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Abstract—This paper investigates the existence of scalable proto-
cols that can achieve the capacity limit of per source-desti-
nation pair in a large wireless network of nodes when the buffer
space of each node does not grow with the size of the network .
It is shown that there is no end-to-end protocol capable of carrying
out the limiting throughput of with nodes that have con-
stant buffer space. In other words, this limit is achievable only with
devices whose buffers grow with the size of the network. On the
other hand, the paper establishes that there exists a protocol which
realizes a slightly smaller throughput of log when de-
vices have constant buffer space. Furthermore, it is shown that the
required buffer space can be very small, capable of storing just a
few packets. This is particularly important for wireless sensor net-
works where devices have limited resources. Finally, from a math-
ematical perspective, the paper furthers our understanding of the
difficult problem of analyzing large queueing networks with finite
buffers for which, in general, no explicit solutions are available.

Index Terms—Ad hoc wireless networks, finite-buffer queueing
networks, large-scale networks, local cooperation, scaling laws,
wireless sensor networks.

I. INTRODUCTION

THE GROWTH of modern communication infrastructures,
such as the Internet and various wireless networks, over

the last decade has surpassed many expectations. Indeed, going
back in time to the origins of these networks, it would have been
hard even to imagine the importance and scale to which these
networks have developed. Now, projecting into the future, we
strongly believe that this trend will only continue, if not accel-
erate. Hence, the communication devices and protocols of today
must be capable of operating with the same efficiency in the very
large scale networks of the future. One of the basic concerns in
building large-scale networks is that minor inefficiencies which
can be well tolerated in small networks can accumulate and be-
come dominant factors. In this regard, we investigate the be-
havior of a network as its size grows while the buffer space of
each device, one of the primary communication resources, re-
mains constant. Specifically, we term a protocol, or in general a
network architecture, to be buffer scalable, or simply scalable,
if the performance of the network does not degrade as its size
grows due to the limited buffer space in each node, i.e., buffer
space is not a source of bottlenecks. Moreover, we emphasize
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that the buffer scalability problem cannot be solved simply by
buffer overprovisioning since the memory (buffer) upgrade in a
large legacy network is likely to have a prohibitive cost.

The critical importance of scalability is widely recognized by
practitioners and well documented in the systems engineering
literature. However, the various definitions of scalability are
often vague or simply absent. Hence, we believe there exists a
strong need for developing precise mathematical foundations
for investigating the notions of scalability. Also, since building
experimental large-scale networks is basically impractical,
a theoretical approach has a unique advantage for providing
insights into the scaling properties of communication networks.

We focus on how the maximum throughput scales in large
wireless networks with finite buffers. Before discussing our re-
sults we present a brief overview of the literature that investi-
gates the capacity limits of wireless networks. In [1], a random
network model of static wireless networks was introduced. For
this model, the authors showed that throughput per source-desti-
nation pair is as , where is the number of
nodes in the network (refer to Appendix A for definitions of the
standard asymptotic notation used throughout the paper). In the
same paper a scheme that achieves throughput
per source-destination pair was presented. The scheme was gen-
eralized to a parametrized version [2] (see also [3] and [4]) that
results in the optimal throughput-delay trade-off for maximum
throughputs that are . In [5] it was shown that
throughput in fact can be achieved. Results in [1]
were rederived in [6] for the corresponding constant packet size
model. Extensions of the original model and their analyses can
be found in [7]–[9]. We note that the capacity of wireless net-
works relates to the capacity of lattice networks—refer to [10]
and the references therein.

In this paper, we incorporate the dynamics of the data-link
and MAC layers in the standard wireless network models [1],
[2] by introducing random (exponential) transmission times. For
this new model, we investigate the existence of scalable pro-
tocols that can achieve the capacity limit, derived in [1], of

per source-destination pair in a large wireless network
of finite-resource nodes. More specifically, focusing on scal-
ability with respect to the buffer space, we establish that there is
no protocol with end-to-end acknowledgments (or without ac-
knowledgments at all) that is capable of carrying out the lim-
iting throughput of when each node has constant buffer
space. In other words, this limit is achievable only with devices
whose buffer grows with the size of the network. On the other
hand, we show that, under the Poisson arrival model, there ex-
ists a protocol which realizes a slightly smaller throughput of

with devices that have constant buffer space. Fur-
thermore, we establish that the required buffer space can be very
small, capable of storing just a few packets, which is particularly
important for wireless sensor networks where devices have lim-
ited resources. In addition, we show that any protocol which is

1063-6692/$25.00 © 2007 IEEE



296 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 15, NO. 2, APRIL 2007

capable of achieving the throughput of with finite
buffers has to employ a local buffer coordination/cooperation
scheme. This insight may provide guidance for designing effi-
cient scalable wireless protocols in practice.

The present study is related to the study of the throughput-
delay trade-off [2]–[4] since the finiteness of buffers limits
the delay incurred by packets, given that these packets are not
dropped. However, apart from this heuristic connection, the
expected delay considered in [2]–[4] does not provide results on
buffer scalability because the dynamics of the network change
under the constraints imposed by finite buffers.

Finally, from a mathematical perspective, this paper furthers
our understanding of the difficult problem of analyzing large
queueing networks with finite buffers for which no general ex-
plicit solutions, e.g., the product-form solution of Jackson net-
works, are available.

The paper is organized as follows. The next section contains
some of the preliminary results. In Section III we introduce a
motivating example of a 1-D multihop route. A model of a wire-
less network is described and discussed in Section IV. The main
results of the paper are presented in Section V. Concluding re-
marks can be found in Section VI. The Appendix provides ad-
ditional mathematical details.

II. PRELIMINARIES ON A SINGLE-SERVER QUEUE

This section contains basic results on a single-server queue
that will be used in the remainder of the paper. Throughout the
section we assume that the server works at unit rate with the
packet (customer) service requirements being independent and
identically distributed (i.i.d.) exponential random variables with
mean , independent from the packet arrival times. The ser-
vice discipline is first-come-first-served (FCFS).

We start by considering two queues with buffers of sizes
and packets (including any one in service), respectively. Let

and , be positive, monotonically in-
creasing sequences of random variables, representing customer
arrival and departure times to these queues, respectively. In gen-
eral, we use superscripts to distinguish quantities that relate to
different queues. Let denote the number of customers
in queue (of size ) at time and define

where is the standard indicator function. Note that, when
, the quantity represents the number of packets

lost in queue 1 in the interval .
The first lemma establishes a stochastic comparison of two

queues with different buffer sizes when the arrival sequences
are monotonically related.

