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Abstract

Consider an aggregate arrival process AN obtained by multiplexing N on-off processes
with exponential off periods of rate λ and subexponential on periods τon. As N goes
to infinity, with λN → �, AN approaches an M/G/∞ type process. Both for finite
and infinite N , we obtain the asymptotic characterization of the arrival process activity
period.
Using these results we investigate a fluid queue with the limiting M/G/∞ arrival
process A∞

t and capacity c. When on periods are regularly varying (with non-integer
exponent), we derive a precise asymptotic behavior of the queue length random variable
QP

t observed at the beginning of the arrival process activity periods

P[QP
t > x] ∼ �

r + ρ − c

c − ρ

∫ ∞
x/(r+ρ−c)

P[τon > u] du x → ∞,

where ρ = EA∞
t < c; r (c ≤ r) is the rate at which the fluid is arriving during an on

period. The asymptotic (time average) queue distribution lower bound is obtained under
more general assumptions regarding on periods than regular variation.
In addition, we analyse a queueing system in which one on-off process, whose on period
belongs to a subclass of subexponential distributions, is multiplexed with independent
exponential processes with aggregate expected rate E et . This system is shown to be
asymptotically equivalent to the same queueing system with the exponential arrival
processes being replaced by their total mean value E et .

Keywords: Non-Cramér type conditions; subexponential distributions; long-tailed
distributions; long-range dependency; network multiplexer; fluid flow queue; M/G/∞
queue
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1. Introduction

The problem of multiplexing on-off sources arises frequently as the basic model of con-
tention in multimedia communication systems, as well as in some storage systems. More
specifically, in modern multimedia communication networks, such as ATM, various calls
are simultaneously established among the different source-destination pairs. These calls are
usually discretized/packetized. An individual call/source can be either active, in which case it
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transmits a packet, or silent, i.e. there is no transmission. Therefore, each source can be viewed
as an on-off process. Along their routes, sources that are simultaneously active share common
network resources: bandwidth, buffer space, computational power, etc. The fundamental
building blocks for sharing bandwidth and buffer space are network multiplexers (MUX).
Sharing of common network resources may lead to quality of service (QOS) degradation for
individual flows. Therefore, it is important to have computationally efficient algorithms for
evaluating QOS measures under all possible traffic loads. A first step towards a satisfact-
ory solution to this problem is understanding network MUX units in isolation. The most
fundamental mathematical model of a network MUX is an infinite buffer queue loaded with
multiplexed on-off arrival processes; the main QOS performance measure for this queueing
system is the buffer occupancy probability distribution.

The problem of multiplexing dates back to [21, 50]. In [21], Cohen obtained a complete
Laplace transform solution to this problem! More recently, he revisited this problem in [22].
However, inverting the Laplace transform is usually a very tedious process. Hence, invest-
igating computationally tractable exact and approximate solution techniques are needed. For
Markovian fluid on-off processes a thorough investigation of this problem was made in [3].
Many other results for multiplexing Markovian on-off processes followed. These led to the
Equivalent Bandwidth theory for Markovian, or, in general, exponentially bounded arrival
processes; extensive references can be found for example in [24, 25, 27].

Recently statistical analysis has increasingly shown that the traffic streams in modern broad-
band networks exhibit long-tailed/subexponential characteristics. For Ethernet traffic such res-
ults were examined in [41]. These statistical results have stimulated research in queueing ana-
lysis under the heavy-tailed (non-Cramér) assumptions. Queueing analysis with self-similar
long-range dependent arrival processes appears in [24, 42, 44, 46, 48, 51]. Recently, long-
tailed characteristics of the scene length distribution of MPEG video streams were explored in
[29, 30, 35, 36].

Parallel to the modeling approach through self-similar long-range dependent processes,
a more analytically tractable approach using fluid renewal type models in which renewal
times are long-tailed has been explored in [2, 28]. Queueing results in these two papers
rely on the classical result by Pakes [45] on the subexponential asymptotics of the waiting
time distribution in a GI/GI/1 queue or on earlier work of Cohen [20] which considered a
regularly varying GI/GI/1 queue.

The result of Pakes has been generalized to a Markov modulated setting [6, 34]. In [6] the
subexponential asymptotics of a Markov modulated M/G/1 queue was investigated. Work in
[34] further generalized these results to Markov modulated G/G/1 queues. In the same paper
it was shown that a subexponential GI/GI/1 queue is invariant under Markov modulation. In
other words, a subexponential Markov modulated G/G/1 queue has the same asymptotics as
the corresponding GI/GI/1 queue. These results made possible the analysis of a subexpo-
nential semi-Markov fluid queue [34]. Further generalizations of the result in [34] to arrival
processes with a more complex dependency structure were investigated in [7]. Asymptotic
expansion refinements of Pakes’ result can be found in [1, 53].

The analysis of a fluid queue in which more than one long-tailed process is multiplexed
appears to be a very difficult problem. This is due to the fact that the renewal structure of
an aggregate arrival process may be very complex, although the appearance of each individual
process may be truly innocuous (like an on-off process). The complex autocorrelation structure
of the aggregate process obtained by multiplexing long-tailed on-off processes has been ex-
amined in [28]. General bounds for multiplexing long-tailed fluid processes have been derived
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in [15]. In [12] a limiting case of an infinite number of on-off processes with regularly varying
on distribution has been investigated. In the same paper (see also [13]) a case of two processes,
one of which had regularly varying on periods and the other had exponential on periods, has
been solved. A similar scenario with intermediately regularly varying on periods has been
examined in [49]. The literature does not explicitly give precise asymptotic results for the case
of multiplexing two or more long-tailed processes.

From a mathematical point of view the new results in this paper were achieved through
the combination of the theory of subexponential distributions, renewal theory, Karamata’s
theory and the utilization of sample path arguments. From an engineering standpoint this
paper advances two important results. The first result intuitively states that when a process
with subexponential characteristics, e.g. MPEG video, is multiplexed with a process that has
exponential characteristics, e.g. voice, the contribution to the large buffer asymptotics of the
exponential processes is reflected only through their mean values. This result suggests that,
under appropriate conditions, for admission control of both VBR video and voice streams, the
voice streams need to be characterized only by their mean values. The second result is an
accurate approximation with low computational complexity of the large buffer probabilities
of finitely many subexponential on-off processes. Besides accuracy, it is of special import-
ance for engineering the MUX that this approximation has basically negligible computational
complexity. To the best of our knowledge, this is the only result in literature of comparable
computational complexity that is both proven theoretically and demonstrated experimentally as
a good approximation for the buffer overflow probabilities with multiplexed long-tailed arrival
streams. For the experimental verification of this asymptotic approximation see [31, 32, 33].

The rest of the paper is organized as follows. Section 2 contains necessary definitions
and examples of long-tailed and subexponential distributions. In Section 3 we examine the
aggregate arrival process obtained by multiplexing N independent and identically distributed
on-off processes. For this process we derive the asymptotic relation between the distribution of
its activity period and the distribution of on periods of individual processes. Using Karamata’s
theory for the case when on periods are regularly varying with non-integer exponent, we obtain
a precise asymptotic behavior of the server overflow distribution during the arrival process
activity period. Using these asymptotic relations, in Section 4, we derive several results for
the fluid queue asymptotics of multiplexed long-tailed processes. The paper is concluded in
Section 5.

2. Long-tailed and subexponential distributions

This section contains necessary definitions of long-tailed and subexponential distributions.
For convenience, we give some basic results on these distributions in Appendix A.

Definition 2.1. A distribution function F on [0, ∞) is called long-tailed (F ∈ L) if

lim
x→∞

1 − F(x − y)

1 − F(x)
= 1, ∀y ∈R. (2.1)

Definition 2.2. A distribution function F on [0, ∞) is called subexponential (F ∈ S) if

lim
x→∞

1 − F∗2(x)

1 − F(x)
= 2, (2.2)
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where F∗2 denotes the second convolution of F with itself, i.e.

F∗2(x) =
∫

[0,∞)

F(x − y)F(dy).

The class of subexponential distributions was first introduced by Chistyakov [14]. The
definition is motivated by the simplification of the asymptotic analysis of convolution tails.
One of the best known examples of distribution functions in S (and L) are functions of regular
variation R−α (in particular Pareto family); F ∈ R−α if it is given by

F(x) = 1 − l(x)

xα
α ≥ 0,

where l(x) : R+ → R+ is a function of slow variation, i.e. limx→∞ l(δx)/ l(x) = 1, δ > 1.
These functions were invented by Karamata [37] (the main reference book is [11]). The other
examples include lognormal and some Weibull distributions (see [39, 34]).

