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Abstract

Requests for a given resource arrive in a rate-A Poisson stream, each specifying a future
time interval to be reserved for its use of the resource. The advance notices and the
requested intervals are represented by two independent i.i.d. sequences. A request is
immediately accepted if it is for an interval that overlaps no currently reserved interval;
otherwise, it is lost. We compute the reserwation probability, which is the fraction of
time the resource is booked. From the huge variety of potential applications covered by
our model, relatively new applications in existing and proposed communication systems
motivate the research here.

We begin by deriving explicit formulas for the reservation probability in several spe-
cial, but interesting cases. For spread-out advance-notice distributions, our main result
then establishes an intriguing connection between the reservation problem and the on-
line interval packing problem. For example, if the advance-notice distribution is uniform
on [0, a] and all requested intervals have unit length, then large-a estimates of the reser-
vation probability p(a, A) are available from the limit law

A 9 YV j_e—x
lim p(a,/\):/ g2l =gy
a—0o0 0

where the constant on the right arises from. connections with the classical car-parking
problem. We prove a similar result for more general distributions, a result that extends
earlier theorems for the on-line interval packing problem.

*The research of this author was done while on staff at Bell Labs
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1 Introduction

Requests for a resource arrive in a stationary Poisson stream at rate A, each
request specifying a future time interval, called a reservation interval, to be
booked for its use of the resource. If the request is indeed approved, the interval
is also called a reserved or booked interval. The advance notices (delays before
reservation intervals are to begin) are independent and drawn from a distribution
A. The durations of reservation intervals are sampled from the distribution B;
these durations are independent of each other and the advance notices. A and
B denote random variables with the distributions .4 and B.

A request is immediately rejected (lost) if and only if the resource will not
be available throughout its reservation interval, i.e., the resource has already
been reserved for a time period overlapping the requested reservation interval.
A sample path of this on-line (greedy) reservation process determines the frag-
mentation of available time into an alternating sequence of reserved and available
(idle) intervals. Hereafter, we only consider stationary versions of reservation
processes. (For all of the models that we study it is easily verified that the
reservation process has a unique stationary regime.) We study the problem of
computing a measure of the fragmentation, called the reservation probability,
which is defined as the probability that the resource is in use at any time.

The variety of potential applications covered by models like the one above is
huge, but it is the relatively new applications in existing and proposed communi-
cation systems, e.g., teleconferencing and video-on-demand systems, that have
‘given a fresh impetus to research on reservation systems. In connection with
implementations, it was argued in [4] that a slight modification of the proposed
Internet resource reservation protocol (RSVP) can provide a framework for cre-
ating advance reservation services in the Internet environment. The existence of
a commercial resource reservation service offered by AT&T was reported in [8].

We have chosen a baseline model because of its tractability and because we
seek new insights supported by an exact analysis of mathematical models. The
details of more elaborate systems, either existing or proposed, can be found in
the literature [8]; the final section (Section 5) reviews a number of features in
connection with promising open problems.

Most previous work in the communications field is quite recent and focuses
as much on engineering issues as mathematical foundations. Past engineering
research has dealt with the implementation issues of incorporating distributed
advance-notice reservation protocols in current networks [4, 6, 10, 15]. In the
combinatorial analysis of mathematical models, typical problems have been for-
mulated as follows: Given k identical copies of a resource that can accommodate
requests one at a time, and a set of requests each defined by a start and holding
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time, determine optimal schedules according to standard objectives such as the
fraction of requests scheduled, resource utilization, etc. For results on problems
of this type, see [1, 9, 11, 14]. In the stochastic model of [8], the authors propose
an efficient admission control algorithm that allows sharing of resources between
immediate requests (no advance notice) and advance reservations. The work of
Virtamo[14] is closer to ours in that he also examines the reservation problem
from the point of view of interval packing. However, his analysis of the single
resource case is less general and lacks our limit law establishing the underlying
connection between the two problems.

Subsequent sections show that, in spite of the simple structure of our reser-
vation model, an exact analysis appears to be quite difficult without further
simplification. In the next section, we analyze a number of simplified models,
beginning with an elementary slotted system in which reservation intervals have
unit durations starting at integer times. Interference among requests is greatly
simplified in that a reservation interval not covering time ¢ can not conflict with
(overlap) one that does. We then study a ”short notice” system where every ad-
vance notice is shorter than all reserved intervals. With this assumption, there
can be at most one outstanding reservation at any time, but the analysis still
requires some effort.

In our last simplified model, we consider bimodal advance-notice distribu-
tions where A = 0 or a for some fixed a. A successful analysis relies on our
ability to handle the book-ahead (A = a) requests separately from the immedi-
ate (A = 0) requests. Recall that the bimodal model is also studied in [8].

Section 4 presents our most general result, in the form of a limit law. Specif-
ically, we obtain asymptotic reservation probabilities as the advance-notice dis-
tribution becomes progressively more spread out (e.g., for a sequence of dis-
tributions with densities, the suprema of the densities tend to 0). Our main
result establishes an intriguing connection between the reservation problem and
a stochastic version of on-line interval packing [3]. In this problem, intervals of
varying lengths arrive at random times and are packed in a given ‘containing’
interval [0, z] if they are subintervals of [0, z] and do not overlap intervals previ-
ously packed. Section 3 studies the stochastic packing problem in isolation, and
extends the model in [3] to account for general advance-notice distributions with
finite support. The first part of Section 4 extends usual interval packing rule
to one with indeterminate, or “fuzzy” behavior at the boundaries 0 and z. The
latter rule is used in the second part of Section 4 in a proof of the limit law. The
third and last part of Section 4, for the special case of unit intervals, contains
a stronger sample path relationship between the regular and fuzzy-boundary
packing rules. Section 5 concludes the paper with a brief discussion of open
problems.
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2 Tractable Models

2.1 Slotted time

A reservation interval is a single time slot which can be any unit-duration interval
beginning at an integer time. The advance-notice distribution is discretized and
denoted by {a;,i > 0}, where a; is the probability that an arrival at time ¢
wants a copy of the resource during [[t] + ¢, [{] + ¢ 4+ 1). Let N; be the number
of arrivals in the slot [—(¢ + 1),—¢), 7 > 0, so that EN; = A. The reservation
probability p is computed as the probability that at time 0 the interval [0, 1) is
reserved. The arrival process need not be Poisson, but we assume that the N;
are i.i.d. random variables.

Let an attempt to reserve [0,1) be called a ‘hit’, and let H be the number of
hits by time 0. Write H = 3", H;, where H, is the number of hits from arrivals
in the interval [—(i+1), —%), ¢ > 0. The H; arei.i.d. random variables with means
Aa;, ¢ = 0,1,.... Then, in terms of generating functions, Ez¥ = [Ti>o B2,
where - -

EzHi

li

NN o
E[E[7|N;]] = E [Z ( j’> al(1— a;)Ni=d 23:,

J=0
= E(1 - a; + za;)™,
so if we let ¢, = P(N; = n), then Ez"i = Yomeo(l — a; + za;)"qn, and hence
i oS [ee]
= HZ(I —a; + 2a;)"qn , (1)
i=0n=0

In principle, we can obtain p, the probability of at least one hit, by subtracting
from (1) the first coefficient in its expansion in powers of z.

