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Abstract. The stationary workload W
φ
A+B of a queue with capacity φ loaded by two independent

processes A and B is investigated. When the probability of load deviation in process A decays slower

than both in B and e−√
x , we show that Wφ

A+B is asymptotically equal to the reduced load queue Wφ−b
A

,
where b is the mean rate of B. Given that this property does not hold when both processes have lighter than
e−√

x deviation decay rates, our result establishes the criticality of e−√
x in the functional behavior of the

workload distribution. Furthermore, using the same methodology, we show that under an equivalent set of
conditions the results on sampling at subexponential times hold.

Keywords: large deviations, non-Cramér type conditions, reduced load equivalence, independent sampling,
subexponential distributions

1. Introduction

Statistical resource sharing provides a mechanism for improving operating efficiency
in many areas of business and engineering. This mechanism is particularly useful in
communication networks, where resources, such as link transmission capacity and buffer
space, are shared among different user sessions. This sharing creates potential workload
backlogs that need to be addressed. A baseline model of the backlog is represented by a
workload Wφ

A+B of a stationary queue of capacity φ and independent arrival processes A
and B. Processes A and B can be interpreted as independent demands for a generic
resource φ.

Thus, it is of general interest to provide analytical tools for understanding the sta-
tistical behavior of Wφ

A+B . In the context of heavy tails, in [11, theorem 4.4] (see [4,16]
for related studies) it was shown that when process A has polynomial characteristics and
B is exponentially bounded, then as x → ∞

P
[
W

φ

A+B > x
] = P

[
W

φ−b
A > x

](
1 + o(1)

)
, (1)
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where b is the mean rate of process B and Wφ−b
A is the workload of a queue with reduced

load A and capacity φ−b. In [1] the preceding relationship was further investigated and
termed reduced load equivalence. For related reduced load equivalence results with
polynomial tails see [3,12,19, and the references therein].

In this paper we develop a novel large deviation method that under general con-
ditions establishes the reduced load equivalence relationship (1). Our results, in con-
junction with the known fact that (1) fails when both processes have lighter than e−√

x

characteristics [7], establish the criticality of e−√
x in this setting. Furthermore, the uni-

form large deviation bound from proposition 1 that plays the central role in our analysis
may be of independent interest.

Our main result on reduced load equivalence is stated in theorem 2. The statement
of this theorem significantly simplifies when the distribution of deviations in process B
has lighter than e−√

x tail; this is presented in proposition 2. Informally, heuristic of our
analysis can be briefly described with the following steps (for large x)

P
[
W 1
A+B > x

] ≈ P

[
sup
t�lx

{
At − (1 − b)t

} + sup
t�lx

{Bt − bt} > x
]

(2)

≈ P
[
W 1−b
A + Z+√

x > x
]

(3)

≈ P
[
W 1−b
A > x

]
, (4)

where Z is a Gaussian random variable and x+ represents the positive part of x. The first
step is justified by lemma 7. Substantiating approximation (3), i.e., providing a satisfac-
tory bound on the second supremum in (2), represents the main technical difficulty. This
is facilitated by [10, theorem 3.2]; strengthened versions of this theorem are presented
in lemma 5 and proposition 1. Necessary and sufficient conditions for (4) to hold are
provided in theorem 1.

Furthermore, we demonstrate the strength of our new approach by showing that
under an equivalent set of conditions the results on independent sampling (see [2,8]) at
subexponential time T hold, i.e., for independent T and B as x → ∞

P[BT > x] = P[T b > x](1 + o(1)
)
.

Our results are stated in theorem 3 and proposition 3.

2. Preliminaries

2.1. Gaussian insensitivity

The purpose of this subsection is to provide a framework for justifying (4) of the intro-
duction. Necessary and sufficient conditions for this to hold are provided when W 1−b

A

is square-root insensitive as in the following definition 1. The square-root insensitivity
appears in [2,8].