Lemma 1: Suppose that
, and . Then, for an i.i.d. sequence

of exponential service times , one can construct an i.i.d.
sequence of exponential service requirements such that

and, for all

(1)

Proof: See Appendix D.

Our next goal is to establish a lower bound on the loss rate in
a finite-buffer queue with stationary and ergodic arrival times.
Recall that the service times are assumed to be i.i.d. exponential
and independent from the arrival times. Note that the minimum
loss rate for arrival sequences with specified mean will be posi-
tive since the buffer is finite and service times have unbounded
support.

More formally, consider a nonnegative increasing sequence
of arrival times , with stationary and ergodic
interarrival times that are equal in distribution
to . Let denote the offered traffic load, where

is the average service time. Note that since the buffer is
finite, the offered load does not need to be below 1. Given that
the buffer can accommodate customers (including any one in
service), the loss probability , i.e., the long-term fraction of
lost packets, is defined as

(2)

where is the number of packets in the queue at time
and the existence of the limit is ensured by stationarity and

ergodicity; by definition, is right-continuous and, thus,
represents the number of customers in the queue just

before the th arrival. When the sequence is in sta-
tionarity, the loss probability obeys

(3)

In addition, using the ergodicity and stationarity properties it is
easy to show that the loss rate satisfies

The loss probability can be lower bounded as follows.
Lemma 2: Let . For any

Remark 1: If, in addition to being stationary and ergodic, the
arrival sequence is i.i.d., a tighter lower bound can be obtained
by analyzing a finite-buffer GI/M/1 queue.

Proof: Let , be the amount of time the server is
busy in the time interval

(4)

Then due to the exponential nature of service times, the number
of customer departures in is given by , where

, is the number of points in for a stationary
Poisson process of rate . Process is independent of the
arrival-time sequence . Given that the system is in station-
arity, by (3), for any

(5)
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Now, note that the event implies that
at least one packet is lost in the time interval . This
follows from the nonnegativity of the queue at and the
observation that exactly customers arrive in and

customers depart. Hence, (5) renders

where the second inequality follows from (4). Setting
results in

which in conjunction with Jensen’s inequality yields

(6)

Finally, the statement follows from (6) and .
Next, we consider a buffer management policy under which

the buffer is divided into partitions, each being able to ac-
commodate customers (including possibly one in service).
Upon an arrival to the system, a customer uniformly at random
chooses a partition of the buffer. If the number of customers in
the chosen partition is less than , then the newly arrived cus-
tomer is accommodated in the given partition. Otherwise, one
packet is dropped from the partition (at this point we do not
specify whether it is the newly arrived customer or one of the
customers in the partition). Intuitively, since a packet can be lost
even if some partitions are not full, it is clear that the given buffer
management policy results in a higher loss probability than the
one with complete buffer sharing (single partition of size ).
The service policy is FCFS. As in (2), denote the long-term frac-
tion of lost customers by ; note that the stationarity and
ergodicity of the system follows from the stationarity and er-
godicity of the arrival sequence, monotonicity of this queueing
system, and Loynes’ construction [11]. The following lemma
bounds losses in this slightly more complicated system. By set-
ting the number of partitions to 1 , Lemma 3 reduces to
Lemma 2.

Lemma 3: Let . For any and

Proof: The proof is very similar to the Proof of Lemma 2.
Consider a sequence of arrivals to the system. Then,

the probability of loosing a single customer (out of ) due
to an overflow of a particular partition is bounded from below
by since
the probability of all customers selecting independently a
particular partition is equal to . Thus, given that a packet
can be lost due to an overflow in any one of the partitions, the
loss probability is lower bounded by

This section is concluded with an estimate on a hitting time
in a single-server queue. In particular, we consider a multiclass
infinite-buffer FCFS M/M/1 queue with service rate and ag-

Fig. 1. Multihop path consisting of N nodes. Each node has limited buffer
space to store packets.

gregate arrival rate . Class customers arrive to the system
at Poisson rate (the number of classes is finite), .
Service times are class independent, and the system is in steady
state at time . Let be the number of class customers
in the system at time (including possibly one in service). For
a set define

Let be the first time that the number of customers in
classes belonging to reaches level , i.e.,

Given that the system is in stationarity at , it is possible to
have . The following lemma provides an upper bound
on the overflow time .

Lemma 4: Let and . For any

Proof: See Appendix D.

III. MULTIHOP ROUTE

This section exemplifies the notion of buffer scalability with
a simple linear network. Subsequent sections deal with a gen-
eral topology. Here we examine a multihop route consisting of

nodes labeled by the natural numbers, as illustrated in Fig. 1,
i.e., queues of unit capacity in tandem with each queue having
a finite buffer capable of storing packets. Packets arrive to the
first queue according to a Poisson process of rate . Ser-
vice times are exponential with unit mean and independent from
the Poisson arrival process. In addition, the service requirements
of a single packet are independent in different queues and inde-
pendent from the requirements of other packets.

We now lower and upper bound the rate at which packets
leave the last node with explicit functions of and the buffer
size . Note that represents the throughput of this linear net-
work. Lemma 1 allows one to bound the rate at which packets
are lost (dropped due to a full buffer) at each node. By letting
all nodes prior to node have an infinite buffer, it is clear, from
Lemma 1, that the loss rate at the th node is upper bounded
by the stationary loss rate in a finite-buffer M/M/1 queue with
arrival rate , given by , where is the
normalization constant. This follows from the fact that the infi-
nite-buffer system is reversible, and, hence, the loss probability
is given by [12, Sec. 1.6]. Therefore, the total rate at which
packets are lost in the considered finite-buffer network is smaller
than , rendering the following lower bound:

(7)
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In order to establish an upper bound on the throughput, we de-
fine the following function:

According to Lemma 2, quantity can be interpreted as
an upper bound on the maximum throughput of a queue having
finite buffer , exponential i.i.d. service requirements of unit
mean, and offered load . Using the fact that the output
of queue represents the input for the next queue , the
monotonicity of in for all results in

where the function is iterated times. We also used the
fact that the sequence of interdeparture times from a
queue is stationary and ergodic provided that the interarrival se-
quence has these two properties. This fact is due to the station-
arity and ergodicity of the queue occupancy process, which in
turn follows from the finite-buffer version of Lindley’s recur-
sion and Loynes’ construction [11]. Thus, by the definition of

, it is easy to obtain an upper bound

(8)

since for . Inequality (8) implies
that, in order to keep as , the buffer size

needs to grow at least logarithmically in the number of hops
. However, (7) indicates that having is enough

to sustain constant throughput as the length of the network be-
comes large.