Example. For Poisson arrivals we have g, = e *A"/n!, so

B = T1300 0t sag e = [ ereon
. 1=0 n=0 i=0 -

e—/\(l z).

Thus, the number of hits in any interval is Poisson with mean A, independent of
the advance notice distribution. We have proved

Proposition 1 In a slotted system with Poisson arrivals at rate ) and any
advance notice distribution, the reservation probability is 1 — e=>. '
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Remarks Note that unit reservation intervals without restriction to equally
spaced starting times is-a difficult problem, since it is no longer true that a time
t is covered by a reserved interval if and only if there has been at least 1 request
for a reservation interval covering t; in a slotted system all such intervals must
be the same interval, but not in a system without the slot restriction where
intervals not covering ¢ can cause intervals that do cover ¢ te be rejected.

The slotted model is one of the few models that is easy to generalize to
k > 1 copies of the resource. In this case, a request, say for [¢,7+ 1), is rejected
if and only if there are already k outstanding requests for [¢,44 1); and p is the
probability that, at time 0, all k£ copies of the resource are reserved. Then the
reservation probability is computed as 1 minus the sum of the first k terms in
the expansion of (1) in powers of z. For the example of Poisson arrivals, we
obtain p = Y ;5 e A/l |

Effects of the advance-notice distribution. We give examples below for
which p depends on the advance-notice distribution.

0.4+

res. prob. p

0 . 5 : 10 . 15 20
adv. notice support a

Figure 1: Illustration for example 1
Example 1 First, we demonstrate how the presence of the advance-notice dis-

tribution can increase the reservation probability and the utilization of the sys-
tem. Informally, one would expect this to.occur when there are spikes in the
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arrival distribution. This is because the randomization in the advance-notice
distribution smooths out the arrival process and increases the chances of reser-
vation. For example, if we take P(N; = 10) = 1 — P(N; = 0) = 0.1, and
P(A =j)=1/a,0< j < a, then the dependence of the reservation probability
on the advance-notice support parameter a is as shown in Figure 1. From the
figure we can see that, for a = 20, the reservation probability is almost six times
that for zero advance notice, a = 0. In general, the increase of the reservation
probability and the utilization of the system can be made arbitrarily large by
increasing the peak value of N;.

res. prob. p
o
o

0 0.2 0.4 0.6 0.8 1
adv. notice parameter a

Figure 2: Hllustration for example 2

Example 2 Contrary to"the previous example, there are situations when the
presence of advance notice can decrease the reservation probability (and the
utilization of the system). To see this consider a sequence of Bernoulli arrivals
P(N; = 1) =1-P(N; = 0) = 0.9. Clearly, without the advance notice dis-
tribution the probability that the request is rejected is equal to zero, and the
reservation probability is p = 0.9. However, with the presence of advance notices
the rejection probability is positive and the reservation probability is decreased.
For the choice P(A = 10) = 1-P(A = 0) = a, the dependence of the reservation
probability on a is plotted in Figure 2.
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2.2 Short notice

For the remainder of the paper, we return to the continuous-time model with
Poisson arrivals. The calculation of p is still not difficult if we assume that the
support of the advance-notice distribution is to the left of the support of the
distribution of the durations of reservation intervals, i.e., the longest advance
notice is shorter than the shortest reservation interval. This system is much
simplified in that at any time t there can be .at most one reserved interval
starting at a time ¢ > t. (To see this, note that the existence of two such
intervals would imply that the later one had an advance notice exceeding the
duration of the earlier one.) } '

To compute the reservation probability p, we first compute the expected
duration of idle periods when the resource is not being used. We focus on a
reserved interval, let I denote the duration of the next idle period, and define
f(t) as the expected value of I given that time ¢ remains in the current reserved
interval. If no time remains, then I is the time to the next arrival plus an
advance notice A, and so we have the initial condition f(0) = 1/A+ EA. Note
also that f(t) must be monotone nonincreasing in ¢ and constant for t > a,
where a is the supremum of the support of A(z). '

For 0 < t < a, we describe the behavior of f(¢) in a small interval [t — At, ]
as follows: ' ’

F() = (1= AAD) f(t = AL+ AATE[(A = 1)1 45¢] + AALP(A < t)f(2)+b(At). (2)

The first and third terms reflect the fact that there is no change in [t — At, t] if
no arrival occurs, or if an arrival occurs but is rejected (it specifies an advance
notice less than the remaining time of the current reserved interval). The second
term corresponds to an accepted arrival with an advance notice A > t; the next
idle period will have duration A - t.

Now (2) yields the first-order differential equation

0 = =Af(1) = f(1) + AE[(A — )1ase] + AP(A < 1) f(2)
| —f'(t) = AP(A > 1) f(t) + AE[(A — t)1 454, (3)
which has the general solution

e J AP(A>u)du [/Ot AE[(A — z)1A>t]ef°I AP(A>u)du g o f(O)] L@

where f(0) = 1/A+EA. Now introduce f§ P(A > u)du = EA— [° P(A > u)du
and expand (4) to get )

f(@) = eftoo AP(ADu)du [/; dx /oo Ay —z)dA(u)e” [ aP(A>w) + f(O)e_’\EA] .
(5)
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Integrating by parts gives g(z) := [° AP(A > u)du = [° Mu— z)dA(u), so (5)
reduces to

ﬂﬂ=@mLEWkﬂ@M+uM+EMKW¢ (6)

Finally, ¢g(t) — 0 as t — a, so
fl@) = [ g Wt + (1/2+ EA)eEA, (7)

is the unconditional expected duration of an idle period. This and the Law of
Large Numbers for stationary processes gives

Proposition 2 In the short notice system, the reservation probability is p =
EB/[f(a) + EB], where f(a) is given by (7).

2.3 Bimodal advance notice

In this section, as another tractable special case of the advance-notice distribu-
tion, the bimodal distribution is considered, where P(A =a)=1—- P(4 =0) =
g. For simplicity, we also assume unit reservation intervals. We can assume that
a > 1, for otherwise, we would just have another instance of the short-notice
problem of the previous section.

Note that, according to the Poisson decomposition theorem, those requests
that occur with advance notice a compose a Poisson process of rate gA. Similarly,
the requests that arrive with zero advance notice (A = 0) form a Poisson process
of rate (1 — ¢)A. In addition, these two processes are independent of each other.

The main observations that make the bimodal set-up tractable are the fol-
lowing: first, since a > 1, the requests that arrive with advance reservation time
a can not collide with the requests that have zero advance notice. Hence, the
time between two successive reserved intervals that were requested with advance
notice a is exponentialy distributed with parameter ¢gA\. We term this random
variable T,.

