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Abstract— Power law distributions have been repeatedly of living organisms, value of companies, distributions of
observed in a wide variety of socioeconomic, biological and wealth, and more recently, the distribution of documents on
technological areas, including: distributions of wealth,species- the Web, the number of visitors per Web site, etc. Hence, one
area relationships, populations of cities, values of compeaes, ! . . ’ o !
sizes of living organisms and, more recently, distributios of would expect.that.th(_ere exist universal mather.nat_lcall laws
documents and visitors on the Web, etc. In the vast majority that explain this ubiquitous nature of power law distribas.
of these observations, e.g., city populations and sizes dfihg  To this end, we propose an apparently new class of models,
organisms, the objects of interest evolve due to the replit@n  termed reflected modulated branching processes, which, un-

of their many independent components, e.g., births-deathsf  yeor quite general polynomial Gartner-Ellis conditioresult
individuals and replications of cells. Furthermore, the raes . B
in power law distributions.

of replication of the many components are often controlled - : .
by exogenous parameters causing periods of expansion and Empirical observations of power laws have a long history,
contraction, e.g., baby booms and busts, economic booms and starting from the discovery by Pareto [1] in 1897 that a plot
recessions, etc. In addition, the sizes of these objectsaiteither  of the logarithm of the number of incomes above a level
have reflective lower boundaries, e.qg., cities do not fall tlew — 54qinst the logarithm of that level yields points close to a
a certain size, low income individuals are subsidized by the . . . . . . .
government, companies are protected by bankruptcy laws, et stral_ght line, _vvh!ch is essentially equivalent to sayingtth
or have porous/absorbing lower boundaries’ e.g., cities nya the Income dlStI‘IbutIOl’] fO||OWS a pOWer |a.W. Hence, poWer
degenerate, bankruptcy protection may fail and a company law distributions are often called Pareto distributionss f
can be liquidated. more recent study on income distributions see [2]-[6]. In
Hence, it is natural to propose reflected modulated branchig 5 (ifferent context, early work by Arrhenius [7] in 1921

processes as generic models for many of the preceding ob- conjectured a power law relationship between the number of
servations of power laws. Indeed, our main results show that ) p p

these apparently new mathematical objects result in poweraw spec.ie§ anq the census area, which was followed by_Preston’s
distributions under quite general “polynomial Gartner-Ellis”  prediction in [8] that the slope on the log/log species-area
conditions. The generality of our results could explain the plot has a canonical value equal @262; for additional
ubiquitous nature of power law distributions. Furthermore, an  jhformation and measurements on species-area relatjpshi

informal interpretation of our main results suggests that dter- see [9]-[11]. Interestingly, there also exists a power law
nating periods of expansion and reduction, e.g., economiooms ) aly, P

and recessions, are primarily responsible for the appearare of ~ relationship between the rank of the cities and the pomiati

power law distributions. of the corresponding cities. This was proposed by Auerbach
Our results also establish a general asymptotic equivaleec [12] in 1913 and later studied by Zipf [13], after whom

between the reflected branching processes and the correspbn power law is also known as Zipf's law. Ever since, much

ing reflected multiplicative processes. Furthermore, in tke . - N .
course of our analysis, we discover a duality between the re- attention on both empirical examinations and explanations

flected multiplicative processes and queueing theory. Esseally, ~ ©N City size distributions have been drawn [13]-[18]. Samil
this duality demonstrates that the power law distributionsplay ~ observations have been made for firm sizes [19], and even
an equivalent role for reflected multiplicative processes sithe  the gene family and protein statistics [20]-[23]. It is mayb
exponential/geometric distributions do in queueing analgis. even more surprising that many features of the Internet are

_ Index Terms— Modulated branching processes, reflected mul- - oo ned by power laws, including the distribution of pages
tiplicative processes, proportional growth models, poweraw

distributions, heavy tails, subexponential distributiors, queue- P€r Web site [24], the page request distribution [25], [26],
ing processes, reflected additive random walks, Craér large the file size distribution [27], [28], Ethernet LAN traffic

deviations, polynomial Gartner-Ellis conditions. [29], World Wide Web traffic [30], the number of visitors
per Web site [31], [32], the distribution of scenes in MPEG
. INTRODUCTION video streams [33] and the distribution of the indegrees and