Throughout the paper, for any two real functions f (x) and g(x), we use the stan-
dard notation f (x) ∼ g(x) as x → ∞ to denote limx→∞ f (x)/g(x) = 1.
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Definition 1. Random variable X is called square-root insensitive if

P
[
X > x − √

x
] ∼ P[X > x] as x → ∞.

Remark 1. IfX is square-root insensitive then P[X > x−k√x ] ∼ P[X > x] as x → ∞
for any k.

The class of long-tailed random variables is the largest operational class of heavy-
tailed random variables.

Definition 2. A nonnegative random variable X is long-tailed (X ∈ L) if as x → ∞
P[X > x + y] ∼ P[X > x], ∀y � 0.

The following lemma relates long-tailed and square-root insensitive random vari-
ables.

Lemma 1. X is square-root insensitive if and only if
√
X+ ∈ L.

Proof. If
√
X+ ∈ L then for x > 1

1 � P[X > x − √
x ]

P[X > x] � P[√X+ >
√
x − √

x ]
P[√X+ >

√
x ]

� P[√X+ >
√
x − 1]

P[√X+ >
√
x ] → 1,

as x → ∞. On the other hand, if X is square-root insensitive then for x > y � 0

1 � P[√X+ > x + y]
P[√X+ > x] � P[X > x2 + 2yx + y2]

P[X > x2]
� P[X > x2 + 3yx]

P[X > x2] → 1, as x → ∞. �

In this paper C denotes a sufficiently large positive constant, while c denotes a
sufficiently small positive constant. The values of C and c may vary in different places;
for example, C/2 = C, C2 = C, C + 1 = C, etc.

The hazard function Q(x) of a random variable (r.v.) X is defined as Q(x) �
− log P[X > x].

Lemma 2. If X is square-root insensitive then its hazard function Q(x) = o(
√
x) as

x → ∞.

Proof. Lemma 1 renders
√
X+ ∈ L and, thus, the hazard function of

√
X+ is o(x) as

x → ∞ (see [17, remark 2.6]), or equivalently Q(x) = o(
√
x) as x → ∞. �
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The following theorem represents the main technical result of this subsection. It
provides a tool to justify, in section 3, step (4) of the outline in the introduction.

Theorem 1. Let Z be a standard normal random variable. Then X is square-root insen-
sitive if and only if

P
[
X > x − Z+√

x
] ∼ P[X > x] as x → ∞.

Remark 2. If X is square-root insensitive then P[X > x − kZ+√
x ] ∼ P[X > x] as

x → ∞ for any k.

Proof of theorem 1. (Only if part). For x > k3 > 1

P
[
X > x − Z+√

x
]
� P

[
Z+ > 3

√
x

] + P

[√
X+ �

√
x − Z+√

x, Z+ � 3
√
x

]
� P

[
Z+ > 3

√
x

] + P
[√
X+ �

√
x − Z+, Z+ � 3

√
x

]
� P

[
Z+ > 3

√
x

] + P
[√
X+ >

√
x − k

]
+ 1√

2π

∫ 3√x

k

P
[√
X+ >

√
x − u

]
e−u2/2 du. (5)

Lemma 1 implies
√
X+ ∈ L and from definition 2 it follows that for any ε > 0 there

exists k > 0 such that P[√X+ >
√
x − u] � P[√X+ >

√
x ] eεu for all

√
x − u > k.

This, together with (5) and lemma 2, yields

1 � lim
x→∞

P[X > x − Z+√
x ]

P[X > x] � 1 + 1√
2π

∫ ∞

k

eεu−u
2/2 du.

Letting k → ∞ completes the first part of the proof.
(If part). Note that

P
[
X > x − Z+√

x
]

� P
[
Z+ > 1

]
P[X > x − √

x ] + P
[
Z+ � 1

]
P[X > x],

which, in conjunction with the assumption, implies P[X > x − √
x ] ∼ P[X > x] as

x → ∞. �

2.2. Large deviation results

This subsection presents several large deviation bounds that will be used in proving our
main results. We use the following two classes of heavy-tailed distributions:

Definition 3 [5]. A nonnegative r.v. X is called subexponential (X ∈ S) if as x → ∞
P[X1 +X2 > x] ∼ 2P[X > x],

where X1 and X2 are independent copies of X.
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Definition 4 [13]. A nonnegative r.v. X (or its hazard function) belongs to class SC
(subexponential concave) if its hazard function Q(x) is eventually concave, such that, as
x → ∞

Q(x)

log x
→ ∞

and for x � x0, βx � u � x,

Q(x)−Q(u)

Q(x)
� α

x − u

x
,

where 0 < α < 1, 0 < β < 1.