Second, the reservation requests with zero advance notice can only fill the
empty gaps of durations 7, between the reservations made with advance notice
a. To compute the length of an idle interval in this reservation process, let
Ty be a random variable independent of T, and exponentially distributed with
parameter (1—-g)A. Then, by the strong Markov property, the duration of an idle
interval is equal in distribution to a random variable I with I = T, ifTog+1> T,
and I = Ty otherwise. Then an easy calculation gives

1—e eI

- = _ —gA
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and hence the following result.

Proposition 3 In the case of bimodal advance-notice distributions with a > 1
and unit reservation intervals, we have p = 1/[1+EI], where EI is given by (8).

Remark. As a partial check of our results, a straightforward evaluation of (7)
shows that lim,1, f(a) = EI, where EJ is the same as in (8). |
We have established that, for bimodal advance-notice distributions, explicit for-
mulas for p are available for all values of A,a, and ¢, 0 < ¢ < 1. This remains
true under several extensions of the model. For example, it is useful to have
durations for immediate requests that differ from those booking ahead. Hofri!
has pointed out that the following such model is easily analyzed.

Suppose that immediate requests are for b time units, and book-ahead re-
quests are for one time unit, with the other parameters as before. To avoid
the short-notice set-up, and to keep immediate requests from interfering with
book-ahead requests, we need a > max(b,1). Sample paths of the reservation
process consist of advance reservations (unit intervals booked ahead) alternating
with sequences of 0 or more length-b intervals requested immediately. It is easily
verified that the stationary distribution of the number V of accepted immediate
requests between consecutive advance reservations is geometric with mean

(1-ge ™

EV = .
VeI (1—g)e?eb

The expected value of the time C between the beginnings of consecutive advance
reservations is EC = 1+ 1/(Agq), so we can compute the reservation probability
from p = [1 4+ bEV]/EC.

It is worth mentioning that the analysis can also be generalized to n-modal
(n > 2) advance-notice distributions P(A = ¢;) = ¢;,0 < ¢ < n, with a¢; —a;—1 >
1,z > 0, and unit reservation intervals. In this case the reservation requests
that arrive with the largest advance notice a,, can not overlap the other requests
with smaller advance notices. The same reasoning applies to the requests with
advance notices a;, ¢ < n — 1. Thus, an equivalent recursive procedure for
constructing the resulting reservation process is as follows. First, construct a
reservation process that is obtained from Poisson arrivals of requests at rate
gnA and advance notice a,. Then fill the gaps (idle intervals) in this process
from the Poisson arrivals of requests at rate g,_1 A and advance notice a,_;.
Next, take the process resulting from this construction and fill its gaps with
the Poisson request arrivals at rate ¢,_A. Continue this procedure recursively,

! private communication
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by using Poisson rates g,—_3A,...,qA, respectively. Unfortunately, although
the construction of the reservation process appears to be straightforward, its
analysis, even for n = 3, appears to be complicated. Further analysis of the
n-modal system is left as an open problem. '

3 On-line Interval Packing

The results of the next section relate asymptotics of the interval packing prob-
lem to asymptotics of our reservation problem. In the interval packing problem,
intervals arrive randomly in R?*_ according to a Poisson process in the two dimen-
sions representing arrival times ¢ and the left endpoints of the arriving intervals.
Interval lengths are i.i.d. with distribution B. The intensity is 1, i.e., an average
of one interval arrives per unit time per unit distance. For a given z > 0, an
arriving interval is packed (or accepted) if and only if it is a subinterval of [0, z]
and it does not overlap an interval already accepted. The problem is to find,
or at least estimate, the function K(¢,z), which is the expected length of the
intervals accepted by time ¢ > 0, assuming that none has yet been accepted by
time 0 ([0, z] is initially empty).

To relate the reservation and interval packing problems, suppose we restrict
ourselves to advance notice distributions uniform on [0, y]; we generalize this
assumption in the next section. Consider the reservation problems defined by
an arrival rate A, a duration distribution B, and advance-notice distributions
uniform on [0, y,], » > 1, where the y, form an increasing sequence. The next
section shows that the asymptotic large-n behavior of these reservation problems
is the same as the asymptotic large-z behavior at time X in the interval packing
problem with B the interval-length distribution. '

The remainder of this section derives an estimate for K(t,z), assuming that
the support of B is contained in [§,d],§ > 0; for simplicity we fix § = 1 as the
time unit. The next section will then make use of this estimate in an asymptotic
analysis of the reservation problem. Our analysis generalizes that in [3] for the
case of unit-length intervals (d = 1), but leads to a result expressed in terms
of functions that, in general, can be computed only numerically. Following the
analysis below, special cases where explicit results are possible will be illustrated
by an analysis of the case B € {1,2} with P(B=1)=p=1-P(B =2) > 0.

Let {B;,i > 1} be a sequence of i.i.d. random variables independent of the
arrival process, with B; denoting the length of the ¢-th arriving interval. Let
by := EB;, by := EB? denote the first two moments.
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3.1 The transform of K(¢,z)

Denote by L.(t) the total length of the intervals packed at time ¢ in [0, 2}, and let
K(t,z):= EL(t). Consider the behavior of K during [, + At] in the interval
[0,z], with ¢ > d. Arriving intervals that overlap (z,00) are rejected, so if no
interval contained in [0, z] arrives at some time in [0, At], then nothing happens
and K(t+ At,z) = K(t,); the probability of this happening is At(z — b;). On
the other hand, if an interval with length in [2,z + Az], 1 < z < d, arrives at
position [y,y + Ay] with 0 < y < z — 2z, then K(¢,t+ At) will be the sum of
K(t,y) and K(t,z — y — z) plus z for the interval packed. The probability of
this event is AtAB(2)Ay, so we have, as At — 0,

K(t+ At,z) = [1 - At(z - by)]K(¢,z)
+ At /1 4 dB(z) /Ox_z E[L,(t) + La_y_»(t) + 2]dy + o(At). (9)

Simplifying the integral, dividing by At, and letting At — 0 gives

' d T—2z
__foéi,«T) = —(x — b)K(t,2) + bz — by + 2/ dB(Z)/ K(t,y)dy. (10)
1 0

Next, define the transforms K(¢,z) := [;°e K (t,z)dz, and B*(u) =
fld e~ "“*dB(z). The transform of (10) is then

aIC(t, U) _ [bl + u(bld —_ b2)]€_du n (?IC(t,’U,)
ot B “u? Oou

+2 /1 * 4B(2) /d ¥ v g /OM K(t,y)dy. (11)

To simplify the last term in (11), define the functionals

+ blK:(t, U)

. d .
Holt, u) := / e~ K (1, 2)dz (12)
0
and
d d -z
Hai(t,u) := u/ dB(z)/ e““”dm/ K(t,y)dy, (13)
1 z 0

determined by K (¢,z) at the “boundary” 1 < 2 < d. A more convenient repre-
sentation of H; (¢, u) follows from an integration by parts,

Hq(t,u) = /1d dB(z) (—e_“d /Od_z Ix”(t, y)dg) + e ¥ /Od_z e WK(t, y)dy) .
| (14)
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Then the last term of (11) can be written

d 0o L~z
2 / dB(z) / e dz / K(t,y)dy
1 d 0

=2 / *aB(2) ( / v / d) e do /O K@, y)dy

=9 / dB(2) / K(t,y)dy / gy~ 2ty
2ty u
23* 2B* 2 t,
which when substituted into (11) yields
OK(t,u)  0K(t,u) ( 23*(u)) C(t u)
5 = a by + K(t,u)+ (16)

where
C(t,u) = [by + u(brd — bg)le™ % + 2uB™(w)Ho(t, u) — 2uHi(t,u).  (17)
To solve (16), it is convenient to define M(v,s) := K(v,s — v), so that

IM(v,s)  0K(t,u) 8K(t,u)

v - ot du (18}

t=v,u=s—v.