Power law distributions are found in a wide range OPutdegrees in the Web graph as well as the physical network

domains, ranging from socioeconomic to biological an&onn_ectwﬁy_graph [3.4]_.[37].' In socig-economic areas, In
. o hati addition to income distributions, the fluctuations in stock
technological areas. Specifically, these types of didtidbs . .
describe the city populations, species-area relatiosshipes prices have also been observed to be characterized by power
’ laws [38], [39].
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that most of them are characterized by the following three In addition, while the reduction of RMBPs to RMPs is
features. First, in the vast majority of these observationapparent in the special case when constant number of indi-
e.g., city populations and sizes of living organisms, theiduals are born in each state of the modulating process, our
objects of interest evolve due to the replication of theingna main result, Theorem 2, reveals a deeper general asymptotic
independent components, e.g., birth-deaths of indivilaatl equivalence between the power law exponent of a RMBP
replications of cells. Secondly, the rate of replicatiortted  and the corresponding RMP.
many components is often controlled by exogenous param- . - .
. i . In some domains, e.g., the growth of living organisms,
eters causing periods of baby booms and busts, economic : . . .
. . . . thé objects always grow (basically never shrink) up until
growths and recessions, etc. Thirdly, the sizes of thesecthj ) . )
: L a certain random time. Huberman and Adamin [24] also
often have lower boundaries, e.g., cities do not fall bellow . . :
N . S - propose this model as an explanation of the growth dynamics
a certain size, low income individuals are subsidized by the, . . .
: of the World Wide Web by arguing that the observation
government, companies are protected by bankruptcy laws, . f . .
otc time is an exponential random variable. This notion has

In order to capture the preceding features, it is natural t%een revisited in [5] and generalized to a larger family of

4 . random processes observed at an exponential random time
proposereflected modulated branching processassgeneric

: &44]. In this regard, in Subsection V-A.2, we study randomly
models for many of the observations of power laws. Indee :
st{)pped modulated branching processes and show, under

one of our main results, presented in Theorem 2, shows tha " : .
i . . more general conditions than the preceding studies, tleat th
these apparently new mathematical objects result in power_ . :
e . : N resulting variables follow power laws.
law distributions under quite general polynomial Gartner
Ellis conditions. The generality of our results could expla In many areas, objects of interest may not have a strictly
the ubiquitous nature of power law distributions. Furtherreflecting barrier, but rather a porous one, e.g., cities may
more, an informal interpretation of our main results, state degenerate, bankruptcy protection may sometimes fail and a
Theorems 2 and 3 of Section lll, suggests that alternating peompany can be liquidated. Hence, in Subsection V-B, we
riods of expansions and contractions, e.g., economic boorssidy MBP with an absorbing barrier and show that it leads to
and recessions, are primarily responsible for the appeararpower law distributions as well. The result, under somewhat
of power law distributions. From a mathematical perspegctiv more restrictive conditions, is basically a direct comgllaf
we develop a novel mathematical technique for analyzinfheorem 2 on RMBPs. We argue that these types of models
reflected modulated branching processes since these ®bjexn be natural candidates for describing the bursts of stgue
appear new and the traditional methods for investigatingt popular Internet Web sites, often referred to as hotspots
branching processes [40] do not directly apply. In the prior study of city sizes, Bland and Solomon show
Formal description of our reflected modulated branchinf5], using heuristic arguments, that a multiplicative qgess
process (RMBP) model is given in Section Il. In the singulawith an absorbing barrier can result in power laws.
case when the number of individuals born in each state of .
. . Based on our new model, we discuss two related phe-
the modulating process is constant, our model reduces to a ) L
RN . nomena: truncated power laws and double Pareto distribu-
reflected multiplicative process. In Subsection II-A we €St ons. We araue that one can obtain a truncated power law
tablish a rigorous connection (duality) between the redléct y g P

rlipcate pocesses (RVES) and queueing teory. WESIEUIOn b 344 o wper beer 0 RUGE, simiety
would like to point out that this duality, although a minor 9 PP que

point of our paper, makes a vast literature on queuei {geory, e.g., finite buffenl//M/1 queue. Furthermore, by