Random variables with hazard functions (log x)γ , γ > 1, and xα , 0 < α < 1,
belong to SC. The following lemma states two basic properties of r.v.s in SC; see [10]
for additional discussion on class SC.

For a nonnegative random variable X with finite mean EX, the residual distribu-
tion Fr is defined by Fr(x) = (EX)−1

∫ x

0 P[X > u] du, x � 0. A random variable Xr

with distribution Fr is called the residual variable of X.

Lemma 3 [10].

(a) If Q ∈ SC, then Q(x) � Q(u)(x/u)α for all x0 � u � x.

(b) If X ∈ SC then X, Xr ∈ S .

In the remaining part of this subsection, we assume that {X,Xi, i � 1} is a se-
quence of independent and identically distributed (i.i.d.) r.v.s. The next three lemmas
will be used in section 3 to estimate the deviations of process B.

Lemma 4. If E eQ(X) < ∞ for some Q ∈ SC, then for any φ > EX

lim
x→∞ eo(Q(x))

P

[
sup
n�1

{
n∑
i=1

Xn − φn

}
> x

]
= 0.

Proof. The lemma follows from stochastic dominance, lemma 3 and Pakes’ theo-
rem [14]. �

Lemma 5. If E eQ(X) < ∞ for some Q ∈ SC, then for all x and u � 0

P

[
max

1�n�x

{
n∑
i=1

Xi − nEX

}
> u

]
� C

(
e−cu2/x + xe−(1/2)Q(u)

)
.

Proof. See the appendix. �
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Lemma 6. Let Nx = max{n:
∑n

i=1 Xi < x}. If X is nonnegative and EX2 < ∞, then
there exists δ > 0 such that for all x and 0 � u � δx

P

[
Nx − x

EX
> u

]
� Ce−cu2/x.

Proof. See the appendix. �

3. Main results

In this section we present our main results on reduced load equivalence and independent
sampling. As mentioned in the introduction, these results extend the work of [1,2]. It
will become clear from our analysis that the two problems are strongly related: the
square-root insensitivity plays a central role in both of them.

We assume that B is a regenerative process with B0 = 0. The length of the nth
regenerative cycle is denoted by νn > 0. Random variables {νn}∞

n=1 are i.i.d. independent
of a.s. finite ν0 and have finite second moment, Eν2

1 < ∞. With each νn, n � 1, we
associate random variables γn and γ ∗

n . If Tn = ∑n
i=0 νi then

γn = BTn − BTn−1 , γ ∗
n = sup

Tn−1�t�Tn

Bt − BTn−1,

with γ0 = Bν0 < ∞ and γ ∗
0 = sup0�t�ν0

Bt < ∞ a.s. Random variables {γn}∞
n=1 and

{γ ∗
n }∞

n=1 are i.i.d., independent of γ0 and γ ∗
0 , with finite first moments. Note that, by the

SLLN, the mean rate b � Eγ1/Eν1 = limt→∞ Bt/t a.s.
The proofs of our main results use the following proposition that generalizes theo-

rem 3.2 of [10] to regenerative processes.

Proposition 1. If E eQ(γ
∗
i ) < ∞, i = 0, 1, for some Q ∈ SC, then for all x and u � 0

P

[
sup

0�t�x

{Bt − bt} > u
]

� C
(
e−cu2/x + e−cx + xe−cQ(u)).