3. Analysis of the aggregate arrival process

This section consists of two parts. The first part is contained in Section 3.1, where we
asymptotically relate the tail of the activity period distribution of an aggregate arrival process,
obtained by multiplexing independent and identically distributed on-off processes, and the tail
of the on period distribution of the individual on-off processes. The main results are given in
Theorem 3.3 and Theorem 3.5. In the second part, Section 3.2, using Karamata’s theory we
derive the asymptotic behavior of the distribution of the queue increment during the arrival
process activity period. In Section 4, these results will be used to obtain asymptotic queueing
results.

More formally, consider two independent sequences of i.i.d. random variables {τ off
n , n ≥ 0},

{τ on
n , n ≥ 0}, τ off

0 = τ on
0 = 0. Define a point process T off

n
def= ∑n

i=0(τ
off
i + τ on

i ), n ≥ 0; this
process will be interpreted as representing the beginnings of off periods in an on-off process.
Further, define an on-off process at with rate r, as

at = r if T off
n − τ on

n ≤ t < T off
n , n ≥ 1,

and at = 0, otherwise. For the rest of the paper, unless otherwise specified, we will assume
that τ off

n is exponentially distributed with parameter λ, i.e., P[τ off
n > t ] = e−λt , t ≥ 0. Also,

τ on
n is assumed to have a finite mean. Steady state probabilities of this process are given as

π0 = limt→∞P[at = 0] = 1/(1 + λEτ on) = 1 − π1, where π1 = limt→∞P[at = r]. Let
AN = ∑N

1 ai , be an aggregate arrival process obtained by multiplexing N independent and
identically distributed on-off processes ai , 1 ≤ i ≤ N .

3.1. Asymptotic behavior of the aggregate process activity period

The central idea of this section is to relate the rate of convergence of P[at = 0] to its
steady state and the tail of its on period (Section 3.1.1). Then, the rate of convergence for the
aggregate process is easily computable from P[AN

t = 0] = (P[at = 0])N ; from here one can
refer back and relate P[AN

t = 0] to the tail of its activity period distribution (Sections 3.1.2
and 3.1.3).

3.1.1. Single on-off process: convergence to steady state. Let us now investigate the speed of
convergence of P[at = 0] to its steady state. For that reason we define a transient function
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Ftr(t)
def= P[at = 1]/π1; notice that Ftr(0) = 0 and limt→∞ Ftr(t) = 1. Therefore, if Ftr(t)

is monotonic, it will represent a proper probability distribution function, in which case we
call it the transient probability measure. To simplify the notation, throughout the rest of the

paper, for any distribution F we define its tail function as F̄(x)
def= 1 − F(x); in addition, if

F has a finite mean m
def= ∫ ∞

0 F̄(x) dx , we denote its integrated tail distribution as F1(x)
def=

m−1
∫ x

0 F̄(u) du. In the following theorem we use a class of subexponential distributions
named Sd . For all practical purposes F ∈ Sd is virtually the same as F ∈ S. A precise
definition of Sd is given in Definition A.1.

Theorem 3.1. Let F be a distribution of τ on with Eτ on < ∞ and let τ off be exponentially
distributed with parameter λ. Then, the Laplace–Stieltjes (LS) transform of the transient
function is given as

F̃tr(s) = s
∫ ∞

0
e−st Ftr(t) dt = (1 + λEτ on)F1(s)

1 + λEτ on F1(s)
. (3.1)

If F1 ∈ S and λEτ on < 1, then

F̄tr(t) ∼ 1
1 + λEτ on F̄1(t) as t → ∞. (3.2)

If F ∈ Sd and λEτ on < 1, then (3.2) holds, and the density function ftr(t)
def= dFtr(t)/dt

satisfies

ftr(t) ∼ 1

1 + λEτ on

F̄(t)

Eτ on
as t → ∞. (3.3)

Proof. Equation (3.1) follows directly from equation (2.1.3) in [21], and the observation
that F̃1(s) = (1 − F̃(s))/(sEτ on). The asymptotic relation in (3.2) is a direct consequence of
Theorem A.1, and the fact that for all λEτ on < 1 equation (3.1) implies

F̄tr(t) = (1 + λEτ on )

∞∑
n=1

(−λEτ on )n−1 F∗n
1 (t). (3.4)

Similarly, equation (3.3) follows by differentiation of the equation above and Theorem A.2.
This finishes the proof of the theorem.

For the remainder of this paper, it is of special interest to find sufficient conditions under
which the transient function Ftr(t) is a proper distribution function, i.e. monotonic. One set of
sufficient conditions, for the case when off periods are large, is given in the following theorem.
This is typically satisfied when there are a large number of processes with a small average
arrival rate.

Theorem 3.2. Let F be a distribution of τ on with Eτ on < ∞ and let τ off be exponentially
distributed with parameter λ. For any fixed F ∈ Sd , there exists a λ0 > 0, such that for all
λ < λ0, Ftr(t) ≡ Fλ

tr (t) is a probability distribution function, i.e., ftr(t) ≥ 0, t ≥ 0.
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Proof. Differentiation of (3.4) gives

ftr(t) = (1 + λEτ on )

∞∑
n=1

(−λEτ on )n−1 f ⊗n(t)

= (1 + λEτ on )

(
f (t) − λEτ on

∞∑
n=2

(−λEτ on )n−2 f ⊗n(t)

)

≥ (1 + λEτ on )

(
f (t) − λEτ on

∞∑
n=2

(λEτ on)n−2 f ⊗n(t)

)
,

where f (t) = F̄(t)/Eτ on . Now, by applying Lemma A.5(i), for ε > 0,

Eτ on
∞∑

n=2

(λEτ on )n−2 f ⊗n(t) ≤ Eτ on Cε(1 + ε)2 f (t)

1 − (1 + ε)λEτ on
def= C′

ε f (t)

1 − (1 + ε)λEτ on ,

for some Cε , C′
ε > 0, and all λ < 1/(Eτ on(1 + ε)). Therefore,

ftr(t) ≥ (1 + λEτ on) f (t)

(
1 − λC′

ε

1 − (1 + ε)λEτ on

)
≥ 0,

for all λ ≤ 1/(Eτ on (1 + ε) + C′
ε ). This concludes the proof of the theorem.

3.1.2. Finite number of processes. In this section we consider an aggregate process AN
t that

is obtained by multiplexing N independent on-off processes, i.e. AN
t = ∑N

i=1 ai
t , where ai

t
are independent and identically distributed on-off processes. Note that the indicator process
1(AN

t = 0) is an on-off process with exponentially distributed off periods with parameter Nλ.
Let {I N,off

n , I N,on
n , n ≥ 1} be the lengths of the nth off and on periods in the indicator process

1(AN
t = 0), respectively. In the following theorem we characterize asymptotically the tail of

the distribution function of I N,on
n . Observe that the steady state probability of the aggregate

process being in state 0 is given by �0 = π N
0 .

Theorem 3.3. Assume that λ < λ0, where λ0 is the same as in Theorem 3.2 (or thatP[at = 0]
is monotonic, and λEτ on < 1). If F ∈ Sd , then∫ ∞

t
P[I N,on > u] du ∼ (1 + λEτ on )N−1

∫ ∞

t
P[τ on > u] du as t → ∞, (3.5)

and

P[I N,on > t ] ∼ (1 + λEτ on)N−1
P[τ on > t ] as t → ∞. (3.6)

Proof. From the definition of Ftr(t) and Theorem 3.1 it follows that

P[ai
t = 0] = π0(1 + π1 F̄1(t) + o(F̄1(t))), 1 ≤ i ≤ N ,

where π0 = 1 − π1 = 1/(1 + λEτ on ), and F1 is the integrated tail distribution of F . This
implies that

P[At = 0] = P[ai
t = 0]N = π N

0 (1 + Nπ1 F̄1(t) + o(F̄1(t))) as t → ∞.
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Therefore, the transient function Ftr,N (t) satisfies the following asymptotics

F̄tr,N (t)
def= 1 − P[AN

t = 1]
1 − π N

0

= P[AN
t = 0] − π N

0

1 − π N
0

∼ π N
0 Nπ1

1 − π N
0

F̄1(t) as t → ∞. (3.7)

By Theorem 3.2, for all λ < λ0, Ftr(t) is a distribution function, implying that P[ai
t = 0]

and P[AN
t = 0] are monotonic, which further implies that Ftr,N (t) is a probability distribu-

tion function. Here, let FN,1 be the integrated tail distribution of I N,on and F̃N,1 be its LS
transform. Then, as in (3.1), we obtain

F̃tr,N (s) = (1 + NλEI N,on)F̃N,1(s)

1 + NλEI N,on F̃N,1(s)
.