. i . e duality of RMBP and queueing theory, we give two
theory directly appllcabl_e to the e}nal)_/5|s of RM.PS' As Sew natural explanations of the origins of double Pareto
direct consequence of this connection, in Subsection ”eo‘wdistributions that have been observed in practice. In the
translate several well known queueing results to the Cmme()q(ueueing context. it has been shown that the taii of the
of RMPS._Info_rmf_;lIIy,_these resu_lts show _that the role Whlqaueue length distribution exhibits different decay rates i

exponential distributions play in queueing theory, and "he heavy-traffic and large deviation regime, respectively
additive reflected random walks in general, is represenyed Lo . NP
power low distributions in the framework of RMPs/RMBPs.?%]’ similar behavior of the queue length distribution was

) : . ttributed to the multiple time scale arrivals in [47]. Waioh
Furthermore, this relationship appears to reduce the deb . i
o .Ihat the preceding two mechanisms, when translated to the
on the relative importance of power law versus exponential

distributions/models to the analogous question of theaprevprOportlonal growth f:or_ltexj[, provide natural explanasion

. " the double Pareto distributions.
lence of proportional growth versus additive phenomena. In
addition, this duality immediately implies and generadize Finally, we would like to mention that there might be other
many of the prior results in the area of RMPs and powemechanisms that result in power law distributions, e.ge, th
laws. Some of these prior results include the work of Levyrandomly typing model” used to explain the power law
and Solomon that appears to be the first to show how powdistribution of frequencies of words in natural languages
laws can be obtained by adding a reflection condition tsee [48]) and the “highly optimized tolerance” studied in
a multiplicative process [39], [41], [42]; this was further[49]; for a recent survey on various mechanisms that result
analyzed by Sornette and Rama [43]. in power laws see [48].



Il. REFLECTEDMODULATED BRANCHING PROCESSES Next, letZ_,, be the number of individuals at tintein an
In this section we formally describe our model. LetUnrestricted branching process that starts at timewith |

{J}n>—oo be a stationary and ergodic modulating proces'@dividuals; when needed for clarity, we will use the nasati
that takes values in positive integers. Define a family of —» t0 explicitly indicate the initial state.

independent, non-negative, integer-valued random vasab Lemma 2:AssumeElog x(Jo) < 0, then, for any as.
{Bi(j)},—o0 < i,j,n < oo, which are independent of the finite initial condition Ao, A,, converges in distribution to
modulation proces$.J,, }. In addition, for fixedj, variables AL max Z

{B!(j)} are identically distributed wittu(5) £ E[B] ()] < n>0
0. Proof. First, assume thad, = I and let Z* be the
Definition 1: A modulated branching proce$s,,}5° , is number of individuals at time in an unrestricted branching
recursively defined by process that starts at timee with [ individuals. Then, by
7z, stationarity of{.J,,}, we haveZ* 4 Zy—_n. Clearly,
Zn+1 = Z sz(']n)v (1) l .
i=1 Ay :max( ZB{(Jl),l) gmaux{ Z_1,Z },
where the initial valueZ, is a positive integer. For conve- =1
nience, whenz, = I, we denote the process By’ }. and, by induction and stationarity, it is easy to show
Definition 2: For any! € N and an integer valued,, a d
Reflected Modulated Branching Process (RMER),}5°, Ap=max(Z-n,Z_(n-1)-"Z-1,%0),
is recursively defined as which, by monotonicity, yields
An
Muir = max (Y BA(J). ). @) PlAn > 2] = P[A > a] asn — oco.

i=1 . Now, if Abo | ith initial ditiody > 1,
Remark 1:These types of modulated branching pro- ow, 1T A," 1S @ progess with Inftial conditiolo =
. i . . then, it is easy to see that
cesses, with or without a reflecting barrier, appear to be
new and, thus, the traditional methods for the analysis of A,‘:" > A, >1, foralln,
branching processes [40] do not seem to directly apply.