Proof. Let Nx = max{n:
∑n

i=1 νi < x}. Since for all t � 0

Bt − bt � γ ∗
0 + γ ∗

Nt−ν0+1 +
Nt−ν0∑
i=1

γi − b

Nt−ν0∑
i=1

νi, (6)

one concludes

P

[
sup

0�t�x

{Bt − bt} > u
]

� P

[
γ ∗

0 >
u

4

]
+ P

[
γ ∗

1 >
u

4

]
+ P

[
max

1�n�Nx

n∑
i=1

(γi − bνi) >
u

2

]
. (7)
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Lemma 6 provides a bound on Nx for all δ > 0 small enough

P

[
Nx − x

Eν1
> δx

]
� Ce−cx

and, hence, the third term in (7) can be upper bound as follows

P

[
max

0�n�Nx

n∑
i=1

(γi − bνi) >
u

2

]
�Ce−cx + P

[
max

0�n�(δ+1/Eν1)x

n∑
i=1

(γi − bνi) >
u

2

]

�Ce−cx + C
(
e−cu2/x + xe−(1/2)Q(u/2)

)
,

where the last inequality is due to lemma 5. Substituting the preceding bound in (7)
leads to

P

[
sup

0�t�x

{Bt − bt} > u
]

� Ce−Q(u/4) + Ce−cx + C
(
e−cu2/x + xe−(1/2)Q(u/2)

)
and the statement follows by lemma 3(a). �

3.1. Reduced load equivalence

In this subsection we investigate the tail behavior of the stationary workload of a stable
queue. The stationary workload Wφ

X of a queue with service rate φ fed by a process X
with stationary increments, is known to satisfy

W
φ

X

d= sup
t�0

{Xt − φt},

where
d= denotes equality in distribution and Xt represents the amount of work that

arrives to the queue in (−t, 0); throughout the paper X will be considered equal to A,
B or A + B. In the queueing context, a natural assumption on B is that sample paths
are a.s. increasing, i.e., in this subsection γi = γ ∗

i for i � 0. For convenience, we put
WX ≡ W 1

X and let a denote the mean rate of process A.
The following theorem is the first main result of this paper.

Theorem 2. Let E eQ(γi) < ∞, i = 0, 1, for some Q ∈ SC and Eν2
1 < ∞. If W 1−b

A ∈ S
is square-root insensitive, P[W 1−b

A > x] = e−o(Q(x)) and for some a < φ < 1 − b

lim
k→∞

lim
x→∞

P[Wφ

A > kx]
P[W 1−b

A > x] = 0,

then as x → ∞
P[WA+B > x] ∼ P

[
W 1−b
A > x

]
.

When the regenerative increments of B do not have tails heavier than e−θ√x , θ > 0,
the conditions of the preceding theorem can be relaxed. In particular, the assumptions
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W 1−b
A ∈ S and P[W 1−b

A > x] = e−o(Q(x)) are not needed. Note that the class of distribu-
tions SC was used in bounding deviations of process B rather than process A. In the case
when the deviations of process B are not heavier of those attributed to the CLT, in view
of theorem 1, the square-root insensitivity condition on W 1−b

A is essentially necessary;
this is formalized in the following proposition.

Proposition 2. Let E eθ
√
γi < ∞, i = 0, 1, for some θ > 0 and Eν2

1 < ∞. If W 1−b
A is

square-root insensitive and for some a < φ < 1 − b

lim
k→∞ lim

x→∞
P[Wφ

A > kx]
P[W 1−b

A > x] = 0,

then as x → ∞
P[WA+B > x] ∼ P

[
W 1−b
A > x

]
.

These results extend [1, propositions 8.2 and 8.3], where A is assumed to be an
On–Off process with a specific form of the distribution of On periods and B is expo-
nentially bounded. In particular, [1, proposition 8.3] assumes that the tail of the residual
distribution of On periods is of the form e−αxβ with β < 1/3.

Possible choices ofA include, for instance, an On–Off process with subexponential
On periods and a Gaussian process exhibiting long-range dependence, cf. [18]. Next, we
specialize our result to the case where A is a stationary On–Off process. For the exact
construction of such a process see [9]. Let On periods be equal in distribution to τ .
Denote by r and a the peak and average rate, respectively.