After simple algebra, it follows that

F̃N,1(s) = π N
0 F̃tr,N (s)

1 − (1 − π N
0 )F̃tr,N (s)

,

or, in the time domain

F̄N,1(t) = π N
0

∞∑
n=1

(1 − π N
0 )n−1 F∗n

tr,N (t). (3.8)

Now, F ∈ Sd implies F1 ∈ S (Theorem 1.1, [40]), which by (3.7), and Lemma A.3(ii), yields
Ftr,N ∈ S. Hence, by Theorem A.1 and (3.8) it follows that

F̄N,1(t) ∼ π−N
0 F̄tr,N (t) ∼ Nπ1

1 − π N
0

F̄1(t) as t → ∞, (3.9)

where the second asymptotic relation follows from (3.7). By substituting EI N,on = (1/π N
0 −

1)/(Nλ) in (3.9) we obtain∫ ∞

t
P[I N,on > u] du ∼ (1 + λEτ on )N−1

∫ ∞

t
P[τ on > u] du as t → ∞,

which proves (3.5).
In order to prove (3.6) we first determine the asymptotic behavior of ftr,N

ftr,N (t)
def= d

dt

P[AN
t = 1]

1 − π N
0

= d

dt

1 −P[at = 0]N

1 − π N
0

= d
dt

1 − (1 − π1 Ftr(t))N

1 − π N
0

= N

1 − π N
0

(1 − π1 Ftr(t))
N−1π1 ftr(t)

∼ π N
0 Nπ1

1 − π N
0

F̄(t)

Eτ on as t → ∞, (3.10)
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where the last asymptotic relation follows from (3.3). Next, by taking a derivative in (3.8) we
obtain

F̄N (t) = E I N ,on π N
0

∞∑
n=1

(1 − π N
0 )n−1 f ⊗n

tr,N (t), (3.11)

where FN (t) is the distribution function of I N,on. Finally, by applying Theorem A.2 we get

F̄N (t) ∼ E I N,onπ−N
0 ftr,N (t) as t → ∞,

which together with (3.10) yields (3.6).

3.1.3. Infinite number of on-off processes. In this subsection we analyse the limiting case of
an infinite number of on-off sources. First, we show that the aggregate process AN

t converges
in distribution to an M/G/∞ process A∞

t which we define as follows. Let Tn , n ≥ 0, T0 = 0,
be a Poisson process with rate �. Define A∞

t = ∑∞
n=1 r1(Tn ≤ t < Tn + τ on

n ), r > 0. Then
the following theorem holds.

Theorem 3.4. If Eτ on
n < ∞, and λN → � as N → ∞, then

AN
t

d⇒ A∞
t as N → ∞, (3.12)

where
d⇒ symbolizes convergence in distribution.

Proof. It is enough to prove that the beginnings of on periods in the process AN
t converge

to a Poisson process with rate �. This follows from a classical result on multiplexing a large
number of renewal processes [16, 23].

Lemma 3.1. The transient probability of the arrival process A∞
t being silent is given by

P[A∞
t = 0] = exp

{−�

∫ t

0
P[τ on > u]} du. (3.13)

Furthermore, if Eτ on < ∞, then limt→∞P[A∞
t = 0] = exp{−�Eτ on }.

Proof. Follows from Theorem 2.2 in [21].

Remark. Observe that A∞
t represents the number of customers in service in an M/G/∞

queue in which the customer service requirement has the same distribution as τ on and the
arrival rate is �. (For recent asymptotic results on M/G/∞ processes see [47].)

Note that Theorem 3.3 implies that

lim
N→∞
λN→�

lim
t→∞

P[I N,on > t ]
P[τ on > t ] = exp{�τ on}. (3.14)

However, this does not necessarily imply that we can interchange the limit and derive the
asymptotics of the activity period I∞,on in the A∞

t process. The following result gives the
asymptotic characterization of I∞,on and indeed shows that the limits in (3.14) can be inter-
changed.
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Theorem 3.5. The asymptotics of the distribution of I∞,on and its integrated tail are related
as follows:

(i) If F1 ∈ S, then∫ ∞

t
P[I∞,on > u] du ∼ exp{�Eτ on}

∫ ∞

t
P[τ on > u] du as t → ∞.

(ii) If in addition F ∈ Sd , then

P[I∞,on > t ] ∼ exp{�Eτ on }P[τ on > t ] as t → ∞.

Remark. For the case of τ on being regularly varying, P[τ on > t ] = l(t)/tα, 1 < α < 2,
this result was obtained in [12] where Karamata’s Tauberian/Abelian theorems was used to
asymptotically relate I∞,on and τ on.

Proof. As before, we define a transient probability distribution function

Ftr,∞(t)
def= P[A∞

t > 0]
1 − exp{−�Eτ on } .

Observe that this is a proper probability distribution function, i.e. it is monotonically increasing
from Ftr,∞(0) = 0 to limt→∞ Ftr,∞(t) = 1. Next, by using Lemma 3.1 we derive

F̄tr,∞(t) = 1 −
1 − exp

{
−�

∫ t
0 P[τon > u] du

}
1 − exp{−�Eτ on}

=
exp

{
−�

∫ t
0 P[τ on > u] du

} (
1 − exp

{−�
∫ ∞

t P[τ on > u] du
})

1 − exp{−�Eτ on}
∼ � exp{−�Eτ on}

1 − exp{−�Eτ on}
∫ ∞

t
P[τ on > u] du (3.15)

as t → ∞. Now, the Laplace transform of Ftr,∞ for any s ∈ R+ is given by

F̃tr,∞(s) =
∫ ∞

0
e−st dFtr,∞(t)

= s
∫ ∞

0
e−st Ftr,∞(t) dt

= s

1 − exp{−�Eτ on} E
∫ ∞

0
e−st 1(A∞

t > 0) dt

= s

1 − exp{−�Eτ on} E
∞∑

n=0

∫ ∑n+1
i=0 (I ∞,on

i +I ∞,off
i )

I ∞,off
n+1 +∑n

i=0(I ∞,on
i +I ∞,off

i )

e−st dt

= s

1 − exp{−�Eτ on} E
∞∑

n=0

exp

{
− s

(
I∞,off
n+1 +

n∑
i=0

(I∞,on
i + I∞,off

i )

)}

× (1 − exp{−s I∞,on
n+1 })

s

= �

1 − exp{−�Eτ on}
(1 − E exp{−s I∞,on})

s + � − �E exp{−s I∞,on} .



Multiplexing subexponential on-off processes 403

By solving the last equation in E exp{−s I∞,on} and putting γ = 1 − exp{−�Eτ on } (< 1), we
obtain

E exp{−s I∞,on} = 1 − s�−1γ F̃tr,∞(s)

1 − γ F̃tr,∞(s)
,

or equivalently

1 − E exp{−s I∞,on}
s

= �−1γ F̃tr,∞(s)

1 − γ F̃tr,∞(s)
.

Observing that (1 − E exp{−s I∞,on})/s is the LS transform of
∫ t

0 P[I∞,on > u] du we arrive
at

∫ t

0
P[I∞,on > u] du = �−1

∞∑
n=1

γ n(Ftr,∞)∗n(t), (3.16)

which in combination with (3.15) and the same arguments as in the proof of Theorem 3.3
yields the conclusion (i) of this theorem.

The proof of (ii) can be obtained in a similar manner by first deriving the asymptotic
behavior of ftr(t) and combining it with the derivative of (3.16); we omit the details.

3.2. Total server overflow during the activity period

Let Bn, n ≥ 1, be a sequence of random variables representing the total amount of fluid

that is brought to the system during the nth activity period, i.e., Bn = ∫ t e
n

tb
n

A∞
t dt , where

t b
n , t e

n , represent the beginning and end of the nth activity period, respectively. Further, define

Dc,n
def= Bn − cI on

n , 0 < c ≤ r; note that Dn ≡ Dc,n is a non-negative random variable. If we
imagine that A∞

t represents the rate at which the fluid is arriving to a fluid queue, and that c is
the constant rate at which the queue drains, then Dn represents the queue increment during the
nth activity period. In order to derive the queueing asymptotics, we first have to understand
the asymptotic behavior of Dn . Unfortunately, this is a much more difficult task than the
investigation of the asymptotic behavior of the activity period that we have done so far. For
that reason we are forced to work under much more restrictive assumptions with distribution
functions of regular variation. The method of proof for the following result will be through
Karamata’s Tauberian/Abelian theorems.

Theorem 3.6. Consider an M/G/∞ arrival process with on periods being regularly varying
P[τ on > x] = l(x)/xα , α > 1, where α is non-integer. If 0 < c ≤ r, then

P[Dc,n > x] ∼ exp{�Eτ on }P
[
τ on >

x

r + r�Eτ on − c

]
as x → ∞. (3.17)

Proof. Given in Appendix B.