If we substitute (18) into (16), then for any fixed s, (16) becomes a first-degree,
ordinary differential equation

OM(v,s) _ (b P B*(s v)) M(, ) + C(v,s—v) (19)

v s—v (s—wv)2 "’

with the boundary condition AM(0,s) = K(0, s) = 0. The solution is

M(v,s):/ovc((%—ailexp (/ <b1+2B;( )) dm) . (20)

Finally, by using K(t,u) = M(t,t + u) and replacing v,s with t,¢ + u in (20),
we obtain

= [(CEutt—€) b 2 f T
K(t,U)—L (u+t—£)2 &

which gives, after changes of variables and easy manipulations,

dg, (21)

utz 1-8%(y)
—2fu v

t
K(t,u) = 55/0 Ct = z,u + z)eM1%e Wy, (22)
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It remains to compute the unknown functions Ho(t, v) and H;(t, u), or equiv-
alently the function K (t,z) with z at the boundary 1 < z < d. It is convenient
to do this by computing a recurrence other than the one in (9). Instead of basing
the recurrence on what happens in the first At time units, as in (9), we base it
on the time of the first arrival. Observe first that exp (—t [y’ (z — w)dB(w)) is
the probability that there are no intervals packed in [0,z] during [0,¢]. Thus,
using exp[—v [;’(z — w)dB(w)]dvdydB(z) as the probability that the first arrival
occurs during [v, v+ dv] with left endpoint in [y, y+ dy] and length in [z, 2+ dz],
we compute, for z > 1, /

K(t.z) = /Ot axp (—(t _ v)/:(x - w)dB(w)) dv/lx dB(2)

/1 z(’z + K(v,y)+ K(v,z —y — 2))dy

fi 2(z — 2)dB(z) (1 3 e—tff(x—w)dzs(w)>
[z — w)dB(w)

1 @ T T—2
+2/ e~ ) (Z—w)‘w(“’)dv/ dB(z)/ K(v,y)dy, (23)
0 1 0

which for 1 < ¢ < 2, reduces to

Thus, in general, K(t,z), 1 < z < d, is evaluated inductively from (23) and
(24), and then Ho and H; are evaluated from (12) and (13).
3.2 Estimates of K(t,z)
Leading-term asymptotics in z are given by the following result, in which
1 v — R* '
a(t) = / C(t — v,v)eM exp (—2/ 1-B—(y)-dy) dv, (25)
0 0 Y

where C is given by (17).

Theorem 4 For any t > 0, we have K(t,z) ~ a(t)z as z — oo.

Proof: From (22) and (25) it follows easily that K(¢,u) ~ a(t)/u® as u | 0.
This means that, since fj K (t, z)dz is monotonically increasing in z, Karamata’s
Tauberian theorem gives [J K(t,2)dz ~ o(t)z?/2 as  — oo. Next, since z is
the expected number of arrivals per unit time in [0, z], we have %K(t,x) £ B,
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which implies in particular that 2K (t,z)/2z? — 0, as ¢ — co0. Now divide (10)
by 22, let 2 — oo, and substitute the above asymptotic limits to obtain the
result of the theorem ‘ -

In order to obtain higher-order error terms, we use complex analysis and the
Cauchy residue theorem to evaluate directly the Laplace-transform inversion

formula
: 1

o+i00

K(t,z)= ——/ K(t,u)e®™du; o >0,z > 0. (26)
211 Jo—ico

Hereafter, u should always be taken as complex. The main result needed for

the limit law of Section 4 is

Theorem 5 Fiz §,T > 0 with £ > 2T > 0. Then there exists a constant ¥(t),
such that?

sup |K(t,2) - (a(t)z + (1)) = O(e™*%).
0<t<T

Remark: By optimizing the hidden multiplicative constant in O(e~¢%), the
error bound is easily improved to O(e™¢®196%) for every ¢ € (0,1). To avoid
distracting clutter, we do not prove this stronger result: it is not needed for the
limit law of the next section. For the case d = 1, the tighter error bound can be
found in [3]. [ |

The proof of Theorem 5 is based on the following three lemmas; the proofs
of these lemmas are deferred to the next subsection. The first lemma determines
analytic properties of K and gives leading terms of its Laurent expansion.

Lemma 6 For fizedt, K(t,u) is analytic for alluw # 0; at v = 0, it has a second
order pole and the expansion

a(t t
Ktw=20 20 (27)
where a(t) is the same as in (25) and y(t) is the constant given by the integral
(22) with the integrand replaced by the second order term of its expansion at

u = 0.

The next lemma gives a growth estimate for |K]|.

2Here, and in the remaining results of this section, the hidden multiplicative constants of
the O(.) estimates depend-on, & and T, unless stated otherwise. -
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ip

T'(p)

_lp

Figure 3: Rectangular contour of integration.

Lemma 7 Fiz £, T with & > 2T > 0. Then

sup |K(t,u)] =0 (—1—-> , |u| > 2T, Ru > €.
0<t<T |ul

The following bound completes our preparation for the residue theorem ap-
plied in the proof of Theorem 5. '

Lemma 8 ff we fir £, T with § > 2T > 0, then

~€+1i00
/ " K(t,u)du

—€—iop

= 0(e™%).

sup
0<t<T

Proof of Theorem 5: First observe that, by Lemma 6, K(u)e®™ is analytic
for all u, except for a pole at w = 0. From (27) and the power series expansion
e”™ =1+ zu+---, we conclude that

K(u)e™ = o) + o)e +7(0) +-0 u#0 (28)

u? u

For any o > 2T > 0, apply the residue theorem to the rectangular contour I'(p)
sketched in Figure 3, where p and £ are any two reals satisfying min(p, ) > 27.
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As K(u) is analytic on and inside I'(p), except for a pole at u = 0, we get from

(28)
% K(w)e™du = a(t)z + v(t). (29)
T2 JT(p)

By Lemma 7, the total contribution of the integrals along the horizontal sides
of T'(p) tends to 0 as p — 00, so (29) becomes

L7 ke upera L7 ke (wyed 30
2—75/0_1_00 K(uw)e™du = a(t)z + v(t) + %[{_iw (uw)e™du. (30)
But by Lemma 8, we have
1 —&+ioo
sip |- / K (u)e™ du| = O(e5%), (31)
0<t<T | 272 J_g—ico

which together with (30) implies supg<i<r [K (2, 2) ~ (a(t)z + (1))l = O(e~%%),
as desired. [ ]
We illustrate the results with two examples.

