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1 Introduction 

Requests for a resource arrive at rate A, each request specify- 
ing a future time interval, called a reservation interval, to be 
booked for its use of the resource. The advance notices (de- 
lays before reservation intervals are to begin) are independent 
and drawn from a distribution A(z). The durations of reser- 
vation intervals are sampled from the distribution B(z) and 
are independent of each other and the advance notices. We let 
A and B denote random variables with the distributions A(z) 
and B(z) (the functional notation will always allow one to 
distinguish between our two uses of the symbols A and B). 

The following greedy reservation policy was analyzed in [3]: 
A request is immediately accepted (booked) if and only if the 
resource will be available throughout its reservation interval, 
i.e., the resource has not already been reserved for a time pe- 
riod overlapping the requested reservation interval. In [3], the 
authors compute an efficiency measure, called the reservation 
probability, which is the fraction of time the resource is in use. 

This paper studies the reservation probability for a more gen- 
eral greedy policy of threshold type that is defined by two pa- 
rameters s and ~-. If a request has an advance notice less than 
s or a duration exceeding T, then the threshold policy makes 
an attempt to book it under the greedy rule; otherwise, it is 
rejected even if it could have been accommodated. Our main 
result is an expression for the asymptotic reservation proba- 
bility as s --r oo and the advance-notice distribution becomes 
progressively more spread out, 

The above result relates asymptotics of reservation policies 
to asymptotics of interval packing policies, a connection first 
studied in [3]. In the interval packing problem [1], intervals 
arrive randomly in R~_ according to a Poisson process in the 
two dimensions representing arrival times t and the left end- 
points of the arriving intervals. Interval lengths are i.i.d., and 
since we will map them to reservation intervals, we let their 
distribution also be denoted by B(z). The intensity is 1, i.e., 
an average of one interval arrives per unit time per unit dis- 
tance. For a given x > 0, an arriving interval is packed (or 
accepted) in the 'containing' interval [0, x] under the greedy 
algorithm if and only if it is a subinterval of [0, x] and it does 
not overlap an interval already accepted. The problem is to 
find, or at least estimate, the function K(t, x), which is the 
expected total length of the intervals accepted by the greedy 
policy during [0, t], assuming that none has yet been accepted 
by time 0 ([0, x] is initially empty). 

Estimates of K(t, x) were obtained in [3] from its Laplace 
transform K:(t,u); these results are special cases of the cor- 
responding results for the threshold packing policy with pa- 
rameters s, r. The threshold packing policy extends greedy 
interval packing much as we extended the greedy reservation 
policy: An interval is processed by the greedy packing al- 
gorithm if its length is at least T or if it arrives no sooner 
than s; otherwise, it is rejected. The next section exhibits 
the Laplace transform of Hr (s, t, x), the expected total length 
of the intervals accepted dunng [0,t], t >_ s, by the thresh- 
old packing policy with parameters s, T. Note that thresh- 
old packing reduces to simple greedy packing if T = 0 or 
if s = 0. The formulas in the next section will verify that 
K(t,x) = Ho(t,t,x). 

As noted in [3], there are many potential applications covered 
by models like ours. However, relatively new applications in 
existing and proposed communication systems, e.g., telecon- 
ferencing and video-on-demand systems, have given a fresh 
impetus to research on reservation systems. Previous work 
in the communications field is quite recent and focuses more 
on engineering problems than mathematical foundations; past 
research has dealt with the implementation issues of incorpo- 
rating distributed advance-notice reservation protocols in cur- 
rent networks, and with the algorithmic issues concerned with 
well utilized resources in reservation systems (see [3, 4, 5] 
for many references). For the analysis of mathematical mod- 
els different from our own, see the work of Virtamo [5] and 
Greenberg, Sdkant, and Whitt [4]. 

2 Threshold interval packing 

Let b~. := E B -  I (B > r),  b(r 2) := E B  2- I (B  > T), andp = 
Pr := P ( B  > ~-). Denote by Lr (s, t, x) the total length of the 
intervals packed at time t > s in [0, x], and let Hr (s, t, x) := 
ELr(s,t ,x).  