Next, consider a stationary version of the arrival process

A∞,s
t =

∑
−∞<n<∞

r1(Tn ≤ t < Tn + τ on
n ),
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where Tn is a stationary Poisson process with rate �. Given that at time t = 0, the arrival
process is active (At > 0), denote by Dc(0) the total queue increment since the beginning of

the last activity period until time zero, i.e., Dc(0) = ∫ 0
tb
0
(A∞

t − c) dt, 0 < c ≤ r, where t b
0

represents the beginning of the activity period that is still active at t = 0.
Now, by Theorem 4.3 of [4, p. 64], it follows that the process {Tn + τ on

n , −∞ < n < ∞}
is also a stationary Poisson process with the same rate �. Therefore, the process A∞,s

t is

reversible. This implies that Dc(0) is equal in distribution to
∫ t e

0
0 (A∞

t −c) dt , where t e
0 represents

the end of the activity period that is active at t = 0. For simplicity reasons, we will refer to
both of these variables by Dc(0).

Conjecture 3.1. Consider an M/G/∞ arrival process with on periods being regularly
varying,P[τ on > x] = l(x)/xα , α > 1, where α is non-integer. If 0 < c ≤ r, then

P[Dc(0) > x] ∼ � exp{�Eτ on }
exp{�Eτ on } − 1

∫ ∞

x/(r+r�Eτ on −c)
P[τ on > u] du as x → ∞. (3.18)

Heuristics. We believe that the proof of this theorem can be done in the same spirit as the
proof of Theorem 3.6. Unfortunately, this seems to be very technical and for that reason we
do not attempt to provide a rigorous proof. Instead we give the following heuristics. From
Theorem 3.6 it follows that

P[Dc > x] ∼ P[I on(r + r�Eτ on − c) > x] as x → ∞. (3.19)

Based on this, one can expect that

P[Dc(0) > x] ∼ P[I on
(0)(r + r�Eτ on − c) > x] as x → ∞,

where I on
(0) is the residual activity time at time zero, which satisfies

P[I on
(0) > x] = 1/EI on

∫ ∞

x
P[I on > u] du

∼ 1/EI on e�Eτ

∫ ∞

x
P[τ on > u] du as x → ∞, (3.20)

where (3.20) follows from Theorem 3.5. Finally, (3.18) follows by combining (3.20), (3.19),
and E I on = (exp{�Eτ on } − 1)/�.

4. Queueing analysis

We begin this section with a classical result on subexponential asymptotics of a GI/GI/1
queue. The result was obtained by Pakes 1975 (see also Veraverbeke for the random walk ap-
proach to this problem). For extensions of this result to Markov-modulated M/G/1 queues see
[6], and to Markov-modulated G/G/1 queues (equivalently random walks) see [34]. Further
extension of these results to more general arrival processes was obtained in [7].

Let {An , n ≥ 0} and {Cn , n ≥ 0} be two independent sequences of non-negative i.i.d.
random variables that are driving a queueing process (Lindley’s recursion)

Qn+1 = (Qn + An − Cn)+, n ≥ 0, (4.1)
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where q+ = max(0, q). According to the classical result of Loynes [43] under the stability
condition EAn < ECn this recursion admits a unique stationary solution, and for all initial
conditions P[Qn ≤ x] converges to the stationary distribution P[Q ≤ x]. For the rest of
this paper we will assume that all queueing systems under consideration are in their stationary
regimes. Let G and G1 represent the distribution and its integrated tail distribution for An ,
respectively.

Theorem 4.1 (Pakes) If G1 ∈ S (or G ∈ Sd) and EAn < ECn , then

P[Qn > t ] ∼ 1
ECn − EAn

∫ ∞

x
P[An > u] du as t → ∞.

4.1. Fluid queue: preliminaries

The physical interpretation for a fluid queue is that at any moment of time t , fluid is arriving
to the system with rate at and is leaving the system with rate ct . We call at and ct the arrival
and the service process, respectively. Then, the amount of fluid Qt (also called queue length)
evolves according to

dQt = (at − ct ) dt if Qt > 0, or at > ct , (4.2)

and dQt = 0, otherwise. It is not very difficult to see that, starting from Q0 = 0, the solution
Qt , t ≥ 0, to (4.2) is given by

Qt = sup
0≤u≤t

∫ t

u
(av − cv) dv. (4.3)

And if at and ct are stationary, Qt is equal in distribution to

P[Qt ≤ x] = P

[
sup

0≤u≤t
Wu ≤ x

]
,

where Wt
def= ∫ 0

−t(au − cu) du, t ≥ 0. Now, whenever the stability condition Eat < Ect is
satisfied (by Birkhoff’s Strong Law of Large Numbers), P[Qt ≤ x] converges to a proper
probability distribution, i.e.

P[Q ≤ x] def= lim
t→∞P[Qt ≤ x] = P

[
sup

0≤u<∞
Wu ≤ x

]
.

Further, when the difference process xt
def= at − ct is driven by a stationary and ergodic point

process {Tn , −∞ < n < ∞}, i.e.

xt = xTn , t ∈ [Tn, Tn+1),

then the fluid queue process evolves as

Qt = (QTn − + (t − Tn)xTn )
+, t ∈ [Tn , Tn+1), (4.4)

where q+ = max(q, 0). From the recursion above, it is clear that the process Qt is essentially
the same as the G/G/1 workload process. Hence, by the fundamental stability theorem of
Loynes (see Chapter 2 in [9]) there exists a unique stationary process {Qs

t , −∞ < t < ∞}
(P[Qs

t ≤ x] = P[Q ≤ x]) that satisfies (4.4) (or equivalently (4.2)). In the rest of the paper,
whenever we refer to Qt , we will actually mean Qs

t . The existence and uniqueness of this
stationary solution will be important for establishing the relation between the Palm queue
probabilities and the time average probabilitiesP[Qt ≤ x].
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4.2. Fluid queue with a single on-off process

Consider a fluid queue with capacity c and an on-off arrival process with on arrival rate r.
In this subsection we assume that off periods are also general (not necessarily exponential). A
general storage model in a two state random environment was investigated in [38]. Then, if
we observe the queue at the beginning of on periods, the queue length QP

n evolves as follows
(P stands for Palm probability [9]).

QP
n+1 = (QP

n + (r − c)τ on
n − cτ off

n )+, n ≥ 0. (4.5)

Recall that F and F1 denote the distribution and the integrated tail distribution of τ on.

Theorem 4.2. If r > c, (r − c)Eτon < cEτoff , and F1 ∈ S (or F ∈ Sd), then

P[QP
n > x] ∼ r − c

cEτoff − (r − c)Eτon

∫ ∞

x/(r−c)
P[τ on > u] du as x → ∞. (4.6)

Proof. By defining An = (r − c)τ on
n and Cn = cτ off

n the theorem follows immediately from
Theorem 4.1.

4.2.1. Time averages. Here, we will compute queue time averages based on the queue Palm
probabilities computed in Theorem 4.2. For this we need a stationary version as

t of the on-off
arrival process at . Let T on

n , −∞ < n < ∞, be a stationary point process that represents the
beginnings of the on-off periods, with a convention that T on

0 < 0 ≤ T on
1 . Then, according to

[48], the random variable T on
0 can be represented as −T on

0 = B(τ off
(0) + τ on

0 ) + (1 − B)τ on
(0),

where the random variables B, τ on
(0), τ off

(0) are independent of {τ on
n , τ off

n , n ≤ −1}, τ off
0 , B is a

Bernoulli random variable with P[B = 0] = 1 − P[B = 1] = Eτ on/(Eτ on + Eτ off), and
τ on
(0), τ off

(0) , are distributed as integrated tail distributions of τ on, τ off, respectively. Furthermore,
the net increment of the load that comes to the queue in the interval [T0, 0] is given by the
following equation

∫ 0

T on
0

(as
t − c) dt = B[(r − c)τ on

0 − cτ off
(0)] + (1 − B)(r − c)τ on

(0) (4.7)

Before we present our result let us state the following well known lemma on long-tailed
distributions.

Lemma 4.1. Let X and Y be two independent non-negative random variables. If X ∈ L, then

P[X − Y > t ] ∼ P[X > t ] as t → ∞.

Proof. Follows easily from the definition of L.

Theorem 4.3. If r > c, (r − c)Eτon < cEτoff , and F1 ∈ S (or F ∈ Sd), then

P[Qt > x] ∼ P[QP
n > x] + 1

Eτ off + Eτ on

∫ ∞

x/(r−c)
P[τ on > u] du (4.8)

∼ K
∫ ∞

x/(r−c)
P[τ on > u] du as x → ∞, (4.9)
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where

K = r − c

cEτoff − (r − c)Eτon
+ 1

Eτ off + Eτ on
. (4.10)

Remarks. (i) This theorem improves on known results in [15, 48] that were obtained under
the assumption of τ on being regularly varying.
(ii) The following proof can be carried out to establish the relationship between the Palm and
time averages in much more general settings like semi-Markov fluid queues.

