|r™ > B] ~

el B — oa.
Proof: Follows from Karamata’s theorem. O
Thus, by going back to our threshold based flow
separation algorithm we see that the long flows are in-
deed going to be long, i.e. their expectation is roughly
going to be B/(a —1). This is important because es-
tablishing a virtual connection for a long flow is more
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Figure 1: Threshold based flow separation.

complex (than connectionless transmission) and in gen-
eral “pays off” only if the duration of the flow is long.
Using Lemma | we can optimize the choice of B such
that the remainder of the flow which is transmitted via
a VC has a desired expected value.

In passing, we would like to mention that an im-
portant issue is to decide when to close down a VC;
e.g., this can be done by having an appropriate silence
detector.

2.2  Queueing Short Flows

It is reasonable to expect that a sequence of short
flows, since long flows are extracted, will yield much
better gqueueing performance. Because of that, it will
be quite inefficient to assign to the sequence of short
flows a capacity that is equal to its peak rate. Hence, if
we assigh a capacity ¢ < r to each session, it is impor-
tant to be able to estimate buffer overflow probabilities
and optimize the buffer design.

Also, in the interest of increased utilization, many
short sessions can share the same link capacity and
buffer space. For a large number of sources it is often
good to approximate the arrival process as an M/G /oo
arrival process (see [23]), i.e., to assume that the be-
ginnings of short flows arrive according to a Poisson
arrival process of rate A = (sum of the rates of all
multiplexed sessions). At this point, the analysis of
a fluid queue with truncated heavy-tailed M/G/cc ar-
rivals appears to be a very difficult problem. In order to
make the analysis feasible, we assume that short flows
are arriving instantaneously with Poisson rate A. This
queueing system will provide an upper bound on the
performance of a corresponding fluid queue. Then, the
queue length distribution observed at the flow arrival
times evolves as

B = (@QF 4rrmB —er)t, n>0, (1)

where 7, are Poisson inter-arrival times and
Tl("I‘”'B d——e}' T’!(;nl(’r’gn < B) + Bl(’rgn 2 B)
Characterizing the stationary asymptotic behavior
of P[QZ > x] as both = and B go to oc is the main
question that we will explore in the rest of the pa-
per. To answer this question, we first investigate large
deviations of truncated heavy-tailed sums in the next

section. Then, by using this large deviation result, in
the subsequent section we characterize the behavior of
P[QRE > ).
3 Large Deviations of
Heavy-Tailed Sums

Let {¥,Y;,i > 1} be a sequence of non-negative
i.i.d. random variables with density f(z) = l(z)/z" €
R_a,a > 1. Next, for each B > 0, construct an
ii.d. sequence {YB Y® i > 1} with density fB(x) =
f@)/P0<Y <BL,0<2<B.

Truncated

Theorem 1 Let S2 = Y0  YPB n > 1. If f(z) =
l(z)/z". (€ R_a), @ > 1, then for any constant K >
0, fized k = 0,1,..., fired 0 < 6 < 1, and uniformly
forallk+1<n< KlogB,

B . n . (B)FtH!
P52 (k+8)B] ~ (k+1>’”‘(‘“’m~ )
(2)
as B — >, where
hk(b’)d':?r e tdey - dagg.
0<xr, £1,1<:1<k+1 (3)

o eebwg gy 2h46

Remarks: (i) Note that the interval £ + 1 < n <
K log B is not the largest one for which (2) holds, but it
suffices our needs. (ii) Also, note that hg(é),k = 0,1,
are explicitly given by

1

hol?) = g5

(1—6271), (4)
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hi(8) = ((ov = 2)(a — 1)26%) ™ {(a = 2)(6% = 8) ()
—(a = 2)6"(L+8) R (1—a,a,2—a,(1+6)7)
o =2)8(14 8" LR (1- 0,02 - 0, 6(146)7")
Hlo =16 (1 +8)" % F (2— o, 0,3 —a, (1+6)7")
—( =)L+ 8)"F (2—a,a,3—0a,6(1+6)7")},

where ) is the Hypergeometric function.