Corollary 1. Let E eQ(γi) < ∞, i = 0, 1 for some Q ∈ SC and Eν2
1 < ∞. If τr ∈ S is

square-root insensitive, P[τr > x] = e−o(Q(x)), r > 1 − b > a and

lim
k→∞ lim

x→∞
P[τr > kx]
P[τr > x] = 0,

then as x → ∞
P[WA+B > x] ∼ P

[
W 1−b
A > x

]
.

Proof. Follows from theorem 2 and the asymptotics for W 1−b
A (see [11, theo-

rem 4.3]). �

Before we turn to the proofs of theorem 2 and proposition 2, we state an additional
preliminary result.

Lemma 7. Let E eQ(γi) < ∞, i = 0, 1 for some Q ∈ SC. If P[W 1−b
A > x] = e−o(Q(x))

and for some a < φ < 1 − b

lim
l→∞

lim
x→∞

P[Wφ

A > lx]
P[W 1−b

A > x] = 0,
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then

lim
l→∞ lim

x→∞
P[supt>lx{At + Bt − t} > x]

P[W 1−b
A > x] = 0.

Proof. See the appendix. �

We are now ready to present proofs of theorem 2 and proposition 2.

Proof of theorem 2. The proof consists of deriving upper and lower bounds.
Upper bound. Observe that for l > 0

P[WA+B > x] � P

[
sup

0�t�lx

{At + Bt − t} > x
]

+ P

[
sup
t>lx

{At + Bt − t} > x
]
. (8)

The second term is negligible by lemma 7 as x → ∞ for large l. To estimate the first
term, we proceed as follows. By using supt{f (t)+g(t)} � supt f (t)+ supt g(t) for any
two functions f (x) and g(x) one obtains for k > 0

P

[
sup

0�t�lx

{At + Bt − t} > x
]

� P

[
sup

0�t�lx

{
At − (1 − b)t

} + sup
0�t�lx

{Bt − bt} > x
]

� P
[
W 1−b
A > x − k

√
x

] + P
[
W 1−b
A + Ylx > x, W 1−b

A � x − k
√
x

]
� f1 + f2, (9)

where Yx � sup0�t�x{Bt − bt}. Proposition 1 yields an upper bound on f2

f2 �
∫ x−k√x

0
P[Ylx > x − u] dP

[
W 1−b
A � u

]
�C

∫ x−k√x

0

(
e−c(x−u)2/(lx) + e−clx + lxe−cQ(x−u)) dP

[
W 1−b
A � u

]
� f21 + f22 + f23. (10)

Integration by parts and change of variables (z = (x − u)/
√
x) result in

f21 �Ce−cx/ l + Cl−1
∫ x−k√x

0

x − u

x
e−c(x−u)2/(lx)

P
[
W 1−b
A > u

]
du

=Ce−cx/ l + Cl−1
∫ √

x

k

z e−cz2/ l
P
[
W 1−b
A > x − z

√
x

]
dz

�Ce−cx/ l + Cl−1
P
[
W 1−b
A + Z+√

x > x, Z+ > k
]
,
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where r.v. Z is a normal random variable. Combining the preceding bound with lemma 3
and theorem 1 we obtain

lim
x→∞

f21

P[W 1−b
A > x] � Cl−1

P
[
Z+ > k

]
.

It easily follows that the upper bound for the second term in (10) is f22 � Ce−clx . To
handle f23, define r.v. U such that P[U > x] = e−cQ(x) for x � xU . Then,

f23 �Clxe−cQ(k√x)
∫ x−k√x

0
e−cQ(x−u) dP

[
W 1−b
A � u

]
=Clxe−cQ(k√x)

P
[
U +W 1−b

A > x, W 1−b
A � x − k

√
x

];
thus, by lemma 3(b) and [15, corollary 2] one obtains f23 = o(P[W 1−b

A > x]) as x → ∞.
Combining the bounds on f21, f22 and f23 with (10), (9) and square-root insensi-

tivity of W 1−b
A results, after passing k → ∞, in

lim
x→∞

P[sup0�t�lx{At + Bt − t} > x]
P[W 1−b

A > x] = 1.