Proof. Let {Qt , −∞ < t < ∞} be a unique stationary solution to (4.5). Then, by using
equation (4.7), and the independence of B of QT0 , τ off

(0), τ on
(0), τ off

0 , we obtain

P[Q0 > x] = P[Q0 > x, B = 1] +P[Q0 > x, B = 0]
= P[QT0 + τ on

0 (r − c) − cτ off
(0) > x, B = 1] +P[QT0 + (r − c)τ on

(0) > x, B = 0]

= Eτ off

Eτ on + Eτ offP[QT0 + τ on
0 (r − c) − cτ off

(0) > x]

+ Eτ on

Eτ on + Eτ off
P[QT0 + (r − c)τ on

(0) > x]. (4.11)

(Note that QP
0 ≡ QT0 .) Since QT0 and τ on

(0) are independent, subexponential, and have asymp-
totically proportional tails, by applying Lemma A.3(ii) it follows that

P[QT0 + (r − c)τ on
(0) > x] ∼ P[QT0 > x] +P[(r − c)τ on

(0) > x] as x → ∞. (4.12)

Next, F1 ∈ L and Theorem 4.2 implies P[τ on
0 (r − c) > x] = o(P[QT0 > x]) as x → ∞,

which in conjunction with Lemma A.3(i) and Lemma 4.1 yields

P[QT0 + τ on
0 (r − c) − cτ off

(0) > x] ∼ P[QT0 > x] as x → ∞. (4.13)

Finally, by replacing asymptotic relations (4.12), (4.13), in (4.11), we obtain (4.8); combina-
tion of (4.6) and (4.8) gives (4.9). This completes the proof.

4.3. Multiplexing a long-tailed process with exponential processes

In this section we consider multiplexing one long-tailed on-off process with exponential
processes (see Definition 4.2 below) in a fluid queue. The important conclusion to be drawn is
that this queueing system is asymptotically interchangeable with a queueing system in which
the on-off process is arriving alone and the exponential processes are replaced by their mean
values. To reach this conclusion we need the following definition.

Definition 4.1. A distribution function F is intermediate regular varying (F ∈ IR) if

lim
δ↓1

lim inf
t→∞

F̄(δt)

F̄(t)
= 1.

Remark. For recent results on distributions of intermediate regular variation we refer the
reader to [19]. Some basic properties of IR are: IR ⊂ S; R ⊂ IR. Also, it is not very
difficult to see that IR ⊂ Sd . Therefore, all of the results that we have obtained up to now
apply for IR. In addition, directly from the definition it can be shown that if F ∈ IR and∫ ∞

0 F̄(t) dt < ∞, then F1 ∈ IR.
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Under the general large deviation Gärtner–Ellis conditions (see [52]) on the arrival process,
it can be proved that the queue length distribution is exponentially bounded. To avoid stating
Gärtner–Ellis conditions, we will define an arrival process et to be exponential, if whenever this
process is fed into a constant server fluid queue, the queue length distribution is exponentially
bounded.

Definition 4.2. We say that a stationary and ergodic arrival process et is exponential if for any
server capacity c > Eet there exist K ≡ K (c) and δ ≡ δ(c) > 0 such that

P

[
sup
t≥0

∫ 0

−t
(eu − c) du > x

]
≤ K e−δx .

Remark. The main examples when the conditions of this definition are satisfied, i.e. Gartnër–
Ellis conditions hold, are finite state space Markov chains or processes. Also, in terms of the
on-off processes the conditions will hold whenever the distribution of on periods is exponen-
tially bounded and off periods have a finite mean.

Recall that F and F1 represent the distribution and the integrated tail distribution of an on
period, respectively.

Theorem 4.4. Consider a single server queue with a capacity c and two independent arrival
streams et and at . Assume that et is an exponential process (as in Definition 4.2) and at is an
on-off process with rate r, F ∈ IR, and generally distributed off periods with a finite mean. If

E(et +at ) < c, r > c′ def= c −Eet , then the queue asymptotics of this queueing system is equal
to the queue asymptotics in which only the on-off process arrives and the server capacity is
replaced by c′, i.e. it is given by equation (4.9) in which c is replaced by c′.

Remark. (i) In [12, 13], a precise asymptotics of the embedded queue distribution was
obtained for multiplexing on-off sources, one of which had regularly varying on periods while
the others had exponentially distributed on periods. A similar setting with intermediately
varying on periods was investigated in [49]. However, in both papers the equivalence relation
of the original system to the system in which the exponential process is replaced by its mean
has not been observed. (ii) The assumption of et being exponential can be weakened to
P[supt≥0

∫ 0
−t(eu − c) du > x] = o(F1(x)), for all c > Eet , without any changes in the

proof.

Proof. Upper bound. For any ε > 0, we can make the following decomposition

Wt =
∫ 0

−t
(eu + au − c) du =

∫ 0

−t
(eu − Ee0 − ε) du +

∫ 0

−t
(au − (c − Ee0 − ε)) du

def= W e
t + W s

t .

Call cε
def= c−Ee0−ε. Observe that for all sufficiently small ε > 0, such that E(et +at )+ε < c,

P[supt≥0 W s
t ≤ x] represents the queue length distribution in a stable on-off queue with arrival

process at , and service capacity cε . This implies that P[supt≥0 W s
t ≤ x] ∈ IR (by using

Theorem 4.3).



Multiplexing subexponential on-off processes 409

Further,

P[Qt > x] = P

[
sup
t≥0

(W e
t + W s

t ) > x

]

≤ P

[
sup
t≥0

W e
t + sup

t≥0
W s

t > x

]

∼ P

[
sup
t≥0

W s
t > x

]
as x → ∞, (4.14)

where (4.14) follows from Lemma A.3(i), since supt≥0 W e
t and supt≥0 W s

t are two independent
random variables, withP[supt≥0 W e

t > x] = o(P[supt≥0 W s
t > x]) as x → ∞. Now,

lim
x→∞

P[supt≥0 W s
t > x]∫ ∞

x/(r−cε )
P[τ on > u] du

= Kε , (4.15)

where Kε is given by equation (4.10) in Theorem 4.3, with cε in place of c. Consequently, this
leads to

lim sup
x→∞

P[Qt > x]∫ ∞
x/(r−c′)P[τ on > u] du

≤ Kε lim sup
x→∞

∫ ∞
x/(r−cε )

P[τ on > u] du∫ ∞
x/(r−c′)P[τ on > u] du

. (4.16)

Finally, if we let ε → 0 in (4.16), we obtain

lim sup
x→∞

P[Qt > x]∫ ∞
x/(r−c′)P[τ on > u] du

≤ K ′, (4.17)

where K ′, similarly to Kε , is given by equation (4.10) in Theorem 4.3, with c′ in place of c.
This concludes the proof of the upper bounds.

Lower bound. For the lower bound we consider a different decomposition of Wt , i.e., we
redefine W e

t and W s
t as follows (ε > 0)

Wt =
∫ 0

−t
(eu + au − c) du = −

∫ 0

−t
(Ee0 − ε − eu) du +

∫ 0

−t
(au − (c − Ee0 + ε)) du

def= −W e
t + W s

t .

Also, redefine cε
def= c − Ee0 + ε. As in the upper bound case, for ε < Ee0 + Ea0 − c,

P[supt≥0 W s
t ≤ x] represents a queue length distribution in a stable on-off queue with arrival

process at , and service capacity cε . Hence, P[supt≥0 W s
t ≤ x] ∈ IR. Further,

P[Qt > x] = P

[
sup
t≥0

(−W e
t + W s

t ) > x

]

≥ P

[
inf
t≥0

−W e
t + sup

t≥0
W s

t > x

]
(4.18)

= P

[
− sup

t≥0
W e

t + sup
t≥0

W s
t > x

]

∼ P

[
sup
t≥0

W s
t > x

]
as x → ∞, (4.19)
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where in (4.18) we use the fact that sup( f + g) ≥ inf f + sup g for any two functions
f, g : R → R; asymptotics in (4.19) follows from the independence of at and et ,
P[supt≥0 W s

t ≤ x] ∈ L, P[supt≥0 W e
t < ∞] = 1, and Lemma 4.1(ii). Consequently, (4.19)

leads to

lim inf
x→∞

P[Qt > x]∫ ∞
x/(r−c′)P[τ on > u] du

≥ Kε lim inf
x→∞

∫ ∞
x/(r−cε )

P[τ on > u] du∫ ∞
x/(r−c′)P[τ on > u] du

, (4.20)

where again Kε is computed from Theorem 4.3 with cε in place of c. Consequently, using the
same arguments as in (4.17) we arrive at

lim inf
x→∞

P[Qt > x]∫ ∞
x/(r−c′)P[τ on > u] du

≥ K ′, (4.21)

which together with (4.17) concludes the proof.