Remark 2: A more general framework would be to deﬁneImplylng

Z P[AYe > 2] > P[A,, > 2]. (5)
Znt1 = / B (J.(1)dv(t), (3) If we define the stopping time to be the first time when
0 o Ao hits the boundary, then, the preceding monotonicity
for any real measure, and, similarly, implies thatA,, = A%° for all n > 7. Using this observation,

we obtain

Apir = max(/OAn BL(Ta)d(t), 1), @)

wherel > 0 andBY,(J,,(t)) is v-measurable. We refrain from
this generalization since it introduces additional techhi

difficulties without any new insight. Now, we present the _ o
basic limiting results on the convergence to stationarity dN&xt, by Lemma 17 is a.s. finite and, thus, by (5) and (6),

P[AYe > z] = P[A% > 2,7 > n] + P[AY > 2,7 < n]
[ADo >z 7 > n] +P[A, > z,7 <]

<P
< P[r > n] +P[A, > z]. (6)

Z, andA,,. we conclude
Lemma 1:If Elog u(Jy) < 0, then a.s., we have lim P[A, > 2] = lim P[A% > 2] = P[A > 2].
lim Z, = 0. u

—

Proof: For all nnzool, let W,, = Z,/II,,—1, where

I, = [[', u(J:). It is easy to check thall, is a positive A. Reflected Multiplicative Processes and Queueing Duality

martingale with respect to the filtratiofi,, = o(J;, Z;,0 < Note that in the special casB!(J,) = J,, reflected
i <n —1). Hence, by the martingale convergence theoremmodulated branching processes reduce to reflected multi-
(see Theorem 35.5. of [50]), as— oo, plicative processes withi,, being integer valued. In general,

by using the definition in (3)/,, can be relaxed to take any
Wn =W as., positive real values. Hence, in this subsection we assuate th

wherelV is a.s. positive finite. Next, sindg/,, } is stationary {J/n}n>0 is a positive, real valued process.

and ergodiC, SO Iiﬂ(‘]n)}! and’ therefore, Definition 3: For [ > 0 and My < oo define Reflected
N Multiplicative Process (RMP) as

logll,, 1

—— = EZlogu(Ji) — Elogu(Jo) <0 asn — oc. M1 = max(M,, - Juy1,1), n>0. (7)
i=1

RMP has been previously proposed and studied in liter-
Thus,II,, — 0 asn — oo, which yields the statement of the ature [15], [27], [41]-[43] as the explanation of the origin
lemma. m of power laws. In this section we show a direct connection



(duality) between RMP and queuing theory, by which mosartifact, but a very natural condition since no physicakabj
of the previously obtained results on RMP follow directlycan approach zero arbitrarily close without either repglli
from the well-known queuing results. (reflecting) from it or vanishing (absorbing).

Without loss of generality we can assurhe= 1, since Here, we illustrate the preceding theorem by the following
we can always divide (7) by and defineM}! = M, /l. examples. Assume thdtd;},{C;} are two mutually inde-
Now, let X,, = log J,, andQ,, = log M,, with the standard pendent sequences, and Jet= e¢4»~%». Recall that),, is
conventionslog0 = —oco ande™>° = 0. Then, forl = 1, defined in (7), therQ,, = log M,, satisfies
equation (7) is equivalent to

Qn+1 = (Qn + An - Cn)+- (11)

Qn1 = max(Qn + Xn41,0), ®)  The first two examples assume tHat; }, {C;} are two i.i.d.

which is the workload (waiting-time) recursion in a singlesequences, the third example takg,} to be a Markov
server (FIFO) queue. chain, and in the last examplg,/,,} is modulated by a

Lemma 3:If Elog J,, < 0, then M,, converges in distri- Markov chainX (n). o

bution to an a.s. finite random variahilé, and Example 1:1f {A;},{C;} follow exponential distribu-

J tions, P[C; > z] = e #* | P[A; > 2] = e and \ < p,

M = suplly,, (9) then Q, represents the waiting time in &//M/1 queue.

n20 By Theorem 9.1 of [54], the stationary waiting time in a
wherelly = 1,10, = [[,_'_, Ji,n > 1. M/M/1 queue is distributed as

Proof: By the classical result of Loynes [51{,,
defined by (8), converges to an a.s. finite stationary limit