Therefore, the proof of the upper bound is concluded by recalling (8) and lemma 7.
Lower bound. As usual, the lower bound is somewhat easier:

P[WA+B > x] � P

[
sup

0�t�lx

{At + Bt − t} > x
]

� P

[
sup

0�t�lx

{
At − (1 − b)t

} − sup
0�t�lx

{bt − Bt} > x
]
.

Hence, for any k, l > 0,

P[WA+B > x] � P

[
sup

0�t�lx

{
At − (1 − b)t

}
> x + k

√
x
]
P

[
sup

0�t�lx

{bt − Bt} � k
√
x
]
.

(11)
Note that for t � 0

bt − Bt � bν0 + bνNt−ν0+1 +
Nt−ν0∑
i=1

(bνi − γi)

and, thus, by lemma 6 and the CLT for maximums [6, chapter 7] one obtains

lim
k→∞ lim

x→∞ P

[
sup

0�t�lx

{bt − Bt} � k
√
x
]

= 1.

The proof is now completed by dividing both sides of (11) by P[W 1−b
A > x + k

√
x ],

letting x → ∞, using the square-root insensitivity of W 1−b
A , setting first k → ∞, then

l → ∞ and applying lemma 7. �
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Proof of proposition 2. The proof is identical to the proof of theorem 2 with Q(x) =
θ
√
x except the derivation of the upper bound for f23. In the following we show that

f23 = o(P[W 1−b
A > x]) as x → ∞. For any 0 < δ < 1 integration by parts yields

f23 �Clx

∫ x−k√x

0
e−c√x−u dP

[
W 1−b
A � u

]
�Clxe−c√x + Clx

∫ x−k√x

δx

e−c√x−u dP
[
W 1−b
A � u

]
�Clxe−c√x + Clx

∫ x−k√x

δx

e−c√x−u
P
[
W 1−b
A > u

]
du. (12)

Next, square-root insensitivity yields (see lemma 1) that for any ε > 0 there exists xε � 1
such that for all xε � u � x − k

√
x

P[W 1−b
A > u]

P[W 1−b
A > x − k

√
x ] � Ceε(

√
x−√

u).

By using the preceding bound in (12) and noting the concavity of the integrand one
obtains for δx � xε

f23 �Clxe−c√x + ClxP
[
W 1−b
A > x − k

√
x

] ∫ x−k√x

δx

e−c√x−u+ε(√x−√
u) du

�Clxe−c√x + Clx2
P
[
W 1−b
A > x − k

√
x

](
e−c

√
k
√
x+ε(√x−

√
x−k√x)

+ e−√
x(c

√
1−δ−ε(1−√

δ))
)
.

Clearly, we can chose ε and δ in the preceding inequality to obtain

f23 � Clxe−c√x + Clx2
P
[
W 1−b
A > x − k

√
x

]
e−c 4√x,

which by lemma 2 and square-root insensitivity yields f23 = o(P[W 1−b
A > x]) as

x → ∞. �

3.2. Independent sampling

In this subsection we illustrate the applicability of the developed methodology by inves-
tigating the problem of independent sampling at subexponential times that was recently
studied in [2,8]. The proofs bellow require that B satisfies the CLT and proposition 1; as
a sufficient condition for this we assume that B is regenerative. In general, any process B
satisfying the CLT and proposition 1 is admissible, e.g., certain Gaussian processes as
considered in [18]. We would like to stress that the SC framework is used only to es-
timate the behavior of the sampled process B rather then the sampling time T . Note
that the deviations of process B are due to the large deviations and CLT effects. When
the deviations of B are dominated by those of the CLT, the only condition on T that
we require is the square-root insensitivity (see proposition 3). This, basically necessary,
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square-root insensitivity condition improves on some of the known results in the litera-
ture; this will be further elaborated at the end of this section. When the deviations of B
are heavier then those stemming from the CLT, one needs an additional set of conditions
on T to ensure that those deviations can be tolerated.