4.4. Subexponential M/G/∞ arrival process

In the next theorem we obtain a tight lower bound for the fluid queue asymptotics with
M/G/∞ arrivals. For this fluid queue we denote its queue content process by Q∞

t .

4.4.1. Lower bound

Theorem 4.5. Let ρ
def= EA∞,s

t = �rEτ on < c. If r + ρ > c, and τ on ∈ IR, then

lim inf
x→∞

P[Q∞
t > x]∫ ∞

x/(r+ρ−c)P[τ on > u] du
≥ �r

c − ρ
.

Proof. Let A∞,y = {A∞,y
t , t ≥ 0}, A

∞,y = {A
∞,y
t , t ≥ 0}, y > 0, be two independent

M/G/∞ type processes with Poisson arrival rate and with on distributions respectively given
as �y = P[τ on ≤ y]�, �

y = P[τ on > y]�, Fy(x) = P[τ on ≤ x]/P[τ on ≤ y], 0 ≤ x ≤ y,
Fy(x) = P[y < τ on ≤ x]/P[τ on > y], x > y; all three processes are assumed to have the
same parameter r. Now, we claim that

A∞ d= A∞,y + A
∞,y

, (4.22)

where
d= stands for equality in distribution. Observe that, for a fixed parameter r, any M/G/∞

process is uniquely defined with Possion arrival times {Tn}, and the lengths of on periods
{τ on

n }; likewise, the pair {Tn}, {τ on
n } uniquely defines a compound Poisson process (see [17,

p. 90]), that is a piecewise constant process with Poisson jump times {Tn}, and jump sizes
{τ on

n }. Hence, proving (4.22) is equivalent to

Z
d= Z y + Z

y
, (4.23)

where Z , Z y, Z
y
, are the compound Poisson processes corresponding to A∞, A∞,y , A

∞,y
,

respectively. Since Z , Z y, Z
y
, are processes with stationary independent increments, (4.23) is

equivalent to

Zt
d= Z y

t + Z
y
t , t ≥ 0. (4.24)
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Evidently (4.24) is implied by

E exp{−s(Z y
t + Z

y
t )}

= E exp{−sZ y
t }E exp{−sZ

y
t }

= exp
(

−t�y
∫ ∞

0
(1 − e−su) dFy(u)

)
exp

(
−t�

y
∫ ∞

0
(1 − e−su) dFy (u)

)
(4.25)

= exp
(

−t�
∫ y

0
(1 − e−su) dF(u)

)
exp

(
−t�

∫ ∞

y
(1 − e−su) dF(u)

)

= exp

(
−t�

∫ ∞

0
(1 − e−su) dF(u)

)
= E exp{−sZt }; (4.26)

equalities (4.25), (4.26), are well known expressions for compound Poisson processes (see
[17], p. 94). This proves (4.22).

Note that process A∞,y
t has bounded on periods, and in conclusion, it is an exponential

process (i.e., it satisfies Definition 4.2). Also, A
∞,y
t ≥ r1(A

∞,y
t > 0). Therefore, P[Q∞

t > x]
is stochastically larger than a queueing process Q∞

t
obtained by feeding A∞,y

t +r1(A
∞,y
t > 0)

into it. Let Qay

t be a queueing process with a subexponential on-off arrival process

ay
t

def= r1(A
∞,y
t > 0), and a server capacity cy = c − EA∞,y

t = c − rP[τ on ≤ y]�Eτ on .
Here, by Theorem 4.4, we obtain

P[Q∞
t > x] ≥ P[Q∞

t
> x] ∼ P[Qay

t > x] as x → ∞. (4.27)

In addition, ay
t has off period I off,y exponentially distributed with parameter �

y
, on period

I on,y with mean E I on ,y = 1/�
y
(exp{�y

Eτ on ,y} − 1) = 1/�
y
(exp{�Eτ on1(τ on > y)} − 1),

and asymptotics (by Theorem 3.5)

P[Ion,y > t ] ∼ exp{�y
Eτ on,y}P[τ on,y > t ] as t → ∞ (4.28)

= exp{�Eτ on 1(τ on > y)}
P[τ on > y] P[τ on > t ].

Hence, Theorem 4.3 and (4.28) lead to

P[Qay

t > x] ∼ Ky

∫ ∞

x/(r−cy )

P[τ on > u] du as x → ∞, (4.29)

where

Ky
def=

(
r − cy

cyE I off,y − (r − cy)E I on ,y
+ 1

E I off,y + E I on,y

)
exp{�Eτ on1(τ on > y)}

P[τ on > y] .

Combining (4.27) and (4.29) produces

lim inf
x→∞

P[Q∞
t > x]∫ ∞

x/(r−c′)P[τ on > u] du
≥ Ky lim inf

x→∞

∫ ∞
x/(r−cy)

P[τ on > u] du∫ ∞
x/(r−c′)P[τ on > u] du

, (4.30)

where c′ def= c − ρ. Here, observe that Ky → �r/c′ as y → ∞, and, by assumption F ∈ IR,

lim
y→∞ lim inf

x→∞

∫ ∞
x/(r−cy)

P[τ on > u] du∫ ∞
x/(r−c′)P[τ on > u] du

= 1.
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Finally, if we take the limit with respect to y in (4.30), we obtain the statement of the theorem.

4.4.2. Precise queue asymptotics. Let Q P,∞
n be the queue size observed at the beginning of

the nth activity period in the M/G/∞ arrival process.

Theorem 4.6. Let ρ = EAs,∞
t = �rEτ on < c. If c ≤ r, and τ on is regularly varying with

non-integer exponent α > 1, then

lim
x→∞

P[Q P,∞
t > x]∫ ∞

x/(ρ+r−c)P[τ on > u] du
= �

(
r

c − ρ
− 1

)
.

Proof. Proof follows directly from Theorem 4.1 and Theorem 3.6, by taking An
def= Dc,n ,

Cn = cI off
n , and observing that E(An − Cn) = e�Eτ on

(�rEτ on − c)/�.

Theorem 4.7. Let ρ = EAs,∞
t = �rEτ on < c. If Conjecture 3.1 holds, c ≤ r, and τ on is

regularly varying with non-integer exponent α > 1, then

lim
x→∞

P[Q∞
t > x]∫ ∞

x/(ρ+r−c)P[τ on > u] du
= �

r

c − ρ
.

Proof. This theorem follows from Theorem 4.8, Conjecture 3.1, and exactly the same
arguments as in the proof of Theorem 4.3. We omit the details.

Remark. The asymptotic result in this theorem is the same as the lower bound obtained in
Theorem 4.5.

4.5. Finite number of subexponential on-off processes

For a finite number of long-tailed on-off processes we can easily obtain the upper bound
given by Theorem C.1. Similarly, utilization of AN

t ≥ r1(AN
t > 0), Theorem 3.3 and

Theorem 4.3 can easily produce a lower bound. Unfortunately, these bounds are very weak
and for this reason we resort back to Theorems 4.5, 4.6, and 4.7. Based on these results in
[31, 32, 33] we have suggested an approximation for the finite number of on-off processes. In
the same papers this approximation was tested using simulation experiments.

5. Conclusion

In this paper we have established a precise asymptotic characterization of the activity period
of an arrival process obtained by multiplexing on-off processes with exponential off periods
and subexponential on periods. This characterization has been done both for a finite number
of processes as well as for the limiting M/G/∞ case.

For a simple subexponential on-off fluid flow queue we have obtained a precise asymptotic
relation between the Palm queue distribution and the time average queue distribution. Further-
more, exponential processes, when multiplexed with a subexponential on-off process, have
been shown to contribute to the large buffer asymptotics only through their mean value.

In the limiting M/G/∞ case (e.g. large number of subexponential on-off processes) with
regularly varying on periods with non-integer exponents we have obtained a precise queue
asymptotics observed at the beginning of the arrival process activity periods. The asymptotic
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time average queue lower bound has been derived under more general assumptions of inter-
mediately varying on periods.

Based on these asymptotic results, a computationally efficient approximation was sug-
gested in [31, 32, 33] for the large buffer probabilities of finitely many subexponential on-
off processes. The accuracy of this approximation was verified using extensive simulation
experiments.

The results in this paper bring us closer to understanding the subexponential queueing
asymptotics of multiplexed long-tailed processes. The precision and low computational com-
plexity of the M/G/∞ approximation has a practical impact on improving the efficacy of
ATM admission controllers.

Appendix A. Basic results on subexponential and long-tailed distributions

In what follows we will state a few important results from the literature on subexponential
distributions. The general relation between S and L is the following.