PlQ > x] = é(57(“7”9”, x>0,
. H
Q if EX,, = Elog J, < 0 and, furthermore,

which equivalently yields a power law distribution far,

d
= sup Sy, A
@ nZ% PIM > 2] =P[Q >logz] = ——, v > 1
pat
where SQ = 0 and Sn = Zz_:lfn Xi. This ImplleS the with power exponena =pu— .
convergence ofi/,, and Example 2:1f {4;},{C;} are two i.i.d Bernoulli pro-
d sup,ogSn _ s, cesses withP[4,, = 1] = 1 — P[4, = 0] = p, P[C,, =
M= emhn=e e _fé%n"' 1] =1-P[C, = 0] = q, p < q. Then, the elementary

- gueueing/Markov chain theory shows that the stationary

. . . distributi fQn, defined in (11), i t >

The following theorem is a direct corollary of Theorem 1.|S_rI ution OjQ. as detine IE( ) is geometriQ >

- . : j) = (1 —p)p’,j >0, wherep = p(1 —q)/q(1 —p) < 1.
in [52]; see also Theorem 3.8 ir?][and, for a more recent Therefore,P[M > «] = P|Q > loga] = plose), 2 > 1
presentation, we refer the reader &. [ ' 5 = 08 P L

; . Sincel 1< |1 <logu, it is easy to conclude that
Theorem 1:Let {J,},>: be stationary and ergodic. If o8 [logz] < logx y
there exists a functio and positive constants* and&* 1 <P[M > 2] < 1
- pxlog(l/l)) ’

such that Exampl x::)ﬁl?) 1 is a Markov ¢hain taking values i
1 o o xample 3:If {J,} is a Markov chain taking values in a
1 g* log E[(I1,)*] — W(a) @sn — oo for [ a —a™ |< finite setY and possessing an irreducible transition matrix

e . . . . Q = (q(3,7)), ;5. then the function? defined in Theorem 1
2) W is finite and differentiable in a neighborhood @f AL . .
with ¥(a*) = 0, ¥(a*) > 0, and can be explicitly computed. Define matii, with elements

3) E[(IL,)* *¢] < oo, for n > 1 and somes > 0, qa(i,5) = q(i,5)j%, 4,5 € 2.

then log P[M > 1] By Theorem 3.1.2 of [55], we have as— oo,

lim ————— = —qa*. (10) 1

z—00 ogx . n~ " log E[(IL,)%] — logdev(Q.),
Remark 3:We refer to assumptions 1), 2) and 3) as the . _ . _

polynomial Gtner-Ellis conditions Note that assumption Wheredev(Q).) is the Perron-Frobenius eigenvalue of matrix

2) can be relaxed such thak is only differentiable at (- To illustrate this result, we takE = {u,d} wherew -

a* and assumption 3) can be weakened to the single cade= 1,u > 1, and¢(d,u) = ¢,q(d,d) = 1 — ¢, q(u,d) =

e = 0 [52]. Since these two assumptions are necessary frd(u,u) =1 —p wherep > ¢. It is easy to compute

Theorem 2 in Section Il to hold, we keep the current form (1 - p)uc pd®

to provide a unified framework. Also, it is worth noting that Qo = ( qu (1 - q)de > ,

the multiplicative procesH,, without the reflective boundary ) )

would essentially follow the Lognormal distribution, as itand, by lettinglog dev(Q.) = 0, we obtain

was recently observed in [53] (this is similar to the factttha . log(1—gq)—1log(1—p)

the unrestricted additive random walk is approximated well @ = log u :

by Normal distribution). However, we would like to empha- Example 4 (double Pareto)l? {Jn = J(X(n)} is mod-

size that the lower boundaryis not just a mathematical ulated by a Markov chaidX (n), we argue thalP[M > z]




Markov modulated multiplicative processes
10 = T T T T

the conditionsup; u(j) < 1 of Theorem 3 is satisfied,

S S : £ " then A has a lighter (exponential) tail than power laws.
X ~_— approximation || - Fyrthermore, the first equality in (12) of Theorem 2 re-
Wit : G : A «004 veals a general asymptotic equivalence between the reflecte

modulated branching process and the corresponding reflecte
-2 : N\ . R | multiplicative process.
' - ' EESIHE ' v In the following subsections, we present the proof of

< . Theorem 2 and, due to space limitations, the proof of
s 9 ' R e, ; B -1 Theorem 3 is deferred to the extended version of this paper
- <. | b1
o BHEE ; S~ : 1 A. Proof of Theorem 2
In this paper we use the following standard notation. For
W07k S : SR Y : ©7 any two real functions(t) andb(t), we usea(t) = o(b(t))

to denote thatim;_. a(t)/b(t) = 0.