Example 3: Consider the case where all intervals are of unit length, i.e., d = 1.
Here, Ho(t,u) = H1(t,u) = 0, B*(v) = e~?, which when substituted into C and
(25) yields

t v 1Y
a(t) :/ e 2l 5 W, (32)
0

the incomplete Rényi constant [3]. As noted earlier, the d = 1 case was analyzed
extensively in [3], where the result above first appeared. Note that, as ¢ — oo,
the interval packing process in [0, z] tends towards an absorbing state in which no
more intervals can be packed (all gaps are less than 1 in length). This absorbing
state is stochastically identical to the absorbing state in the classical car parking
problem on [0,z]. Rényi [13] showed that the expected occupied part of (the
expected number parked in) [0,z] in these absorbing states is asymptotically
a(co)z + O(1) as ¢ — oo. It was proved in [3] that the time to absorption in
the interval packing problem is finite almost surely, but its mean is infinite for
all z > 2. For related results and various refinements, see the discussion in [3].

Example 4: Consider the case where interval lengths have only the values 1
or 2, with probabilities P(B; = 1) = 1 — P(B; = 2) = p. From (24), we have for
1<z <2, K(t,z)=1-eP(=-1 and the transform

e % e—Zu e~ U _ e—2u—pt

Ho(t, u) = ” - - , Hai(t,u) = 0.




RESERVATION PROBABILITIES 145

Substituting Ho(t,x), Hi(t,u) and B*(v) = pe™ + (1 — p)e~?¥ into C, and
then C and B* into (25) yields an explicit, albeit complicated, formula for a(2),
and hence the asymptotics of Theorem 4. |

3.3 Proofs of lemmas

Proof of Lemma 6: Observe that [*t[1 — B*(y)]dy/y is an entire function
of u, as are Ho and M, and hence C by (12), (13), and (17). Then by (22), for
any fixed ¢, K(t, u) is analytic for all u # 0. At u = 0, it has a second order pole,
and by (22), it has the Laurent expansion given in (27) for some constant y(¢). W

Proof of Lemma 7: Consider the following elementary inequalities

|B*(u)] < %, Ru > -, (33)
1 2 1
< — < = <z<T 34
WA S ST lu| > 2T, 0< 2< T, (34)
which together imply
ut+z B* .
2L <2 Ry > g, fu| > 2T, 0< 2 < T (35)

It is easy to verify that |H;(t — z,u + 2)| < 2d%e%?, Ru > —¢, for i = 0,1, so in
conjunction with (17), (33), and (34), we find that

IC(t — z,u+ z)| <1>
= T > - <t<LT.
Wt 22 ) ) Ru> € |u>27,0<2<tLT (36)

Finally, after making a change of variables in (21) and then substituting (35)
and (36), we complete the proof of the lemma. |

Proof of Lemma 8: To simplify the proof, we break K into two parts Ko, K4
and prove the lemma for each part individually. The parts of K = Ko + K; are
determined in turn by dividing C into two parts Cg,C;. To define these parts,
recall the expression for H; in (14). We associate the first of the two double

integrals with Co and the second with C; and then divide the remaining terms
of (17) so that C = Co + C; with

. d d—z
Colt, 1) = u(byd — by)e™? + 2ue™™ / dB(z) / K(t,v)dy, (37)
’ 1 0
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d d—z .
Ci(t,u) = bre™™ + 2uB*(u)Ho(t, u) — 2u/ dB(z)e_“z/ e WK (t,y)dy.
1 0 38)
We take care of K; first, i.e., we prove Lemma 8 with K replaced by K;,
where K; is given by (21) with C replaced by C; above. This proof will be easy
once we prove a O(1/|u|) upper bound on the suprema over 0 < z < t < T of
|Ho(t— 2, u+2)| and the modulus of the double integral in (38) with ¢, u replaced
by t—z,u+ 2. ' :
To prove the desired bound on |Ho|, we will integrate (12) by parts and
bound each of the resulting terms. But to justify that step, we need the following
properties of the derivative of K (¢,z) with respect to z.

Lemma 9 9K (t,z)/0x exists for 1 < ¢ < d and t > 0. Furthermore, for any
T >0,
OK(t
sip KD _ o) (39)
0<i<T, 1<z<d 0T

where the hidden constant depends only on T.

Proof: The existence of 0K (t,z)/dz follows easily from the integral represen-
tation of K(¢,z), 1 < z < d, given by formulas (23) and (24). The bound in
(39) follows by differentiating (23) and (24), and by observing that all of the
terms in the derivative are bounded functions over 1 <z <d, 0 <t < T. |

We are now ready to prove
Lemma 10 Fiz {,T, with £ > 2T > 0, let Ru = —Eand let Z,(t,u) denote the
double integral in (38). Then

sup max(|Ho(t — z,u+ 2)|,|L1(t — z,u + 2)|) = O <|—717|) ;

0<2<t<T

Proof: To prove the bound for |Ho(t — 2, u + 2)|, use the first part of Lemma
9, integrate by parts the expression for Ho(¢ — z,u + 2) (see (12)) and obtain

e~ (K (t — 2, d)

d
/ e WK (t - 2, y)dy =

0 B u+z
1 d OK(t— z,y)
—(utz)yZ 2\ T < )
+ u+z/0,e 3y dy.

Then, by applying the bound in Lemma 9, the inequalities in (34), and the
estimates K (t,y) < y < d and ]e”(“"‘z)y[ < €44 for y < d, we obtain the desired
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estimate )

swp (Mot~ 2,u+2) =0 (o). (40)
0<z<t<T v Jul

Using exactly the same arguments, we can prove a similar estimate for |Z;(t —
z,u+ 2)|; we skip the details. |

We now claim that, for fixed £, T with £ > 2T > 0, if we let Ru = —¢, then

/1
Ki(t,u)| =0 (——) 41
oé‘iﬁf' 1(t, u)] PE (41)

A proof based on Lemma 10 and the estimates (33)-(35) is completely analogous
to the proof of Lemma 7, so we omit the details. From (41) we can conclude
that, as desired,

sup = 0(e™%9). (42)

0<t<T

—€+i00
/ e" Ky (t, u)du

—£€—1i00

We prove Lemma 8 with K replaced by Ko, where Ky is given by (21) with
C replaced by Cp in (37); changing variables in (21), this gives

t t utz 3
Kott )= [ BRI Dane 27 50y

z. (43)
Using (37), it is helpful to put (43) in the form

—ud utz B*
KO(t’u):/o M 2f B_(_zdydz

(u+2)
_[EC.(t,2)ev 2 [+ m_zdy Cu(t, 2)e™™ z)e‘“d
—/0 (u+2) < )d +/ C(utz) dz, (44)
where
Cu(t, 2) 1= e~ (d-01) [bld —by+ 2 /ld dB(z) /d_z K(t- 2z, y)dy] ; (45)
0

We treat the two integrals in (44) separately beginning with the second.