Define the maximum Mt = sup0�s�t Bs . Note that sample paths of Mt are nonde-
creasing. Since Bt has positive drift, heuristically, Bt is not expected to be much smaller
than Mt . Our theorem below shows that MT and BT have similar tail behavior. For
convenience, let mean rate b = 1.

Theorem 3. Let E eQ(γ
∗
i ) < ∞, i = 0, 1 for some Q ∈ SC and Eν2

1 < ∞. If T ∈ S is
square-root insensitive and P[T > x] = e−o(Q(x)), then as x → ∞

P[BT > x] ∼ P[MT > x] ∼ P[T > x].

Proof. Since BT � MT , it suffices to provide an upper bound for P[MT > x] and a
lower bound for P[BT > x].

Upper bound. Write for 0 < δ < 1

P[MT > x] � P
[
T > x − k

√
x

] + P
[
MT > x, δx < T � x − k

√
x

] + P[Mδx > x].
(13)

One needs to show that the last two terms are o(P[T > x]) as x → ∞. Note that, by
proposition 1 and lemma 3,

P[Mδx > x] � C
(
e−cx + xe−cQ(x)) � Cxe−cQ(x) = o

(
P[T > x]),

as x → ∞. To deal with the second term in (13), note that, in view of proposition 1,

P
[
MT > x, δx < T � x − k

√
x

]
=

∫ x−k√x

δx

P[Mu > x] dP[T � u]

�
∫ x−k√x

δx

P

[
sup

0�s�u

{Bs − s} > x − u
]

dP[T � u]

� C

∫ x−k√x

δx

(
e−c(x−u)2/x + e−cδx + xe−cQ(x−u)) dP[T � u].

Now, proceed exactly as in bounding f2 in the proof of the upper bound in theorem 2.
Lower bound. Following the steps of the proof of [2, theorem 3.6] we write

P[BT > x] �
∫ ∞

x+k√x
P[Bu > x] dP[T � u]

� inf
u>x+k√x

P[Bu > x] P
[
T > x + k

√
x

]
.
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Note that due to the monotonicity of (x − u)/
√
u in u one obtains for x > k2

inf
u>x+k√x

P[Bu > x] � inf
u>x+k√x

P

[
Bu − u√

u
>

−k√
1 + k/

√
x

]

� inf
u>x+k√x

P

[
Bu − u√

u
> −k

2

]
.

Therefore, the square-root insensitivity results in, for an appropriate σ > 0,

lim
x→∞

P[BT > x]
P[T > x] � 0

(
k

2σ

)
,

where 0(·) is the distribution function of the standard normal r.v. Letting k → ∞
concludes the proof. �

Proposition 3. If E eθ
√
γ ∗
i < ∞, i = 0, 1 for some θ > 0, Eν2

1 < ∞ and T is square-
root insensitive, then as x → ∞

P[BT > x] ∼ P[MT > x] ∼ P[T > x].

Proof. We follow the same steps as in the proof of theorem 3. The only difference is

that a bound on C
∫ x−k√x
δx

xe−c√x−u dP[T � u] is obtained using the same arguments as
in bounding f23 in the proof of proposition 2. �

The preceding proposition fully generalizes proposition 3.1 of [2] and shows that
theorems 3.8, 3.10 and 3.11 of [2] hold under less restrictive conditions. In addition,
theorem 3 provides an alternative set of conditions, that may appear easier to verify than
those stemming from the extreme value theory used in [2, theorem 3.6], under which the
sampling result holds. The case of Bt being a counting renewal process has been further
examined in [8]. When Bt is such a process, the only condition in proposition 3 related
to Bt is Eν2

1 < ∞. An extension of the sampling theorem to the case when the second
moment of ν1 is infinite can be found in [8, theorem 3.1].
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Appendix

Proof of lemma 5. It is sufficient only to consider the case x � Cu2 since otherwise
the lemma holds by the appropriate choice of constants. For max{1/2, β} < γ < 1 let
Yi = Xi1{Xi � γ u} and 1/(γ u) � s � Q(u)/u. Then

P

[
max

1�n�x

{
n∑
i=1

Xi − nEX

}
> u

]

� P

[
max

1�n�x

{
n∑
i=1

Yi − nEY1

}
> u

]
+ xP[X > γu]

� P

[
max

1�n�x
exp

{
n∑
i=1

s(Yi − EY1)

}
> esu

]
+ xP[X > γu].