Although this paper considers end-to-end protocols only,
it is important to point out that buffer scalability can be ad-
dressed by abandoning the end-to-end paradigm, albeit at the
cost of increased complexity. Next, we briefly discuss this
approach. Namely, we turn our attention to the performance of
a hop-by-hop transmission scheme [13, p. 507]. The network
topology is the same as in the preceding analysis (see Fig. 1).
However, a node starts packet transmissions only when the
buffer at the downstream node can accommodate an incoming
packet. The case corresponds to the scenario in which a
node can hold only a single packet (possibly in service). Packets
are added to the first node’s buffer as soon as space becomes
available. Explicit analytical results for achievable throughput
when are not available. Results of a numerical experi-
ment provided in [14, Fig. 2] demonstrate the dependency of
throughput on the buffer size . When , the problem of
establishing the maximum throughput reduces to finding the
current in an asymmetric exclusion process [15]. In particular,
for it is known [15, Th. 3.28, p. 272] that the maximum
throughput converges to as . However, it should be
noted that hop-by-hop schemes in networks with more general
topologies are susceptible to deadlocks and mechanisms for
their avoidance need to be implemented; refer to [16] and the
references therein.

Fig. 2. Transmission algorithm is parametrized by a that defines the cell size.
Only transmissions between neighboring cells are allowed.

IV. WIRELESS NETWORK MODEL

We consider a variation of the standard random network
topology model [1], [2], [6] where nodes are randomly
placed in a unit area square (see Fig. 2). More specifically,
if denotes the position of the th node, then the variables

are independent and uniformly distributed inside the
unit square. Each node is the source of one flow and can serve as
the destination for some other flows. Namely, each source node
chooses its destination independently and uniformly among the
remaining nodes. This results in distances between
sources and destinations that are units on average (recall
that the asymptotic notation is defined in Appendix A). By a
flow, say from node to , we mean the (infinite) collection
of packets generated at with destination . A node gener-
ates packets, independently of other nodes and the network
state, according to a Poisson process with rate and attempts
to inject those packets into the network. It is appropriate to
think of packet generation times at node as times at which
some information becomes available at node and needs to be
communicated to node . At any particular node, all packets
have i.i.d. service requirements that are independent from
their service requirements at other nodes, arrival times and, in
general, the state of the network. The distribution of service is
assumed to be exponential, for reasons that will be explained
in the remainder of this section.

Two models that govern successful packet transmission be-
tween a pair of nodes have appeared in the literature [1]: phys-
ical and relaxed protocol models. It has been established in [1]
that these models are equivalent under the following two as-
sumptions: (i) the fading factor in the physical model is greater
than 2, and (ii) all nodes use the same power for transmission
(i.e., they have a common range). Under the relaxed model, a
transmission from node to node is successful if for some

and all

(9)

where is the (Euclidian) distance between nodes and .
Typically, models in the literature consider slotted systems

with deterministic transmission times. Such assumptions are
justified in the presence of a centralized scheduler, and if (9) is
satisfied then a packet is successfully transmitted from node to
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node with probability 1 in a single time slot. We deviate from
this model by assuming that successful transmission from to
is still possible under (9) with the understanding that the amount
of time required to successfully transmit a packet is random with
finite mean. The nonslotted operation and random transmission
time assumptions of the model are justified by the following
arguments.

• Centralized scheduling is unlikely to be feasible in large ad
hoc wireless networks. Hence, a slotted system is likely to
be replaced with asynchronous transmission that is a result
of distributed scheduling.

• The nodes in the network could have limited power supply
and the physical channel might be highly variable. Thus,
in certain time intervals only transmission at reduced rates
(or no transmission at all) is feasible due to transmission
errors on the data-link layer.

• The layered architecture of current networks contributes
to the randomness of transmission times. For example,
possible collisions on the MAC layer contribute to such
randomness.

To capture this randomness, as a first order approximation we
assume that, under (9), transmission times are exponentially dis-
tributed with mean that is proportional to the packet size in bits.
This assumption facilitates our analysis. The exact parameter of
the distribution depends on the details of the transmission model
and is independent of . Evaluation of this parameter is beyond
the scope of this paper since we focus only on the qualitative
network behavior as a function of its size.

Under the specified algorithm, we denote by the
long-term throughput that each source-destination pair can
achieve when there are nodes in the network, each having
storage space of size packets; the units of are bits/s.
Each source-destination pair is assigned a route and an
end-to-end scheme is defined by packets being transmitted
along this route without taking into account whether there is
available buffer space at the next node. In other words, packets
can be lost due to a full buffer at an intermediate node.

Regarding the packet sizes, we emphasize that is a
function of the number of packets that can be stored at each
node, not the number of bits. As the number of nodes in the
network increases the packet size might need to increase in order
to keep the payload size constant. This stems from the fact that
one needs bits to identify the destination node, e.g., if
each packet carries its node’s address then each packet has to be
at least bits in size. Our main result in the next section,
Theorem 1, takes into account that the packet size might be an
increasing function of the network size.

V. SCALABILITY

This section contains the main results of the paper that char-
acterize the memory scalability of large wireless networks in the
data plane. In particular, we study the throughput dependency
on the network size in the presence of limited buffer space at
individual nodes. Let denote the packet size in bits.

Our first result indicates that achieving throughput
per source-destination pair is not feasible when nodes have a
fixed amount of buffer space. Informally, achieving

throughput requires that only short hops are used [1], [5], re-
sulting in packets traversing a large number of hops.
Hence, given that losses are inevitable (see Lemma 2), buffer
sizes need to increase with route lengths, i.e., the network size.
In the following proposition and Proposition 2 we only assume
that the packet generation times are stationary and ergodic (see
Lemma 2). However, in our main Theorem 1 we assume Poisson
generation of packets, as specified by our model in Section IV.