Proof: Observe that for any y > 0, P[SZ > (k + §)B]
can he decomposed as follows

PSP > (k+ 6)B]
=P[SE > (k+6)B, max Y2 <y
+ nlP [‘~-n > (k+ 6)B,Y1 > y, max YzB < y]
2<i<n

" <Z>P[5’? > (k+6)B,Y{ >y,Y) >,
<
ax ¥ <y

n

+ (k+1)P[552(k+6)B,Y13 >y,

}1\+l >y, . m<ax< Y <y
+ P[SnB el (l" + 6)3 UlSi1<i2<< Likp2ln
YE>y¥P >y Y2, >l
(}:t PL)11+”P111 (2)P2n+
<I\ + 1>P(k+1)11 + P(L+2)n (6)

Now, let us choose 8 such that (k+1)/(k+2) <8 <1,
and y = BY. Then, for all sufficiently large B such
that I log B < 6B'~?, we have that nB? < 6B, which
implies

Pin =0

0<i<k. (7)

Next, the estimate of P;42)n follows from

IA

P( k42)n

o(({(B)

/B~ HEy a5 B — 0. (8)

To finish the proof we need to estimate Fj41)n. Ob-
serve that for any 0 < ¢ < 8 there exists sufficiently
large B:, such that for all B > B,

i Y2 <¢B

izk42

(9)

on the set {maxk+;<,<n B < y}. Hence, for B > B,

Pugin(B) = P[S7 > (k+8)B, Y >y,...,
V> e VP <
< PSP > (k+6—¢€)B]
B B
= FB(n)dn £B (yo)dyo
B(5-¢) B(1+6-¢)-y
B

[ P wadna. (o)
B(k+6—¢)—y1- -y
By upper bounding /() with its maximum value in the
interval [B(6 — €), B], and by changing the variables
yi = ;B 1 <i<k+ 1 we obtain
(maxp(s—a<o<n ()
P[Y < BJF+1BG:+D(a-1)
B k+1
~ B(i(c+1))(a—1)hk(‘S =),
as B — oc, where for the last asymptotic relation we
have used maxp(s-o<e<n l(2) ~ I(B) as B — o0,
which follows from Theorem 1.2.1, p. 6, [6]. Next,
by observing that hr(8) is continuous in é, by passing
¢ — 0 in (11) we obtain the asymptotic upper bound
P(k+1)n(B)B(k+1)("‘1)
I(B)F+1

<

P(k+1]71(B) hr(6 —¢)

(11)

lim sup
B—oo

< hi(6).
(12)

For the lower bound we observe that for sufficiently
large B (> Be)

(SPo1 > (k+8)B} C (V2 >, ..
which implies
> PP < B FIP [Py, 2 (k4 6)B
YIB >y, ... ,YEH > y]
PIYS < BB [SE,, 2 (b4 6)5]

k-1 (I0fBs o< U(2)) 1 hy(8)
P[Y < BJF+1B(-+1a-1)

1YI£}-1 >y},

P(k+1 n

Il

v

PlYE < B

I(BY*+1 Ay (6)

~ Buane-n & B

(13)

where in the
last relation we have used infgs<.<p l(z) ~ I(B), as
B — oc (Theorem 1.2.1, p. 6, [6]). Finally, by combin-
ing (12) and (13) we finish the proof of the theorem.
&

4 Asymptotic Queueing Behavior
Observe that queueing recursion (1) can be generi-
cally described as

Qn+1 Qn +An+1 ("n+l)+v (14)
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where {AZ AB n > 1} and {C,C,,n > 0} are two
independent i.i.d. sequences, and AP has a bounded
(truncated) support. Note that (14) represents the cus-
tomer waiting times in a GI/GI/1 queue.

Without loss of generality we can assume that for
any B >0

AB .= 4, 1(A, < B) + B1(4, > B),

where {A, Ap,n > 1} is an ii.d. process. Accord-
ing to the classical result of Loynes’ [28], under the
stability condition E4,, < EC},, recursion (14) admits
a unique stationary solution, and for all initial condi-
tions P[Q2 < 2] converges to the stationary distribu-
tion P[QP < 2]. For the rest of this paper we will
assume that all the queueing systems under considera-
tion are in their stationary regimes. When B = oo we
denote @ simply as @.