Lemma 11 Fiz £, T sdtisfyingf > 2T > 0, and let Ru = —&. Then

—&+100 t ~ud
/ % du / Cult, 2)e™
—E—ico o (u+2)

= 0(e™%). (46)
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Proof: We have |u + 2| > |u|/2 for |u| > 2T, 0 < 2 < T, and so

1 1 2T
- =< —. 47
vtz wl” |ul? i)
Also, an integration by parts shows that
| —E4ioc pu{z—d)
/ du|=0(e . (48)
—€—ioc u

Then by (47), (48), and. the fact that SUPg<.<7 Cx(t,2) < 00, the left-hand side
of (46) has the upper bound

—€+100 t 1 1
u(z—d) - =
l/5 o du/o C.(t,2) (u+z u) dz| +

k % 9T . s
/OC*(de/ 2+§2dw+0< ) = 0(e7*),

—€+ioo pu(z—d)
/ € du

—€—ioo u

< —tla=d)

as claimed. ' » [ |

Turning to the first integral in (44), we start with a bound on its second
factor.

Lemma 12 Fiz §,T with £ > 2T > 0, and let Ru = —£. Then

exp (2 /uw B*;y)dy> - 1‘ :30 (ﬁ) . (49)

Proof: Note that, by (33) and (34),

u+z * fd
/ B (y)dy) < 2Te ,

sup
0<2<LT

uw=—¢€ &> 2T. (50)

The lemma follows by combining (50) with the elementary inequalities |e* — 1| <
el — 1 < |2|, which hold for any complex z. [ |

Letting Ty denote the first integral in (44), we see that by Lemma 12 the
inequalities of (33), and the boundedness of C,,

—€+ioco
/ e"*Io(t, u)du

—€—i00

=0(e™ %), (51)
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which together with (46) for the second integral yields

—&+io0
sup / €*“Ko(t, u)du| = O(e ). (52)
0<t<T |/ ~€—1io0
Lemma 8 is immediate from (42) and (52), since K = Ko + Ky. [ |

4 Limit Law

The asymptotic analysis of this section begins in Section 4.1 with preliminary
results that apply to any interval-length distribution on [1,d], 1 < d < oco. In
Section 4.2 we apply the results of Section 4.1 to prove our main result, the
asymptotic reservation probability as the advance-notice distribution becomes
progressively more spread out, in a sense to be formalized in Section 4.2.

The special case d = 1 is treated separately in Section 4.3; the preliminary
results for this case are much stronger and of independent interest; we will prove
sample-path monotonicity properties that do not hold for arbitrary d > 1.

To help guide the reader, we give in rough outline the intuition behind the
limit law for the case where advance notices are uniform on [0, a], intervals have
unit length, and request arrivals are Poisson at rate A\. At some time later than
z, consider the (unit) intervals that were reserved in [0, z], assuming that z is
large and that a is large relative to z. Reservations in [0,z] could not have
been made earlier than —a, since all advance notices are no larger than a. It
is easy to see that, between —a and z, the process of making reservations in
[0, z] is approximately the same as the process of packing unit intervals in [0, z];
i.e., the reserved intervals are scattered (approximately) uniformly at random
throughout [0, z]. The comparison fails to be exact for two reasons.

(i) During [—a, —a + ] and [0, z] the intervals reserved in [0, z] are not located
uniformly over [0, z], as in interval packing.

(ii) The reservation process allows reserved intervals to overlap 0 and z, but the
interval packing process does not.

But as z becomes large, and a becomes large relative to z, one expects the
influence of these edge effects to be negligible. The remainder of this section
will prove that this is indeed so, and in a much more general setting.

4.1 Fuzzy packing processes

Consider the two-dimensional Poisson arrival process of Section 3, with rate 1
per unit time per unit length. We define an interval packing process on [0, z)
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with fuzzy boundary at x (or simply a fuzzy process P) to be a process that
packs disjoint intervals with left endpoints in [0, z] as follows: If such an interval
overlaps any interval already packed, it is rejected. Otherwise, if it is wholly
contained in [0, z], then it is packed, but if it overlaps z, then its acceptance is
decided by some given, but arbitrary (possibly randomized) on-line rule. In our
application to reservation problems, we will use this model to handle cases in
which the acceptance behavior at the boundary is unknown because it depends
on events happening outside the window of attention. Let Lp ,(¢) be the total
length of all the packed intervals during time [0,t] whose left endpoints are
in [0,z] (including the length of the interval, if any, that covers z); and let
Kp(t,z) := ELp(t). The following lemma proves the intuitively appealing
fact that Kp(¢,z) and K(t,z) can not differ by more than a constant.

Lemma 13 Let P be a fuzzy packing process on [0, z] with fuzzy boundary at z.
Then for any fized t > 0, we have |Kp(t,z) — K(t,z)| = O(1).

Proof: Consider the regular process (no overlapping of z is allowed) and the
fuzzy process P operating on the same realization of the Poisson arrival process.
Assuming that P accepts an interval, say I, overlapping z, we let 7 = 75,0 <
7 < t, denote the time when it is packed. If no such interval exists, we set
7 = t. Let y be the position of the left endpoint of I, and let £ be its length.
Observe that up to time 7 both the regular and fuzzy processes have packed
the same intervals. If we let z be the position of the right endpoint of the
rightmost interval already packed by both the regular and fuzzy processes, then
this observation implies

E[(Lp«(t) = Lo(t)|T,y,2] = ELy_,(t—7)+{—EL;_,(t— 1)
ELy ,(t—7)+d—-EL, ,(t—71) (53)

IA

Theorem 5 implies that, for any ¢ > 0, there exists a positive constant ¢ = ¢(t)
such that, for all 0 < 7 < t and all z > 0,

a(t—1)z—c<EL(t—7)<a(t—1)z+c, (54)
so the combination of (53) and (54) yields

E[(Lpo(t) = Lo(t)lT,y,2] < d+[at—1)(y - 2) + ¢ - [a(t = 7)(z - 2) - ]
< d4+2c—a(t—1)z—y)<d+ 2. (55)

Removing the conditioning in (55), we compute the upper bound

Kp(t,z)— K(t,z) < d+ 2c. (56)
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Similarly, we obtain the lower bound
E{(Lpo(t) — Lo(t)|T,y,2] = EL,_.(t—-71)+1-EL, .(t—7)
> at-r)y—z)—c—lalt-T)(z—-2)+]
> —2c—a(t—7)(z—y) > —(2c+d), (57)

since a(.) < 1 and z — y < d. After removing the conditioning, we obtain a
lower bound that, in conjunction with (56), proves the lemma. |

By symmetry, we can also define a fuzzy boundary at 0. We say that P is a
fuzzy packing process on [0, ] with a fuzzy boundary at zero if it packs disjoint
intervals with right endpoints in [0, z] as follows: If such an interval overlaps an
interval already packed, it is rejected. Otherwise, if it is wholly within [0, z] it
is packed, but if it overlaps 0, its acceptance is decided by a given but arbitrary
on-line rule. Let Lp .(t) be the total length of intervals packed by P during
[0,%] whose left endpoints are in [0, z] (note that this ezcludes the length of the
packed interval, if any, that covers 0); and let Kp (t) := ELp ,(t).