1) Upper Bound:The proof of the upper bound uses the
following technical lemmas that will be proven in Section
X VI. Since the proof is based on the change (increase) of
boundaryl, we denote this dependence explicitly/ds= A.
According to Lemma 2, the initial value ofA,} has no
impact on A and, therefore, in this subsection we simply

I
can have different asymptotic decay rates over multipl«*etim""ss‘urne that, = 1. ) ;
Lemma 4:For any 8 > 0, the branching procesg;,

scales. This phenomenon was investigated in [47] in the =~ o
gueueing context and formulated as Theorem 3 therein. 'P(?f'ned by (1) satisfies, as— oo,
visualize this phenomena, we study the following example. i 1
Z PZ, >z =0 <_B> . (14)
X

100 ! !
10 10 10 10

Fig. 1. lllustration for Example 4 of the double Pareto dlsttion.

Consider a Markov procesk (n) of two states (say1, 2})
. o o 7 " oyt
gf?(lt;aﬂsitlg]niprlo_ba;})lf)[lbl]lt(lzef iQO_ 6]1 /,5%0;) 'ﬁ}é)% 1? ’7]arld Lemma 5:1f Al is the reflected branching process, as
1 —P[J(2) = 0.25] = 0.6. The corresponding simulation defined in (2), and > 0, then
result for5 x 107 trials is presented in Figure 1. We observe P
from this figure a double Pareto distribution féf, which
provides a new explanation to the origins of double Pareto
distributions as compared to the one in [56]. w

Al > 2] <P Lm x I (1+¢€) > x/l] + n]P)[Bé’e],

<j<

here B 2 U;5,{ 2/- Bi.(Jn) > ju(Jn)(1 +¢€) } and
I =12, (i)
1. MAIN RESULTS Lemma 6:If we setl,, = [z€], 0 < € < 1 in the definition

This section presents our main results in Theorems 2 af¥ B in Lemma 5, then, for any > 1, we obtain
3. In this regard, we defin8? = sup, B (k), and, to avoid L 1
technical difficulties, assumg@ £ inf; u(j) > 0. With PIBy] =0 x_5> as r — oo.
a small abuse of notation, as compared to the precedingLemma 7:If 11 > 19, then
Subsection II-A, we redefine heig, = ]_[Z.;l_n w(J;), n >
1, IIy =l and M = sup,,~( IL,.

Theorem 2:Assume that the procesdl, } satisfies the
polynomial Gartner-Ellis conditions (conditiorls, 2) and

or alln > 0,

P[AL > 2] > P[Al2 > z].
Now, we are ready to complete the proof of the upper
bound. Choosind, = |z¢] > [, and using Lemma 7, we

3) of Theorem 1), and[¢?Z+] < oo for somed > 0 and all derive i
n =1, then, PA" > z] =P sule,j > x}
log P[A log P[M Liz1
lim 108PA >l oy LosPIM >a] gy : l
z—00 log T—00 logx . <P| sup ij > :1:] + P [sup Zl_j > :1:]
Theorem 3:If sup; u(j) < 1 andE[e?P»] < oo for 6 > 0, L1<j<a j>u
then,P[A > 2] = O(e~%") for some¢ > 0, implying < P[Alﬁj > 2]+ Z}p[zjl_ > 7
1 P[A j>x
lim 2814 > kEg > o (13) ' P l
T— 00 €T . < . —€ x,€
Remark 4:Informally speaking, these two theorems show <P 5121;1) I +e) > } +alP[By]
that the alternating periods of contractions and expassion 4 ZP[ZZ» > 1]
e.g., economic booms and recessions, are primarily respon- _ J
sible for the appearance of power law distributions; in A 7=
other words, if there are no periods of expansions, i.e., = L(z) + I(2) + (), (15)



where the last inequality follows from Lemma 5.