We compute the rate of change of Hr(s,t,x) with respect 
to s for x > d by expressing H~.(s + As, t,x) in terms 
of H~ (s, t, x) and the events occurring in the time interval 
[0, As]. On doing so, rearranging the recurrence and taking 
the limit A ~ 0, we obtain the integro-differential equation 

0Hr(s,t,z) 
Os 

- ( p x  - + - 

+ 2 d B ( z )  (1 )  



Note the boundary condition K(t ,x)  = Ho(t,t,x), the 
known result for the simple greedy rule. Note also that the 
effect on (1) of putting T = 0 is confined to constants de- 
pending only on T. Thus, exactly the same analysis for 
K in [3] can be applied to Hr here. We introduce the 
transforms 7-lr(s,t,u) := f ~  e-UZHr(s, t ,x)dx,  Br(u) := 

fr d e-UZdB(z), and then transform (1) to obtain a pde whose 
solution is readily found to be 

1/o" 7-lr(s,t,u) = ~ C r ( s - z , t , u + p z ) ~ r ( u , p z ) d z  (2) 

u ps 
+ ~ lC( t - s ,u+ps )gr (u ,ps ) ,  x>_d, 

where ~ ( u , v )  := exp (brv - 2  Jufu+v 1-Bff(V)dy) , and 

where Cr (s, t, u) is the transform of a well-behaved function 
easily computed by a recursive procedure. (See the expanded 
version of the paper [2] for details.) As illustrated below, ex- 
plicit expressions are available for simple distributions B (.). 

Estimates of Hr.  Leading-term asymptotics in x are given 
by the following result, in which 

£ ar(s,t)  := Or(s -  z,t,pz)Gr(pz)dz 

+ E(t,ps)(ps)26r(ps). (3) 

Theoreml For any s > O, t _> O, H(s , t , x )  
a r ( s , t ) x  as z ~ o o .  

Proofsketch: One first verifies that the functions C~-, Gr, and 
/C are such that ~ r  in (2) satisfies ~r(s , t , u )  ~ ar(s , t ) /u  2 
as u ,1, 0.. An application of Karamata's Tauberian theorem 
and routine manipulations then proves the theorem. 1 

Example 1: Consider the case where interval lengths have 
only the values 1 or 2, with probabilities P ( B  = 2) = 1 - 
P ( B  = 1) = q. Computations give 

( [U+Vl-qe-2~ ) 
G ( u , v ) = e x p  2 q - 2  ~ dy , J~ 

and 

Cr = 2qe -2u l + u 
u u + ( 1 - p ) t  ]]  

from which we obtain E(t,  u) and hence an explicit integral 
formula for a(a, t) in (3) that we can evaluate numerically. 

For t = 7, p = 0.4, we used Mathematica to compute the 
curve for at(s,  10 - s). The threshold algorithm is strictly 
better than the greedy policy (at (0, 10)) for a large range of 
values of the threshold parameter s. • 

the Laplace-transform inversion formula for 7-/r. This gives 
the main result needed for the limit law of the next section, 

Theorem 2 For anyfixed ~,T > 0 with ~ > 2T > O, there 
exists a constant % ( t), such that 

sup I H r ( t l , t 2 , x )  - ( a r ( t ) x  + %-(t))l = OCe-~X). 
O<tx,ta<T 

3 Advanced-notice limit law 

Let the advance notice distribution be uniform on [0, a] and 
for a given 5, (0 < 5 < 1) consider the threshold reserva- 
tion policy: If the advance notice of a request is in [Sa, a] 
and the duration requested is less than a given "r, then the re- 
quest is rejected. Otherwise, it is processed according to the 
greedy reservation policy (i.e., it is accepted if does not over- 
lap a time interval already reserved). Let Pa(A,'r,5) denote 
the reservation probability, i.e., the stationary probability that 
the resource is in use. 

Theorem 3 As the support of the advance notice distribution 
tends to infinity (a --> cx~), we have the asymptotic reservation 
probability Pa (A, ~, 5) ,'~ ar (SA, A). 

The proof follows the approach used in [3] to establish the 
analogous result for the simple greedy policy. 
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In order to obtain higher-order error terms, we use complex 
analysis and the Canchy residue theorem to evaluate directly 
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