Lemma 14 Let P be a fuzzy packing process on [0, z] with fuzzy boundary at 0.
Then for any fized t > 0, we have |Kp(t,z) — K(t,z)| = O(1).

Proof: Define 7 to be the time when an interval overlapping 0 is packed; let y
be the position of the right endpoint of that interval, and let z be the position
of the left endpoint of the leftmost interval packed before 7. In terms of these
quantities, the proof proceeds in analogy with the proof of Lemma 13; we omit
the details. ; |

We will also wish to consider packing processes with fuzzy boundaries at
both ends of [0,z]. This packing process is obtained simply by combining the
definitions for the fuzzy processes at 0 and z.

Corollary 15 Let P be a fuzzy packing process on [0, z] with fuzzy boundary at
0 and z. Then for any fized t > 0, we have |Kp(t,z) — K(t,z)| = O(1).

Proof: The proof is analogous to the proofs of Lemmas 13 and 14, except
that here we define 7 to be the first time when one of the points 0 or z is cov-
ered. Then, after this time, the fuzzy process becomes fuzzy at only one of the
boundaries and we can use the preceding lemmas. Again, we omit the details. B

Corollary 16 Let P be any packing process on [0,z| that is juzzy at 0 and z.
Then the expected number of intervals packed by P is Kp o(t) = a(t)z + O(1).



152 COFFMAN, JELENKOVIC & POONEN
Proof: Combine Corollary 15 and Theorem 5. | |

4.2 Advanced-notice limit law

For any fixed advance-notice distribution A with compact support, and for any
A,z > 0, we define G4(A,z) to be the limit as T approaches infinity of the
expected length of reserved intervals with left endpoint in [T',T + z), assuming
that requests are arriving with total rate A and with advance-notice distribution
given by A. Clearly G 4(], z)is nondecreasing as a function of z, and it satisfies
Ga(Mz+y)=Ga(A z)+Ga(A, y). It follows that G4o(A, z) = pa(A)z for some
nonnegative number p4(A), which represents the probability that the resource
is booked at a randomly chosen time.

We say that an advance-notice distribution .4 has flatness bound (L,¢) if
for any real z, |A(z + L) — A(z)| < €. In this section, we are interested in the
behavior of p4(A) as the advance-notice distribution A becomes “very flat” in
the sense that L becomes large and ¢ becomes small.

Theorem 17 Suppose that fori=1,2,... we have a distribution A; with com-
pact support, and suppose that A; has flatness bound (L;,¢;). Iflim; o L; = 00
and lim;_,., €; = 0, then

Lim pa () = a(R),

where « is given by (25).

Proof: To ease notation we temporarily fix one of the distributions A = A;,
with flatness bound (L, €). The proof will depend on the choice of certain positive
parameters £ € R and k € Z. As it will turn out, we will need ¢ = z; and
k = k; to satisfy the conditions 1 € z < L, € < 1/k, kez < 1, 2?/k < 1, where
“f <« ¢g” means that the ratio f/g of the quantities f and g associated with A4;
tends to zero as ¢ tends to infinity. These conditions can be satisfied by choosing
k:=|e"1/?| and z := min(L ~ 1,€e"1/6) for each A.

Because of the flatness bound, it is possible to choose 0 = ag < a1 < --- < ay,
such that the support of A is contained in [ag, ax] and such that

IP(AE [a07aj])_j/k| <e¢, 1< .7 < k,
and |¢; — aj—1| > 2L. For j = 1,2,...,k, define
pj :=P(A€la;_1 +z,a; — z]).

It then follows from the flatness bound that p; = 1/k + O(e),if 0 < z < L.
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We will say that a request for a reservation with left endpoint in [T, T + z)
occurs during episode j if its advance notice is in I; := [aj—1 + z,a; — z]. All
requests during episode j are made between times T'— a; + z and T — a;_;. In
particular all requests in epsiode j come after all requests in episode j + 1. Let
W = [ag,ax]\U; I;. Then the expected number of requests for reservations with
left endpoint in [T, T + z) which do not fall into any episode is

/ P(A€W and A+1t€[T,T+z)) Adt. (58)
-0
(The integration is with respect to ¢, which represents the time at which the
request is made. Since A has compact support, we could replace the limits of
integration by finite numbers if desired.) By writing the probability P(.) in (58)
as an integral of a distribution, and interchanging the order of integration, we
find that this expected number of non-episode requests is P (A € W) Az, which
by the flatness bound is at most 2keAz. In particular, the probability that there
exists a non-episode request at all is bounded by 2keAz, which by assumption is
negligible. (Any event occurring with probability tending to zero as A flattens
out may be ignored in our analysis, since its contribution to the expected number
of reserved intervals will be o(z), where here and for the rest of the proof o(z)
denotes a function that when divided by z tends to zero as A flattens out.)
Similarly we see that the expected number of episode j requests with left
endpoint in [T, T + z) equals p;Az. The analogous statement for any subinterval
of [T,T + z) is true (with the z in the assertion replaced by the length of the
subinterval), and the numbers of episode j requests in disjoint subintervals are
independent, so it follows that the episode j requests will have left endpoints
uniformly distributed in [7,T 4 z), and that their number is a discrete Poisson
random variable with mean pjAz = Az(1/k+ O(¢)) = O(Az/k). The probability
of two or more such requests occurring during episode 7 is then O ((Az/k)?), so
the probability of there being some episode with two or more requests is at most
k-0 ((Az/k)?) = O ((Az)?%/k), which by assumption is negligible. If we discard
sample paths with non-episode requests or with two or more requests in some
episode, then the behavior of our reservation process in [T, T+ z) exactly mimics
the fuzzy packing process with time parameter p; A+p2A+- - -+ piA, provided that
we also discard in the latter those sample paths in which two packing requests
are made in a single episode, where the episodes in the process are defined as the
successive time intervals of length pi A, paA, ..., piA whose concatenation forms
the entire time interval over which the packing occurs. The fraction of sample
paths so discarded in the packing problem is at most Zfﬂ(pj)\x)z, which is
again negligible. Thus the expected length G 4(A, ) of reserved intervals with
left endpoint in [T, T + z) differs by at most o(z) from the expected length of
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intervals packed with left endpoint in [0,2) in a fuzzy packing process (i.e., in
(0, 2] with fuzzy boundaries at both ends). By Corollary 16, the expected length
of packed intervals is (3, < <k pjA)z + O(1). But

k

l—o(l)=1-2ke<)> p; <1

so by the continuity of a, the expected length of packed intervals is a(A)z +o(z),
as ¢ — 00. Thus, G4(A,z) = a(A)z + o(z) also. Dividing by z, and taking the
limit as « goes to infinity, we find p4(A) = a(A) + o(1). We complete the proof
by applying this to .A; with ¢ tending to infinity. [ |