Proposition 1: Assume that packet transmission times are
exponential random variables with mean . If each source
generates packets at a rate not higher than (packets/s),
then, in order to achieve throughput (bits/s) per source-
destination pair , the buffer space at nodes
needs to scale in as almost surely (a.s.).

Proof: Define a node’s utilization to be the long-term frac-
tion of time the node is transmitting packets. Then, due to the
strong law of large numbers, the long-term throughput of a node
is given by (packets/s), where is the utilization.

We first establish a preliminary claim that, if all source-des-
tination pairs achieve at least bits/s throughput for some

, then there exists such that at least nodes have
utilization higher than (for all large enough). To show this,
assume the contrary that for any at most nodes have
utilization higher than ; then the long-term rate at which the
network services packets is bounded from above with

packets/s

or equivalently bits/s. On the other hand, if
all source-destination pairs achieve at least bits/s
throughput for some , then the total rate at which packets
are injected in the network must be at least . This,
together with the fact that for a sufficiently small at
least a quarter of the flows traverse at least hops a.s. (see
Lemma 7 in Appendix C), implies the total network offered
load is at least

packets/s a.s.

or equivalently bits/s. Since the amount of work served
in the network must be at least equal to the amount of work
generated by packets delivered to their destinations, one has

. However, selecting small enough con-
tradicts the existence of . Hence, this proves our claim
that there exists such that at least nodes have utiliza-
tion higher than for large enough a.s.

Next, we proceed with the proof of the proposition. Let
be a lower bound on the loss rate (packets/s) at a node with
utilization and buffer space packets. By Lemma 2, one has

since utilization implies an arrival rate of . Given the
preceding discussion and the monotonicity of , the total
network loss rate satisfies a.s.

packets/s (10)
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The total number of packets delivered to destinations is equal
to the number of packets injected into the network minus the
number of lost packets, i.e.,

(11)

Inequalities (11) and (10) yield a bound for large

from which it is clear that a.s.
In the rest of the paper we construct a protocol capable of

achieving a high throughput of , proved in our
main Theorem 1, with buffers of constant size. Our protocol’s
key component is a local buffer coordination/cooperation that is
shown to be indispensable by the upcoming Proposition 2.

For constructing our protocol, it is sufficient to consider
the parameterized scheme introduced in [2]. Namely, the unit
square is divided into squares of size (for
convenience we assume that is an integer so that
the squares cover the unit square exactly); see Fig. 2 for an
illustration. The created squares are termed cells. A packet
is delivered from its source to the destination by relaying it
between cells. A packet can be sent from a cell to only one of
its four neighboring cells, but no multicell hops are allowed.
Given this cell-based scheme, the next lemma states that each
cell in the network can transmit packets to its neighbors at a
fixed rate independent of the state of other cells. Recall that
denotes the packet size (in bits).

Lemma 5: All cells in the network can successfully transmit
packets simultaneously to one of their neighboring cells with
transmission times being independent exponential random vari-
ables with mean that are independent of , for some

.
Remark 2: The parameter can be interpreted as a per-bit

service rate.
Proof: The proof follows from the model described in

Section IV and the fact that only a constant number of cells
interfere with a given cell under the protocol model; see [2,
Lemma 2]. One of the standard bandwidth-sharing schemes can
be used to allocate bandwidth among neighboring cells, e.g.,
frequency or time division multiple access (FDMA,TDMA).

Next we discuss how, due to the finiteness of the buffer space,
network performance depends on whether a buffer coordination
algorithm is deployed. Such an algorithm operates in each cell,
and its goal is the efficient use of buffer space in cells. To moti-
vate a potential need for such an algorithm, we consider the fol-
lowing. Suppose that a node in an adjacent cell has a packet that
requires relay through a given cell. The node that has the packet
can, in principle, forward it to any of the nodes in the cell. How-
ever, if the next relay node is chosen without consideration of
buffer contents, an unnecessary packet loss can occur. Namely,
a packet could be forwarded to a node that cannot accommodate
any more packets due to a full buffer. A buffer coordination al-
gorithm assists nodes in adjacent cells in forwarding packets to
nodes that have available buffer space, when possible. In that
case, packet loss occurs only if no node in a cell has available
buffer space. The design of such an algorithm is beyond this
paper’s scope, given our focus on the basic qualitative behavior

of the network as a function of its size. However, we point out
that it could be designed using a token-based approach, where
the whole cell implements the FCFS scheduling policy. In this
case the amount of memory required to implement the buffer
coordination protocol at each node can be limited to the size of
a single packet. More sophisticated approaches are possible as
well. Although we consider only a protocol that fully utilizes the
buffer at each cell, we note that results from the load balancing
literature suggest that protocols which examine the buffer con-
tents of a small number of nodes before forwarding/storing a
packet are expected to perform reasonably well.

The following proposition characterizes the network perfor-
mance with no buffer coordination. In contrast to the case in
which nodes have infinite buffer space, it is important to further
specify the routing policy between any two cells. In particular,
we assume that when a packet is transmitted between neigh-
boring cells, it is forwarded to a random node in the destination
cell. In [1] (see also [2]) it was shown that under the straight-
line routing scheme and centralized scheduling it is possible to
achieve throughput for every source-destina-
tion pair, when the buffer space is infinite, i.e.,

is feasible

In particular, one needs to choose [2]. The
following proposition motivates the need for a buffer coordi-
nation protocol within cells. Namely, without such a protocol,
the otherwise feasible throughput cannot be
achieved with limited buffer space at nodes.

Proposition 2: Assume no buffer coordination and
. If each source generates packets at a

rate not higher than , then in order to achieve
bits/s throughput per source-destination pair

the buffer spaces at nodes need to scale
as , i.e., for as

and any

is feasible

Remark 3: Comparing Propositions 1 and 2 yields that,
without a buffer coordination protocol, a multi-
plicative reduction of the achievable rate results in only a factor
of reduction in the required buffer size.