Lemma A.1. [8] S ⊂ L.

Lemma A.2. If F ∈ L then (1 − F(x)) eαx → ∞ as x → ∞, for all α > 0.

Note. Lemma A.2 clearly shows that for long-tailed distributions Cramér type conditions are
not satisfied.

The proof of the following result can be found in [26].

Lemma A.3. Let F ∈ S. Then,

(i) If G is a probability distributionsuch that Ḡ(x) = o(F̄(x)) as x → ∞, then F ∗ G(x) ∼
F̄(x) as x → ∞.

(ii) If limx→∞ Ḡ(x)/F̄(x) = c ∈ (0, ∞), where G is a distribution function on [0, ∞),
then G ∈ S, and F ∗ G(x) ∼ F̄(x) + Ḡ(x) as x → ∞.

The next result is due to Athreya and Ney (see [8, pp. 147–150]).

Lemma A.4. If F ∈ S, then

(i) F∗n(x)/F̄(x) → n as x → ∞, for all n ∈ N.

(ii) For each ε > 0 there exists a constant Cε (< ∞) such that F∗n(x) ≤ Cε(1 + ε)n F̄(x)

for all x and n.

This lemma directly gives the asymptotics of a renewal measure with the followingPollazcek–
Khintchine representation

G(x)
def=

∞∑
n=0

γ n F∗n(x). (A.1)

Using dominated convergence and the previous lemma it is easy to prove the following very
useful theorem.

Theorem A.1. If F ∈ S, and −1 < γ < 1, then

lim
x→∞

Ḡ(x)

F̄(x)
= γ

(1 − γ )2
.
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Proof. Follows easily from Lemma A.4 and dominated convergence (see [6]).

Sometimes when F is absolutely continuous, i.e. F has a density function f , it is of interest
to calculate the density g of G. If we take a derivative in (A.1) with respect to x we obtain

g(x)
def=

∞∑
n=0

γ n f ⊗n(x), (A.2)

where f ⊗n(x) is the density of Fn∗ ; f ⊗2(x) = ∫ x
0 f (x − u) f (u) du, and f ⊗(n+1)(x) =∫ x

0 f ⊗n(x − u) f (u) du. The investigation of the asymptotics of g requires the investigation
of the asymptotics of f ⊗n(x). This motivated the introduction of subexponential density
functions in [40].

Definition A.1. A function f : R+ → R+ such that f (x) > 0 on [A, ∞) for some A ∈ R+
belongs to the class Sd if f is long-tailed, and

lim
x→∞

f ⊗2(x)

f (x)
= 2d.

Then, equivalent results to Lemma A.4, and Theorem A.1 (in its most general form) were
obtained in Theorem 3.2 of [40]. For convenience we state here simplified versions of these
results.

Lemma A.5. Let f ∈ Sd , and
∫ ∞

0 f (x) dx = 1. Then, both (i) and (ii) of Lemma A.4 are true

with F̄ replaced by f and F∗n(x) replaced by f ⊗n.

Theorem A.2. If f ∈ Sd , with
∫ ∞

0 f (x) dx = 1, and −1 < γ < 1, then

g(x) ∼ γ

(1 − γ )2
f (x) as x → ∞.

An extensive treatment of subexponential distributions and further references can be found
in [18, 39]. For a recent survey of the application of subexponential distributions in queueing
theory the reader is referred to [5].

Appendix B. Proof of Theorem 3.6

As we have already mentioned, the proof of this result is based on Karamata’s Tauberian/-
Abelian theorem for distribution functions of regular variation. This theorem relates the tail
behavior of a distribution function to the asymptotic behavior of its Laplace transform at the
origin. For convenience we state the following result due to Bingham and Doney ([10], [11,
p. 333]).

Let F be a distribution function on [0, ∞), and let F̃(s) be its Laplace–Stieltjes transform.
Denote by mn = EXn = ∫

[0,∞)
xn dF(x), n = 0, 1, . . . . When mn < ∞, F̃(s) may be

expanded in a Taylor series as far as the sn term:

F̃(s) =
n∑

k=0

mk (−s)k /k! + o(sn ) as s ↓ 0.



Multiplexing subexponential on-off processes 415

To compare the tail behavior of F with the behavior of F̃ at the origin, one needs to eliminate
the Taylor polynomial

∑n
k=0 mk (−s)k /k!. This may be done by subtraction or repeated

differentiation, i.e. let

fn(s)
def= (−1)n+1

{
F̃(s) −

n∑
k=0

mk(−s)k /k!
}
,

gn(s)
def= dn fn (s)/dsn = mn − (−1)n F̃(n)(s), n ≥ 0,

where F̃ (n)(s) denotes the nth derivative of F̃(s); in general for any function G we will use
G(n) to denote its nth derivative.

Theorem B.1. Let l be a slowly varying function, n ∈ N0, and α = n + β, 0 < β < 1 (α
non-integer). Then, the following are equivalent

fn(s) ∼ sα l(1/s) as s ↓ 0, (B.1)

gn(s) ∼ �(α + 1)

�(β + 1)
sβ l(1/s) as s ↓ 0, (B.2)

(−1)n+1 F̃(n+1)(s) ∼ �(α + 1)

�(β)
sβ−1 l(1/s) as s ↓ 0, (B.3)

1 − F(x) ∼ (−1)n

�(1 − α)
x−α l(x) as x → ∞, (B.4)

where � stands for the gamma function.

Now, in order to determine the tail behavior of Dc,n , we will investigate asymptotics of
its LS transform at the origin. Note that without loss of generality we can set r = 1, since
Dc,r = r Dc/r,1 ; Dc,r stands for Dc where the arrival process has parameter r. To simplify
the notation we use D ≡ Dc, τ ≡ τ on. Slight modification of Theorem 2.10, [21], reads as
follows.

Theorem B.2. Let 0 ≤ c ≤ 1 (r = 1), Eτ < ∞. Then, for s > 0,

c − �Eτ F̃1 (s)

c − �EDD̃1 (s)
= 1 − �

∫ ∞

0
E

[
exp{−s(τ − ct)}1(τ ≥ t)

]
exp{− f (s, t)} dt, (B.5)

where

f (s, t) = �{t (1 − F̃(s)) + E[τ exp(−sτ)] − E[(τ − t) exp(−sτ)1(τ ≥ t)]},
F̃(s) = E e−sτ , and F̃1(s) = (1 − E e−sτ )/(sEτ), D̃1(s) = (1 − E e−sD )/(sED), are the
Laplace–Stieltjes transforms of the integrated tail distributions of F and D, respectively;
ED = (Eτ − c/�) e�Eτ + c/�.

Proof of Theorem 3.6. Let r = 1. In order to simplify the usage of Theorem B.1, without
loss of generality we assume that 1 − F(x) ∼ (−1)n x−αl(x)/�(1 − α), α = n + β, n ∈ N,
0 < β < 1. Let us write the integral in (B.5) as

φ(s) =
∫ ∞

0
g(s, t) e− f (s,t) dt,
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where g(s, t)
def= E{e−s(τ−ct)1(τ ≥ t)}. Next, we want to find the nth derivative of φ(s) and

compare it with the nth derivative of the left-hand side of (B.5) as s ↓ 0. The main technical
difficulty in doing this is to prove the following two lemmas.

Lemma B.1. For any ρ > ε > 0, there exist s0 > 0, t0 > 0, such that for all 0 < s < s0,
t > t0, 0 ≤ k ≤ n,

(1 − ε)ρk t k e−s(ρ+ε)t−ρ ≤ (−1)k ∂k

∂sk
e− f (s,t) ≤ (1 + ε)ρk t k e−s(ρ−ε)t−ρ. (B.6)

Proof. Given at the end of this section.

Lemma B.1 is crucial in proving the following result which directly leads to the proof of
Theorem 3.6. Unfortunately, the proof of this lemma is very technical and, due to the space
limitations, we do not present it here.

Lemma B.2. As s ↓ 0

φ(n)(s) ∼ dn

dsn

∫ ∞

0
E{e−s(τ−ct)1(τ ≥ t)} e−ρst−ρ dt, (B.7)

where ρ = �Eτ .

Proof. Given in [31].