Theorem 2 IfE(A —~ C) < 0, for all n > 0, P[C >
] <e " 5 >0, and A has a regularly varying distri-
bution P[A > 2] = l(z)/z*, & > 1, then

he(8)(1+o(1)) U(B)F+

(EC — EA)k+1 B(k+1)(a—1%i5)

as B — oo, where h(6),0 < é < 1,k =0,1,2,... are
explicitly computable from (3).

P[QP > (k+6)B] =

Remark: If £ = 0 and § & 1, i.e., the buffer size
b = éB i1s much smaller then the truncation point B
then by (4), as intuitively expected, Theorem 2 gives
approximately the same result as Cohen’s (or Pakes’)
result.

Initially, we assume that A and C are integer valued,
and that the distribution of C' has a bounded support
P[C<e=1,c< .

By using a well known connection between the queue
length distribution and the supremum of the corre-
sponding random walk with increments X2 = AP —
(', [15], Chapter XII, (or [33], Section 24) the prob-
ability generating function ¢2(z) of QP can be repre-
sented as

1-4%(1)
1- g+(z)

where gf(z) = Zio gfiz" is the generating function of
an ascending ladder height random variable for which
98 (1) < 1iff EXP < 0. Equation (16) can be written
in its equivalent form

¢P(z2) = (16)

¢ =(1-g%) ZgB*k, (17)

where gf;*k represents the k-fold convolution of gZ;.

Lemma 2 If P[A > 1] is regularly varying, P[C' <
el =1,¢ < 0o, and EA < EC, then for every € > 0,
there exist constants Ki(e), Ka(€), such that for all
B > Ny(€) + Ka(e), i € [K1(e), B]

1 .
g+z_ U‘+ )E[;gﬂéi pi>7L
and fori € [K1(€), B — Ks(€)]
o> -0t Wpras g

Proof: Due to space limitations this proof is given in
{19]. &
Proof of Theorem 2: Let {V,®,n > 1} be a se-
quence of random variables distributed as P[Y;? =i] =

g8 /¢B(1). and let S = 3" | Y. Then, from (17)
PlQY > (k +5)B] (18)
=(1-4¢5(1) Z (gB(1)*P[SE > (k + 8)B].
n=k+1

Next, observe that due to the stability condition EA <
EC

: B
Jim P (1) =g4(1) < 1. (19)
Hence, we can choose K sufficiently large such that for
n(B) = |\ log B|
o
Z //+ )P [ > (k+ 8)B]
n=n(B)
< leZ )™
~ (1-g8(1)

I(B)Ic+1 )
- (B(k+1)(a 1>) (20)

Thus, by using stochastic dominance, Lemma 2, Theo-
rem 1, (19) and estimate (20) we conclude that for any
€1 > 0 and all sufficiently large B > B, the infinite
sum in (18) is bounded with

P[QZ > (k+ 6)B]

_ k41
S (1 + 61)(1 - g+(1)) ( ((11)(Eg’+£11)£i()%)a—] )
X Z (9+(1

(21)
> o 3)

g+(1)F+!

S (g (L L 1) TR

n=hk+1

Finally, by replacing

(22)
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in (21) and by passing ¢; to 0 we obtain
B(a-l)(k+1)
hi(8)
= (EC — EA)k+1°
In a very similar way one can obtain a lower bound
Bla=1)(k+1)

I(B)k+1

hk((S) .

= (BEC — EA)k+1°
we skip the details. Finally, the combination of (23)
and (24) concludes the proof for the case of A and C
integer valued and C' bounded.

Due to the space constraint the remainder of the
proof is presented in the extended version of this paper
[19] (all of the numerical examples presented in the
following section will have A integer valued and C' = 1).

&

5 Numerical Results

In this section we illustrate with numerical examples
the accuracy of our main result (Theorem 2) in approx-
imating the queue length distribution with truncated
heavy-tailed arrivals.