Proof: The proof is very similar to that of Proposition 1
with the focus of the analysis on cells rather than nodes.
Using the same arguments as in the proof of Proposition 1, it
is straightforward to show that if all source-destination pairs
achieve bits/s throughput for some , then
there exists such that the event at least

cells have utilization higher than obeys
as . The choice of

yields, by Lemma 8 of Appendix C, that there exists
such that as , where event

each cell contains at most nodes .
Next, without a buffer coordination algorithm in place, the

loss rate in a cell with at most nodes and utilization
greater than , using Lemma 3, is lower bounded by

packets/s
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where is the buffer space at each node and the number of par-
titions is in fact equal to the number of nodes. Furthermore, the
following lower bound holds for the total loss rate (packets/s) in
the network on event

(12)

Now, the total number of packets delivered to their destinations
is equal to the difference between the number of packets injected
into the network and the number of lost packets, i.e.,

(13)

Hence, (13) and (12) imply that on event we have

Rewriting the left-hand side of the preceding inequality as
and the right-hand side as
, it is easy to conclude that

needs to scale at least as .
The next theorem is the main result of the paper. It states that

with a buffer coordination algorithm in place, a small reduc-
tion in the throughput from to al-
lows for a buffer scalable algorithm. The result follows from the
fact that the cell size which allows for is suffi-
ciently large to contain enough nodes, and, thus, enough buffer
space that ensures low loss rates when the buffer is utilized ef-
ficiently. In particular, each cell contains buffer space capable
of storing packets. Recall that the units of are
bits/s.

Theorem 1: Consider the wireless network model, as defined
in Section IV, with Poisson packet-generation and exponential
transmission times. Then, there exists an end-to-end buffer-scal-
able algorithm, i.e., there exist , analogous to the second
sentence of Lemma 3, and such that

is feasible

Remark 4: It is apparent from the proof that in order to
achieve bit/s throughput it is sufficient if
each node contributes a single packet buffer space for storing
forwarded packets.

Remark 5: The model can be somewhat relaxed. In partic-
ular, each node does not need to communicate with only one
other node. Other communication patterns are possible and the
theorem remains valid as long as the load on each cell remains
bounded.

Proof: To prove the theorem it suffices to construct a pro-
tocol that achieves throughput per source-des-
tination pair given that each node has a buffer that can accom-
modate only packets. We stress that the algorithm considered
in the proof is not the most efficient one, but it allows for analyt-
ical tractability to demonstrate the desired qualitative network
behavior.

The algorithm has five components that operate as follows:
• Routing policy. Packets are forwarded from their sources

to destinations along cells using column-first routing [17];
see Fig. 2 for a pictorial description of how packets from
node are routed to node . Note that under this routing

Fig. 3. Under the considered algorithm each cell is modeled as a set of
four virtual finite-buffer queues. Each queue forwards packets to only one
of the neighboring cells. There is no bandwidth and buffer space sharing
(multiplexing) between the four queues. The queues can forward packets to one
of the three queues in the neighboring cell (or the final destination) depending
on the packet’s route.

Fig. 4. Algorithm uses frames of fixed-length T time units to transport packets.
Each frame (F) is preceded by an initialization period (I).

scheme the number of cells each packet traverses is at most
.

• Buffer management policy. Buffer space at each node is di-
vided into two logical parts: one packet space is reserved
for storing forwarded packets while the rest of the buffer
[ packet spaces] is designated for storing the node’s
own packets. The buffer space designated for forwarded
packets at all nodes in a given cell is managed by that cell’s
buffer coordination algorithm. The buffer coordination al-
gorithm creates four virtual buffers of equal size (up to
a single packet space)—see Fig. 3. In each one of these
four virtual buffers, packets destined for the same cell are
stored, e.g., in the first virtual buffer packets to be for-
warded to the up-cell are stored, in the second virtual buffer
packets to be forwarded to the right-cell are stored, etc. All
packets to be forwarded to the same cell are transmitted in
a FCFS manner.

• Bandwidth sharing policy. Bandwidth available for wire-
less communication is divided into four equal parts (using
one of the available technologies, e.g., FDMA). Each
quarter of the bandwidth can be used throughout the
network (by all cells) to forward (transmit) packets only
in one direction (up, right, down, or left). Such a policy
corresponds to a scheme in which each cell consists of
four virtual servers, each forwarding packets to one of
the neighboring cells; see Fig. 3 for an illustration. Note
that according to Lemma 5 each virtual server is able to
successfully transmit packets at a fixed positive rate.

• Frame-based operation. Time is divided into frames of
length time units. At the beginning of each frame the
network is initialized in a random state, as described in the
following bullet (see Fig. 4). During a frame packets are
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forwarded according to the above rules until the end of the
frame is reached or a discard event occurs. If the end of the
frame is reached, all packets that remain in the network at
that moment are dropped. If the discard event occurs before
the end of the frame, all packets in the network are dropped
and no new packets are accepted to the network until the
beginning of the next frame. The discard event occurs when
in one of the cells a packet arrival occurs and the newly
arrived packet cannot be accommodated in the buffer ac-
cording to the buffer management policy, i.e., the packet
has to be dropped. For example, if a node has of
its own packets in the buffer and it generates a new packet,
then the discard event occurs.

• Initialization. The random state is the steady state of the
network with the same topology and traffic flows but with
each node having an infinite buffer. A probabilistic descrip-
tion of such a state is well known since the infinite buffer
network admits a product-form solution. The packets with
which the network is initialized contain dummy payloads;
however, they are treated by the network in the same way
as regular packets. Note that due to the initialization pro-
cedure a frame can be discarded right at its beginning.
Full details of the initialization procedure are outlined in
Appendix B. Here we just point out that the time re-
quired to initialize the network satisfies, as

(14)

The frame-based operation allows one to focus on a single-
frame analysis since events occurring in two different frames are
independent. The length of the frame is chosen in such a way
that a large number of packets pass through the network during
a single frame while the probability of a packet loss remains
negligible. Now, the remainder of the proof is divided into three
parts.

Part I. We estimate the load and amount of buffer space avail-
able in each cell. To complete the description of the constructed
scheme, the size of cells needs to be specified. We choose
to be the smallest function of such that each cell contains at
least nodes for some . Let denote the number of
nodes in the th cell. By Lemma 8 of Appendix C, for every fixed

there exists such that if ,
then

(15)

where is the minimum number of nodes
contained in a cell. Lemma 8 also states that there exists a finite
constant (independent of ) such that

(16)

where is the maximum of the number of
nodes contained in a cell.