At this point we are ready to finish the proof of Theorem 3.6. By using Lemma B.2 we derive

lim
s↓0

s1−β(l(1/s))−1φ(n)(s)

= lim
s↓0

s1−β(l(1/s))−1 e−ρ dn

dsn
E e−sτ

∫ τ

0
e−(ρ−c)st dt

= lim
s↓0

s1−β(l(1/s))−1 e−ρ dn

dsn
E e−sτ e−(ρ−c)sτ − 1

−s(ρ − c)

= lim
s↓0

s1−β(l(1/s))−1 e−ρ dn

dsn
E

e−sτ − e−(ρ+1−c)sτ

s(ρ − c)

= e−ρ
Eτ

ρ − c
lim
s↓0

s1−β(l(1/s))−1 dn

dsn

[
E

1 − e−(ρ+1−c)sτ

sEτ
− E 1 − e−sτ

sEτ

]

= e−ρ
Eτ

ρ − c
lim
s↓0

s1−β(l(1/s))−1 dn

dsn
[(ρ + 1 − c)F̃1(s(ρ + 1 − c)) − F̃1(s)]; (B.8)

recall that F̃1(s) is the LS transform of the integrated tail distribution of τ . From the assump-
tion on F it follows that

1 − F1(x) ∼ (−1)n x−(α−1)l(x)/(�(1 − α)(α − 1)Eτ)

= (−1)n−1 x−(α−1)l(x)/(�(2 − α)Eτ) x → ∞.

Consequently, by Theorem B.1, equation (B.3),

F̃(n)
1 (s) ∼ (−1)n �(α)

�(β)Eτ
sβ−1l(1/s), as s ↓ ∞. (B.9)
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The latter result, when replaced in (B.8), produces

−� lim
s↓0

s1−β(l(1/s))−1φ(n)(s) = � e−ρ

ρ − c
× (−1)n�(α)

�(β)
[1 − (ρ + 1 − c)α], (B.10)

which represents the result of taking the operator lims↓0 s1−β(l(1/s))−1 dn/dsn on the right-
hand side of (B.5). To finish the proof we have to compute the result of applying the same
operator on the left-hand side of (B.5). Let us start with the derivative

dn

dsn

c − �Eτ F̃1 (s)

c − �EDD̃1 (s)
= −�Eτ F̃(n)

1 (s)

c − �EDD̃1(s)
+ (c − �Eτ F̃1 (s))�EDD̃(n)

1 (s)

(c − �EDD̃1 (s))2
+ Rn−1(s),

(B.11)

where Rn−1(s) is a rational function that contains only the first n − 1 derivatives of D̃1(s),
and F̃1(s). Note that |F̃(k)

1 (s)| ≤ |F̃(k)
1 (0)| < ∞, for 0 ≤ k ≤ n − 1, s ≥ 0. Furthermore,

by induction and by taking successive derivatives in (B.5), it is easy to show that |D̃(k)
1 (s)| ≤

|D̃(k)
1 (0)| < ∞, for 0 ≤ k ≤ n − 1, s ≥ 0. Therefore,

lim
s↓0

|Rn−1(s)| < ∞. (B.12)

Combining (B.9) and ED = (Eτ − c/�) eρ + c/� we obtain

−�Eτ F̃(n)
1 (s)

c − �EDD̃1 (s)
∼ � e−ρ

ρ − c
× (−1)n�(α)

�(β)
sβ−1l(1/s) s → 0. (B.13)

Finally, ED = (Eτ − c/�) eρ + c/�, (B.10), (B.11), (B.12), and (B.13), yield

lim
s↓0

s1−βl(1/s)D̃(n)
1 (s) = (c − �ED)2

(c − ρ)�ED
× −� e−ρ

ρ − c
× (−1)n�(α)

�(β)
(ρ + 1 − c)α

= eρ(ρ + 1 − c)α
(−1)n�(α)

�(β)ED
, (B.14)

which is, by Theorem B.1, equivalent to∫ ∞

x
P[D > u] du ∼ eρ(ρ + 1 − c)α(−1)n−1x−(α−1)l(x)/�(2 − α) as x → ∞;

finally, by the Monotone Density Theorem [11, p. 39]

P[D > x] ∼ eρ(ρ + 1 − c)α(−1)n x−αl(x)/�(1 − α) ∼ eρ(ρ + 1 − c)αP[τ > x]
∼ eρ

P[τ(ρ + 1 − c) > x]
as x → ∞; this finishes the proof of Theorem 3.6 for the case r = 1. For r �= 1,
Dc,r = r Dc/r,1 ; thus

P[Dc,r > x] = P[r Dc/r,1 > x] ∼ eρ(r + ρ − c)αP[τ > x] as x → ∞,

where ρ = r�Eτ . This completes the proof of Theorem 3.6.
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Proof of Lemma B.1. Let us start with the case k = 0. Since E[(τ − t) exp(−sτ)1(τ ≥ t)]
≤ E[(τ − t)1(τ ≥ t)] → 0, as t → ∞, and (1 − F̃(s))/s → Eτ , E[τ exp(−sτ)] → Eτ

as s → 0, it follows that for any ε > 0, ε < ρ, there exist s0 > 0, t0 > 0, such that for all
0 < s < s0, t > t0

(1 − ε) e−s(ρ+ε)t−ρ ≤ e− f (s,t) ≤ (1 + ε) e−s(ρ−ε)t−ρ. (B.15)

For 1 ≤ k ≤ n let us first show that for any ρ > ε > 0,

(1 − ε)ρk t k ≤ (−1)k e f (s,t) ∂k

∂sk
e− f (s,t) ≤ (1 + ε)ρk t k, (B.16)

for all sufficiently small s and all sufficiently large t . To show this, notice that for all
1 ≤ k ≤ (n − 1), and all s > 0,

∣∣∣∣ ∂k

∂sk
f (s, t) + �t F̃ (k)(s)

∣∣∣∣ ≤ �E[τ k+1 ] + �tE[τ k 1(τ ≥ t)]. (B.17)

For k = n∣∣∣∣ ∂n

∂sn f (s, t) + �t F̃ (n)(s)

∣∣∣∣ ≤ �E[τ n+1 1(τ < t)] + �tE[τ n 1(τ ≥ t)] = o(t), (B.18)

as t → ∞. Hence, since |F̃ (k)(s)| ≤ Eτ k < ∞, s ≥ 0, 0 ≤ k ≤ n, (B.17) and (B.18) imply
that ∣∣∣∣ ∂k

∂sk
f (s, t)

∣∣∣∣ = O(t), (B.19)

uniformly for all 1 ≤ k ≤ n, and all s > 0. Furthermore, for k = 1, for any ε > 0, ε < ρ,

(1 − ε)ρt ≤ ∂

∂s
f (s, t) ≤ (1 + ε)ρt, (B.20)

for all sufficiently small s and all sufficiently large t . Using (B.19), after some straightforward
algebra, which we skip here, we arrive at∣∣∣∣∣(−1)k e f (s,t) ∂k

∂sk
e− f (s,t) −

(
∂

∂s
f (s, t)

)k
∣∣∣∣∣ = O(t k−1), (B.21)

uniformly in s > 0. Subsequently, combination of (B.20) and (B.21) yields (B.16) (with
possibly two different ε in (B.20) and (B.16)). Finally, (B.15) and (B.16), give (B.6), for
1 ≤ k ≤ n. This finishes the proof of Lemma B.1.

Appendix C. Finite number of subexponential on-off processes: upper bound

For a finite number of long-tailed on-off processes we can obtain the following general
upper bound.



Multiplexing subexponential on-off processes 419

Theorem C.1. Let F1 ∈ S. If r > c/N, then

lim
x→∞

P[QN > x]∫ ∞
x/(r−cN )P[τ on > u] du

≤ N KN , (C.1)

where cN = c/N, and KN is given by Theorem 4.3, Equation (4.10), with cN in place of c.

Proof. As in the proof of Theorem 4.4, we have the decomposition

Wt =
∫ 0

−t
(AN

u − c) du =
N∑

i=1

∫ 0

−t
(ai

u − c/N) du

def=
N∑

i=1

wi
t .

Hence,

P[Q N
t > x] = P

[
sup
t≥0

N∑
i=1

wi
t > x

]

≤ P

[ N∑
i=1

sup
t≥0

wi
t > x

]

∼ NP

[
sup
t≥0

w1
t > x

]
as x → ∞ (C.2)

= N KN , (C.3)

where (C.2) follows from Lemma A.4(i), since supt≥0 wi
t , 1 ≤ i ≤ N , are i.i.d. subexponential

(by Theorem 4.3) random variables; (C.3) follows also from Theorem 4.3. This proves (C.1).
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[36] JELENKOVIĆ, P. R., LAZAR, A. A. AND SEMRET, N. (1997). The effect of multiple time scales and
subexponentiality of MPEG video streams on queueing behavior. IEEE J. Sel. Areas Commun. 15, 1052–1071.

[37] KARAMATA, J. (1930). Sur un mode de croissance régulière des fonctions. Mathematica (Cluj) 4, 38–53.



Multiplexing subexponential on-off processes 421

[38] KELLA, O. AND WHITT, W. (1992). A storage model with a two-state random environment. Operat. Res. 40,
257–262.
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