Remark: Let [0, a;] be the support of A;. Assume that the reservation process
is in its stationary regime and that ¢ = 0 represents the present time of the
reservation process. Then, it is of interest to compute the fraction of time
p4;(1,A) that in some future interval (na;, na; + z),0 < 5 < 1, the resource is
booked; z is the same as in the proof of the preceding theorem. This is a more
user-oriented performance measure which gives an indication of the chances of
booking ahead if the advance-notice is roughly na;. Thus, if in addition to the
assumptions of Theorem 17, we assume that for any 0 < 5 < 1, lim;_, ., P(4; >
na;) = 6(n), then the proof of the previous theorem can be easily adapted to
obtain

Lim pa,(n,A) = a(6(n)A),

where a is given by (25). |

4.3 Fuzzy packing processes with d =1

In this subsection, we specialize to the case of unit intervals (d = 1) and establish
a much stronger coupling between regular and fuzzy packing processes. The
results of this section are of independent interest, though they are not needed
elsewhere in the paper.

Consider a fuzzy packing process P on [0, z] with a fuzzy boundary at z. For
a given sample path, define R(z) to be a time-ordered list of the requests whose
left endpoints are contained in [0,z]. (With probability one, R(z) is finite.)
Note the following equivalent way of defining an interval packing process on
[0, z] with fuzzy boundary at z: Begin the process by removing from R(z) some
subset of the intervals that contain according to a given, but arbitrary rule
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(possibly involving further randomness). The process then attempts to pack
the remaining intervals of R(z) by the greedy rule, i.e., in order, discarding any
that overlap previously packed intervals. If z < y < z + 1, and we consider
the process Py, that removes from R(z) all intervals not entirely contained in
[0, ], then we obtain the regular (non-fuzzy) packing process, but on [0, y]. For
a given fuzzy process P, let Np be the random variable that counts the number
of intervals in ‘R(z) that actually get packed in [0,z + 1] by P. (Note that, since
d =1, Np = Np(t) is the same as Lp ,(t) from the previous section.) We define
N, = Np, to be the number of intervals in R(z) that get packed by the regular
process Py in [0, ] that considers only intervals entirely contained in [0, z].

Lemma 18 Let P be a packing process on [0, z] with fuzzy boundary at z. Then

Remark: It is easy to construct a counterexample showing that this result
does not hold for EL, when d > 1. [ ]

Proof: We prove the result for all  simultaneously, by induction on #R(z),
the cardinality of R(z). For a sample path in which #R(z) = 0, we have
N, = Np = 0. More generally, if P packs no intervals at all, then neither does
Py, 50 Ny = Np = 0. Otherwise consider the first interval [y — 1,y] packed by
P. If it is contained in [0, z], it is also the first interval packed by Pz, and from
then on, the processes are identical to the left of [y — 1,y] and the numbers of
intervals packed to the right of [y — 1, y] by the two process can be compared by
the inductive hypothesis (with z replaced by ¢ — y and with R(z) replaced by
the subcollection of intervals entirely contained within [y, z + 1], all shifted y to
the left).

It remains to consider the case in which the first interval [y—1, y] packed by P
straddles z (and hence is not packed by P ;). From then on, the number of inter-
vals packed by P equals the number of intervals N,_; in R((y—1)+41) packed by
P,—1,4-1, bringing the total to Np = Ny_1+1. On the other hand, N, also equals
Np,_, .- The inductive hypothesis gives Ny_3 < Np,_, , < Ny—1 + 1, which is
equivalent to Np,_, ., < Ny 1 +1< Np,_, . +1, which is N < Np < N,+1. 1

Corollary 19 As a function of z > 0, K(t,z) is nondecreasing.

Proof: It suffices to prove K(¢,z) < K(t,y) when 0 < z <y <z + 1. Ap-
plying the left half of Lemma 18 with P = P, , shows that we have the desired
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Ala(Ad)| a | Pla,N)
2 1.893 | 5 .599
10 597
20 .596
40 595
80 .595
10 .716 | 5 735
10 723
20 720
40 718
80 718
50| .741 | 5 837
10 791
20 758
40 745
80 744

Table 1: Reservation probabilities for A uniform on [0,a] and unit intervals.
The P(a, A) are values from simulations.

inequality sample by sample. |

Remark: As in the preceding section, one can consider a fuzzy boundary at
0 instead of z, and fuzzy boundaries at both 0 and z. By using the same com-
binatorial arguments as in Lemma 18 and adapting the notation in the obvious
way, one can easily obtain the respective inequalities N, < Np < N, + 1, and
N, < Np < N + 2 for these cases. [ |

5 Final Remarks

There are several avenues for further research in reservation systems. Expanding
the class of models leading to exact results, or even good estimates, is one such
avenue. However, even incremental extensions to the models of Sections 2 can
lead to difficult problems. We give just two examples where this seems to be the
case. First, suppose we extend the slotted system to include reservation intervals
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covering 2 slots as well as 1. The analysis must then account for the fact that
patterns of reservations in one period of time can effect the patterns in much
later periods. One way to avoid this dependence is to impose an ‘alignment’ on
the length-2 intervals; e.g., suppose requests are such that length-2 reservation
intervals begin only at even integer times. Then the reservation patterns in
[i,3 + 2], ¢ even, are independent of the reservation patterns elsewhere.

Assuming k = 2 copies of the resource is another important incremental
extension. With multiple copies, the protocol is as given in Section 2: a request is
denied if and only if, at some time, its reservation interval overlaps two currently
reserved intervals. We have seen that this extension is easy to handle in the
slotted model of Section 2, but it is not nearly so easy in the other models.

Further investigation into other types of asymptotic behavior may be more
rewarding. A central limit theorem for ‘wasted’ time (the time the resource goes
unreserved) may be an especially worthwhile goal in view of a similar result
for the interval packing problem [3], which extended a central limit theorem
by Dvoretzky and Robbins [5] on the parking problem. Asymptotic results can
often be useful approximations over wide ranges of parameter values. Table 1
illustrates this fact via the limit law of Sectior 5 for advance notice distributions
uniform over [0,a] and unit interval lengths. The numbers suggest that, for A
moderately small, a()\) approximates the true reservation probability to within
a few percent even for small a. As A becomes large, a good approximation relies
on a becoming large as well.

The reservation probability is a relatively simple, system oriented perfor-
mance measure analogous to the probability of a busy server in single-server
queueing theory. Customer oriented performance measures would also be of
interest, prime examples being the conditional probabilities that a request is ac-
cepted given the advance notice or given the duration of the interval requested.

Algorithmics is yet another obvious avenue of research. The greedy rule is a
theme of this paper, but in general it is unlikely to be an optimal policy in the
sense of maximizing the reservation probability. As a simple example, consider
unit reservation intervals and advance notices that are uniform over some large
interval. An intriguing question is: When, if ever, is it better to reject a request
even though the interval it requests is available?
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