Next, let each node generate packets at Poisson rate
, where is a constant independent of ,

and is the packet size that may depend on . Lemma 9 of
Appendix C allows for an estimate of a potential load of each

cell, i.e., the rate at which packets traversing cell are injected
in the network

where route is a collection of cells that a packet originating
in the th cell needs to traverse to reach its destination, and
is the rate at which packets are served (transmitted to the next
cell). Equivalently, , where is the number of
lines that cross the th cell when all sources are connected to
their destinations using the column-first rule (see Fig. 2 for an
example). Letting denote the maximum potential load

and invoking Lemma 9 yield

(17)
since and .

Now, define the following event:

and the corresponding conditional probability measure

Informally, event indicates that each cell in the network is
not overloaded and that there exists enough buffer space in each
cell. From limits (15), (16) and (17) it follows that

(18)

Equation (18) allows one to consider only networks that are not
overloaded and have “sufficient” buffer space.

Part II. Now we estimate the probability of an arbitrary frame
being discarded. Let , be the number of packets
at time in the th node buffer that have node as their source.
Clearly, we have since each node can accom-
modate at most of its own packets. Furthermore, let

, be the number of packets at
time in the th virtual buffer of the th cell that originated in
other cells. Without loss of generality consider the frame over
the time interval and define

where . An important observation is that on
event no packet losses occur in the original network during
the time interval , which implies that the frame over the
interval is not discarded. Equivalently, is a lower
bound on the probability of a frame not being discarded on
event . The following lemma, whose proof can be found in
Appendix D, provides a bound on this probability. The depen-
dency of on parameter (see the definition of event )
is through quantity .
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Lemma 6: If , then

Part III. Next we consider an arbitrary packet in the original
finite-buffer network and estimate the conditional probability

, given event , of the packet being delivered to its
destination. Let be the total amount of time the packet spends
in the network given that it is eventually delivered to its desti-
nation. On event , the quantity can be upper bounded as
follows:

where is a sequence of i.i.d. exponential random
variables that are equal in distribution to packet service times
with mean . The bound is due to the finiteness of buffers
throughout the network, i.e., the fact that only a limited number
of packets can be served between the considered packet’s
arrivals and departures.

On event the amount of buffer space available at each
cell is upper bounded by and each packet traverses
at most cells. Then, on , the conditional probability

that an arbitrary packet is delivered to its destination is lower
bounded by

(19)

where is a uniformly distributed random variable on
and . Effectively, the bound states that if the
frame during which the packet is generated is not discarded and
the packet generation time is not close to the end of the frame,
then the packet is delivered successfully. The prefactor is due
to the fact that packets do not reach their destinations if they are
generated during the initialization period, and its multiplicative
nature arises from the independence of the arrival processes and
the initialization periods. The random variable represents the
amount of time between packet generation and the end of the
current frame. The uniform distribution of and its indepen-
dence from yield an easy bound on the second term in the
preceding equation

The last inequality, (19) and Lemma 6 render

(20)

The preceding equation highlights the trade-off in selecting the
frame length . The last term on the right-hand side is linear in

while the third term is inversely proportional to . In other
words, the larger the value of , the higher the probability of
a frame being discarded; however, small limits the ability of
packets to reach their destinations by the end of the frame.

Now, setting and using (14) result in
as . Next, by re-

calling and
, and by letting be sufficiently

large (yet finite) and be sufficiently small, straightforward
calculations show that, as

Upon substituting the above estimates and (18) in (20) it is easy
to conclude that the conditional probability of the packet not
being delivered satisfies, as

Finally, the proof of the theorem is completed by combining the
preceding estimate of and (18).

We conclude this section with an observation that when is
chosen to be larger than the scheme remains buffer
scalable, although it achieves lower throughput analogous to [2].
The buffer scalability follows from the fact that the larger the
cells, the larger the achievable buffer space at each cell, and,
hence, one can expect a lower probability of loss.

VI. CONCLUDING REMARKS

Large and rapidly increasing networking infrastructures
place network scalability as a central problem in designing next
generation communication protocols and architectures. While
this problem wasconsidered to some extent by practitioners and
system engineers, there has been, in particular in the context
of finite buffers, little attempt to establish its mathematical
foundations. The need for theoretical investigation is even more
apparent since conducting experimental studies on large-scale
networks is very expensive or practically infeasible.

A straightforward, albeit very inefficient and expensive, way
to alleviate the issue of scalability is to build nearly fully con-
nected networks where each node is only a few hops away from
any other node. Hence, the protocols designed for small net-
works are likely to extend well to this large highly connected
network. However, this is not even an option for wireless ad hoc
networks since achieving theoretical capacity bounds requires
that packets traverse long routes. Even the long routes would
not be a problem in a world of perfect synchronization without
randomness. However, as we have argued in the paper, packet
transmission times are inherently random due to the multitude of
effects, arising at the physical, MAC and data-link layers. This
leads to the strong dependency between the loss probability on
each hop and the network size. Namely, the longer the route,
the fewer the losses should be on each hop in order to maintain
constant end-to-end performance.

In the context of static wireless ad hoc networks, we demon-
strate that the network cannot operate at its capacity limit while
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maintaining a constant buffer space in each node. However,
we construct a provably scalable protocol that obtains just
a slightly smaller throughput with fixed buffers, capable of
storing only a few packets. This understanding is especially
important for wireless sensor networks that operate with very
limited resources.

Scalability of protocols can be studied in mobile wireless
networks also. In particular, buffer scalability of mobile wire-
less networks was studied in [18]. Such networks can poten-
tially achieve much higher throughput of by exploiting
node mobility [19]. The type of algorithm studied in [19] is
not buffer scalable since it is expected that each node needs
to have buffer space of size packets [18], although de-
tails differ depending on the mobility model. By considering
the family of algorithms devised in [2]–[4] it is possible to deter-
mine the throughput that can be sustained with limited resources
at each node; see [18] for details. The key idea for increasing the
throughput is to limit the number of hops packets traverse [19];
see also [2] and [20] for studies of throughput-delay trade-offs in
networks with mobility. With finite buffers, overflows can occur
not only because of the random service times, as described in
this paper, but also because of the random mobility of nodes.
However, the complexities present in our paper do not arise
in analyses of mobile networks that exploit the algorithm pro-
posed in [19] where packets traverse only a limited number of
hops and, therefore, these types of algorithms appear easier to
analyze.