Next, note that exp{∑n
i=1 s(Yi − EY1)} is a submartingale. Therefore, applying a sub-

martingale inequality (e.g., see [6, theorem 9.4.1]) in the preceding equation leads to

P

[
max

1�n�x

{
n∑
i=1

Xi − nEX

}
> u

]
� e−su(

E es(Y1−EY1)
)x + xP[X > γu]

� e−su−sxEY1
(
E esY1

)x + Cxe−Q(γu); (A.1)

the last bound is due to Markov’s inequality. By repeating exactly the same steps of the
proof of [10, theorem 3.2] one can show that there exists a constant C∗ such that for all
s in the given range E esY1 � 1 + sEX + C∗s2, which substituted in (A.1) yields

P

[
max

1�n�x

{
n∑
i=1

Xi − nEX

}
> u

]
� e−su+s2xC∗

esx(EX−EY1) + Cxe−Q(γu).

Next, EX − EY1 �
√

EX2P[X > γu] by Hölder’s inequality and, hence,

esx(EX−EY1) � eCu
2e−(1/2)Q(γ u) � C.

The rest of the proof is exactly the same as in [10, theorem 3.2]: choose s = Q(u)/u if
x � u2/(2C∗Q(u)) and s = u/(2xC∗) otherwise. See the proof in [10] for details. �

Proof of lemma 6. The definition of Nx and Markov’s inequality yield for s > 0

P

[
Nx − x

EX
> u

]
= P

[�u+x/EX�∑
i=1

Xi < x

]
� esx

(
E e−sX)u+x/EX−1

. (A.2)

Next we estimate E e−sX as follows

E e−sX = E
[
e−sX1{sX � 1}] + E

[
e−sX1{sX > 1}]

� 1 − sEX + s2
EX2 + e−1

P[sX > 1],
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since e−x � 1 − x + x2 for 0 � x � 1. The preceding inequality leads to

E e−sX � 1 − sEX + s2(1 + e−1)
EX2,

which, substituted in (A.2) for s = (u/x)EX/(2(1 + e−1)EX2), results in

P

[
Nx − x

EX
> u

]
�Cesxe(−sEX+s2(1+e−1)EX2)(u+x/EX−1)

�Ce−cu2/x. �

Proof of lemma 7. Let 0 < 3δ < 1 − a − b. Then

P

[
sup
t>lx

{At + Bt − t} > x
]

� P

[
Alx + Blx − lx + sup

t�lx

{
(At − Alx)+ (Bt − Blx)− (t − lx)

}
> x

]
� P

[
Alx + Blx > (1 − δ)lx

] + P
[
WA+B > (1 + lδ)x

]
� P

[
W 1−2δ
A+B > δlx

] + P[WA+B > δlx]
� 2P

[
W 1−2δ
A+B > δlx

]
� 2P

[
Wa+δ
A >

δlx

2

]
+ 2P

[
W 1−3δ−a
B >

δlx

2

]
,

where we repeatedly used the fact that for any two functions f (t), g(t), supt{f (t) +
g(t)} � supt f (t) + supt g(t). Now, since 1 − 3δ − a > b, the second term in the
preceding equation is o(P[W 1−b

A > x]) as x → ∞ by (6) and lemmas 4 and 3. Hence,

lim
x→∞

P[supt>lx{At + Bt − t} > x]
P[W 1−b

A > x] � 2 lim
x→∞

P[Wa+δ
A > δlx/2]

P[W 1−b
A > x] ;

passing l → ∞ and using the assumption yield the statement of the lemma. �
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