The following examples are based on a discretized
version of the scenario described by equation (1) for
the case ¢ = 1,7 = 1, i.e., we assume that the flows of
size 728 arrive instantaneously according to a Poisson
process. For numerical purposes we consider a discrete
(slotted) time approximation of a Poisson process in
which arrivals per slot are indicated with {I,,n > 0}
Bernoulli i.i.d. sequence (independent of °*8) with
success probability P[I, = 1] = 1 - P[I, = 0] = p;
I, = | indicates that flow of size 72F arrives in a
particular slot. Then, the evolution of the queue per
one time slot is given by

QP = @+ 7LD (25)
Note that in this system the inter arrival time of flows is
geometric with parameter p; this approximates well the
exponential interarrival times of the Poisson process.
For simplicity we define AZ = r2%8[ . AP is a trun-
cated heavy-tailed random variable with support [0, B].
Let p? = EAZ and let ap(z) = Y2, 7aB,df =
P[A2 = {] be a probability generating function (pgf) of

limsup P[Q2 > (k + 6)B]

B—co

(23)

lim infP[QE > (k + 6)B]

(24)

AB Similarly, let ¢p(2) = Sto, 2¢2, ¢f = P[AE =]
be a pgf of Q2. Then,
L _(Q=-PE-1
‘IB(‘)— Z—(ZB(Z) . (26)

Using Mathematica 2.2 we will invert (26) and com-
pare it to the approximation suggested by equation

Log (10, Prig>x})
)

(15), Theorem 2. We will choose 7B to be truncated
Pareto distribution, i.e.,

= i] =
where d is a normalization constant, and

roB = ponqfron < B] + B1[r°" > B].

d

on
Pir oy

i>1,

Then, «f =1 - p and

B _ pd .
a; = aF 1<i<B-1
0
i
Lt
Ty
\,
4 —_g
. ———
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Figure 2: Ilustration for Example 1.

Example 1 For the choice of arrival parameters B =
300, = 2.8,p = 0.3, we compute d = 1/((a +
1) = 0.273345, where ((z) is Zeta function. Next,
al = 07,¢f = pdfi*t']1 < i < B-1d8 =
1- Z?:_Ol ai, p? = 0.34086. For these values we nu-
merically invert (26); the exact inverted values of
P[Q® > ] are plotted with a gray line in Figure 2.
The values of approximation (15) are plotted on the
same figure with dashed black lines. From the fig-
ure we can easily see that the approximation is al-
most identical to the exactly computed probabilities.
Furthermore, if QB (6) denotes our approximation and
QB (8) := P[QP > (k + 6)B), then the relative error
er(8) 1= |QB(8) — QB (6)|/QE(8) is presented in Fig-
ure 3; from the figure we observe that for buffer sizes
z € [60,267]U [309, 582] the relative approximation er-
ror is smaller than 1%!

Example 2 Here, we choose B = 300, = 3.5,p =
0.88. Then, d = 0.83435, ag = 0.12, af = pd/i*t' 1 <
i < B—1, pP =0.9400. An excellent agreement be-
tween the approximation is evident from Figure 4 (sim-
ilarly, as in the preceding experiment, the gray line
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Figure 3: Illustration for Example 1.

represents the exact values and black dashed lines rep-
resent the approximation).

6 Conclusion

In this paper, we have shown that heavy-tailed dis-
tributions present a natural mathematical framework
for the investigation of flow separation. The increasing
expected residual life time of heavy-tailed distributions
is used to optimize the design of a threshold for the flow
separation.

Our main result (Theorem 2) gives an explicit
asymptotic characterization of an intriguing behav-
ior of the queue length distribution that results from
queueing short (truncated heavy-tailed) flows. Infor-
mally, this distribution on the log scale resembles a
stair-wave function that has steep drops at specific
buffer sizes. This has important design implications
suggesting that negligible increases of the buffer size in
certain buffer regions can decrease the overflow prob-
abilities by order of magnitudes. These steep drops of
the queue overflow probability represent the increased
multiplexing gain of the short flows.

Besides its applicability to the flow separation prob-
lem, the investigated framework is of independent in-
terest for other networking scenarios where truncated
heavy-tailed distributions might arise.
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