APPENDIX

A. Asymptotic Notation

Throughout the paper we use standard notational conven-
tions. For two nonnegative functions and : (i)

means that there exist positive constants , and
such that for all , (ii)

means that there exist positive constants and
such that for all , (iii)

means that there exist positive constants and such that
for all .

B. Initialization Procedure

In this section we discuss an initialization procedure for the
transmission scheme described in Section V. We remark that
there may be other procedures that can achieve the desired goal,
but the one described here suffices for our proof. Exact details
of different procedures depend on the system architecture and
node resources.

Since the network needs to be initialized in the steady-state of
the infinite-buffer network that admits a product-form solution,
a sequential procedure that initializes one queue at a time is
sufficient. Therefore, we focus on a single virtual queue (i.e.,
one of the four virtual queues in a cell—see Fig. 3).

We assume that each packet contains its destination address
and that nodes have access to a source of randomness. Each node
in the network can be identified with a number . In
addition, each cell can be identified by a pair

, with increasing from left to right and increasing
from bottom to top; see Fig. 2.

The first step is to establish the utilization of the queue, i.e.,
the number of flows served by the queue. A node in the cell of
interest broadcasts its address and a number between 1
and 4 that identifies the queue of interest. After that, all nodes
sequentially indicate, using labels in an established order if
their flows utilize the queue. Note that for any particular flow,
defined by its source and destination coordinates, it is easy for a
queue to compute whether this flow utilizes it or not. Therefore,
simple counting of the number of flows that traverse a particular
node establishes the utilization since all nodes generate packets
at the same Poisson rate. This step of the procedure takes
time units to execute.

The second step is to generate a random number of dummy
packets and place them in the appropriate parts of the virtual
buffer. Dummy packets are generated sequentially. Using a
source of randomness, a node in the cell generates Bernoulli
(0–1) random variables with its parameter being the queue’s
utilization until 0 occurs. If a 1 is generated, one of the nodes
that have packets forwarded by the queue is chosen at random,
and that queue’s destination is made the destination of the
dummy packet. The dummy packet is stored in the virtual
buffer according to the buffer management policy. If the
dummy packet cannot be stored, then the procedure is com-
pleted with the frame being discarded. Using a random walk on
the nodes, a random node that uses the queue for forwarding
can be obtained in expected time , and, thus, the second
step can be executed in time units.

Upon combining the preceding two steps, it is apparent that
the expected time to initialize the network is , which
justifies the claim in (14).

C. Auxiliary Results

This subsection contains three results on the wireless network
model described in Section IV. The first one provides a lower
bound on the number of hops in the case when all source-desti-
nation pairs are able to achieve the maximal possible throughput

. Effectively, the lemma is a consequence of the re-
laxed protocol model defined by (9).

Lemma 7: If each source-destination pair achieves at least
bits/s throughput (with packets of size ), then at least

of all flows traverse at least hops a.s. for some suffi-
ciently small .

Proof: Assume the contrary, i.e., that the statement of the
lemma is false. Consider a particular flow (labeled by the
source node), and let be the number of hops the flow tra-
verses, be the Euclidian distance from the source to the desti-
nation and be the length of the th hop . Define
a set of short flows and note that if the
lemma does not hold then for any and large enough

(21)

where represents the number of elements in set .
Following the argument in [1] (see Theorem 2.1 in [1]) and

using the protocol model, if a node transmits a packet on a hop of
length , then no other node within can transmit a packet
simultaneously (if the packets are to be received successfully).
Hence, each packet transmission requires at least
area of the unit square (the factor is due to edge effects).



JELENKOVIĆ et al.: SCALABILITY OF WIRELESS NETWORKS 305

Considering a single packet from flow , we observe that it oc-
cupies the following product of space and expected time (recall
that is the expected amount of time needed to transmit a
packet over 1 hop):

(22)

where the inequality follows from the convexity of the quadratic
function and .

Now, by the strong law of large numbers, for at least of
the flows, we have for some sufficiently small a.s.
as ; define . Note that by multiplying
(22) with the rate we obtain the area of the unit square
that a flow covers. Therefore, using (22), the flows in cover
at least the following space within the unit square:

for any , since each source inserts packets at least at rate
and . Finally, since the preceding

inequality holds for any , one can select small enough
to make the right-hand side of the last inequality larger than 1,
contradicting the fact that the area of the unit square is 1.

The next lemma estimates the number of nodes in cells as a
function of the cell size. Consider a unit square partitioned into
cells of equal area , as in Fig. 2, and recall that
is assumed for simplicity to be an integer. Nodes are uniformly
distributed in the unit square with being the number of nodes
in the th cell (where the labeling of cells is arbitrary).

Lemma 8: Let . If
and , then

(23)

If , then there exists such that

Proof: First, we bound the probability that there are fewer
than nodes in a single cell of area . To this end,
Markov’s inequality yields for all

as ; the first equality is due to the independence and
uniformity of the locations of nodes. Setting

in the preceding inequality and using the assumption of the
lemma, we obtain, for large

(24)

Finally, an application of the union bound results in

which, in combination with (24), yields (23).
The proof of the second statement of the lemma is very sim-

ilar. Using Markov’s inequality for results in

From the preceding equation it is evident that there exists
such that as since

by assumption. Invoking the union bound
yields the second statement of the lemma.

The last result of this subsection provides an estimate of
cell loads under column-first routing. Consider the unit square
partitioned into square cells of size as in Fig. 2. Let each
source-destination pair be connected by a line that stems from
the column-first routing, and let be the number of such
lines that cross the th cell. Namely, if and

are the coordinates of a source and destination,
respectively, then the line connecting those two nodes is defined
by three points: , and , e.g., see Fig. 2.
The following lemma bounds the number of lines connecting
source-destination pairs that cross a single cell. A similar result
was established in [2] for a unit torus and the straight-line
routing scheme.

Lemma 9: If and as , then

(25)

Proof: Fix a particular cell, e.g., the one selected in Fig. 2.
Let be the number of nodes in the shaded area in Fig. 2, i.e.,
the number of nodes in the area formed by two rectangles of
area that have the selected cell as their intersection. Then,
quantity can be upper bounded as

(26)

where is a Bernoulli random variable that indicates whether
the route corresponding to the th source-destination pair (la-
beled according to the source) has its destination in the shaded
area, i.e., the destination is one of nodes in the shaded area.
Since each source chooses its destination uniformly at random,
the random variables are i.i.d. conditional on with

(27)
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Due to the uniform distribution of nodes on the unit square,
, and, thus, from (26) and (27) we have

for all . Next, we consider the moment generating func-
tion of and upper bound it using (26)

where . In order to evaluate the right-hand side of the
preceding inequality we consider a conditional expectation

Since the assumption of the lemma and the strong law of large
numbers imply a.s., one has that, as

Observing that is binomially distributed results in

(28)

Next, the union bound and Markov inequality yield

for any . Substituting (28) in the preceding inequality, and
then using the Taylor expansion in the neighborhood , one
can conclude that there exists such that for all large
enough

(29)

By the assumptions of the lemma, (29) yields (25).

D. Proofs

1) Proof of Lemma 1: The first step of the proof is to establish
that there is a coupling between the service times of the two
queues such that, for all

(30)

To this end, we couple the service times in these queues such
that the packets with overlapping time in service depart simul-
taneously from both systems. The coupling is feasible due to the
memoryless property of the exponential distribution for service
times.

Formally, let be the subset of service requirements
of customers that are actually admitted in the second

queue. Then, given an i.i.d. sequence of service requirements
in the first queue, we next construct an i.i.d. sequence

of service requirements of customers . Note that this
sequence can be augmented into the sequence of service require-
ments of all customers arriving to the second queue, as
claimed by the lemma. To this end, let be the sequence
of times at which customers enter service in the second queue

; if then , otherwise . Next,
define to be the service time of a customer entering ser-
vice at time in the first queue and

as the first time after time that the first server
is busy. Let be an i.i.d. sequence of exponential random
variables that is independent of and the arrival-time se-
quences. Now, the coupling between the two service-time se-
quences is as follows:

(31)

Clearly, due to the memoryless property of the exponential dis-
tribution, the sequence is an i.i.d. sequence of expo-
nential random variables.

Then, the proof is by induction over the times ,
immediately after an arrival or departure in either queue. Sup-
pose that for some . If an
arrival occurred right before , then (30) holds for
due to the assumption . On the other hand,
if a departure occurs immediately before then either cus-
tomers depart from both queues or only from the one with buffer

. However, in the latter case (due to the coupling) one has
and, therefore, (30) holds. Note that the cou-

pling (31) also yields .
Finally, we consider (1). The definition of functions and

(30) yield

(32)

From (32), the nonnegativity of the indicator function and the
assumption of the lemma , it easily follows
that

This concludes the proof of the lemma.
2) Proof of Lemma 4: Let be the sequence of arrival

times to the queue of customers belonging to classes in over
the time interval and for convenience set . The
fact that the number of customers increases only at the
arrival times results in

where , and, thus,
due to the Poisson nature of . The union bound, the
well-known PASTA property, and the monotonicity of the dis-
tribution function yield

(33)
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Considering that the total number of customers in the system
is geometrically distributed with parameter , that all of them
have the same service requirement distribution, and that each
customer belongs to a class in with probability results in

and thus

(34)

On the other hand, Markov’s inequality and the Poisson distri-
bution of render

(35)

Combining (33)–(35) concludes the proof.
3) Proof of Lemma 6: Consider a network of the same

topology and traffic flows as the original one, however, with
virtual buffers in each cell having infinite sizes. As before, the
buffer policy is FCFS within each virtual buffer. The network
is in stationarity at time . Given this scheduling policy
and the Poisson assumption on times when packets enter the
network, we observe that the network of virtual buffers is in fact
a multiclass Jackson network (also known as a Kelly network)
that admits a product-form solution [21, p. 101], [22, p. 123]. A
customer (packet) class corresponds to a particular flow in the
network. In this corresponding infinite-buffer network, packets
belonging to any flow and departing any cell form a Poisson
stream.

Define quantities and corresponding to vari-
ables and , respectively, that are previously defined
for the finite-buffer network. Namely, let , be
the number of packets originated at node that are at time in the
th node buffer of the infinite-buffer network. Likewise, define

the collection of quantities .
According to the initialization procedure, we have

(36)

where and denotes the minimum operator.
In order to estimate , we introduce two events

The first event , defined for the finite-buffer network, guaran-
tees that the frame is not discarded right at . The
second event indicates that the quantities and
remain bounded in the infinite-buffer network during the entire

duration of the frame. Next, it is straightforward to relate the
probabilities and as follows:

(37)

where and indicate the complementary events of and
, respectively. The second equality in the preceding equation

is due to the fact that in the absence of losses in the finite-buffer
network the two networks behave identically, i.e., all the packet
transitions between cells are the same. Bounding the conditional
probability of event using (36) is easy since the infinite-buffer
network is in stationarity at time

(38)

In the preceding relationship, it is important to consider only the
conditional probabilities on event since on each queue
in the network is not overloaded and, therefore, re-
sults for stable Kelly networks apply. The bound (38) is due to
the fact that the number of customers in each queue is geomet-
rically distributed with the parameter of the distribution being
its load. In addition, each packet belongs to a certain class with
probability that is equal to the ratio of arrival rates of this par-
ticular class and all classes together. To analyze the probability
of event we introduce two families of stopping times

i.e., is the first time the number of packets originated in
node reaches level in the th node buffer, given that the
infinite-buffer system is in stationarity initially. Then the union
bound renders

The routing, buffer management, and bandwidth sharing poli-
cies ensure that the infinite-buffer network is feedforward.
Namely, queues in the network can be labeled in such a way
that each packet traverses queues with an increasing order of
labels (see Fig. 5). This fact allows one to estimate the hitting
times since input processes to individual virtual buffers and the
node’s designated local buffers are independent of their states.
In particular, applying Lemma 4 yields

(39)
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Fig. 5. Queues in the network (see Fig. 3) can be labeled with integers in such
a way that each packet traverses queues with an increasing order of labels. The
figure shows a labeling for a network that consists of nine cells, i.e., 36 queues.
Column-first routing is used, e.g., the route from the lower left cell to the upper
right cell is 1-2-25-26.

where we used the fact that on event all queues have their
load bounded from above by and the fact that if the arrival rate
of packets from outside of the cell is nonzero then it is at least

. Combining (37)–(39) with and yields the
desired result

This concludes the proof of the lemma.
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