Next, define a new procegs:(J,) = pu(Jn)(1 +€)}n>1
andIIs, Hi’:{n ué(J;). Then, fore small enough, we have
1) n~tlogE(IIE)® — ¥¢(a) = ¥(a) + alog(l + €) as

n — oo for | a—a* |<e*,

2) ¥ is finite in a neighborhood of} whereo} < o*
and differentiable at* with ¥(a)+aflog(l14+€) =0
and¥’(a) >0, and

3) E(II5)* < oo for n > 1.

Therefore, by Theorem 1,

log Plsup;>; (1 +€)" > '~
logz

= —a. (16)

lim :

Tr—00

Using (16), Lemma 4 and Lemma 6, we obtain

11 (1)
log x

Ix(2)+13(x)
logPIA! > o] _log (i) 1o (1+ 25E5)
log x

log x

— asxr — oo.

Since¥<(«) is continuous in a neighborhood af in both
« ande, we derive

lim o} = o™,
e—0

implying,
log P[A > z] <

ar. a7
log x

lim sup
xTr— 00

2) Lower Bound:Similarly as in the proof of the upper with lim._,p o} = «
bound, we use the following lemmas that will be proven iny, = [2°] andn, =

Section VI.

Lemma 8:If {A¥'} and {AY2} are two conditionally
independent reflected branching processes gi&n},>o,
then,

d
Az1+y2 < Az1 +A'77!z2-
Lemma 9:For any0 < € < 1, there exist3,h > 0 such

that, whenz — oo,
1
B )

Lemma 10:For1 > §,¢ > 0, lety, = |2, andCy=< £
Ujsy, £ S0 Bi(Jn) < ju(Jn)(1—¢) }, then, there exists
B> 1, such that

Pl sup Hi(l—e)i>x] =o0
i>hlogx

1

PlCi™ ] =0 <xo¢*—+ﬁ '

Now, we proceed to complete the proof of the lowe

bound. First, observe that for any integep 1,

1
PIAL > 2] > PAL > ] = EHAn > 2]
Y

> PP[ ?:1 A}w' > ya] > P[AY > yx]
Y

, (18)

Ujspd 21 Bi(Jn) < ju(Ju)(1 —€) },0 < e < 1. Then,
we derive

PAY >yz] >P| sup IIL(1—e)" "> x} —P[C§ ]

l0<i<n—1

e PlCE)

sup ILi(1— €)' > x} —nP[Cy ]
11<i<n

supIL;(1 —¢€)* > x}

Li>1

-P {sup (1 — €)' > :1:] — nP[Cy]
i>n

L2151 (19)

Next, similarly as in the proof of the upper bound, define
a new processue(Jpn) = u(Jn)(1 —€)}n>1 and letlls =

Z.;l_n te(J;). Fore small enough, we have

1) n tlogE(II)* — ¥¢(a) = ¥(a) + alog(l —¢) as
n — oo for | a — o* |< ¥,

2) ¥ is finite in a neighborhood of} whereo} > o*
and differentiable at* with ¥(af)+alog(l—¢) =0
and¥’(af) >0, and

3) E(II,)* < oo forn > 1.

Therefore, by Theorem 1, we obtain

1ogIP’[supl-21 I5(1 — €)' > x] _ (20)

€

lim
Tr— 00

log x

*

. Then, for0 < § < 1, by choosing
|«] in (18) and @7?), we derive

P[AY >y,
log P[A > z] > log P[A!, > 2] > log M

=logP[AY" > yea] —dlogx
>log(l1 — Is — I3) — dlog x, (21)
which, by Lemmas 9, 10,?¢) and passing, ¢ — 0, yields
log P[A > z] S
log x -

lim inf *,
T— 00

The last inequality, in conjunction with (17), completesg th
proof of Theorem 2. ]

IV. EXACT ASYMPTOTICS

This section presents the exact asymptotic approximations
of the RMPs and RMBPs in the following two subsections,
rrespectively.

A. On the Exact Asymptotics of Reflected Multiplicative
Processes

The following theorems are direct translations from the
corresponding queueing theory results. Theorem 4 is the
large deviation result, Theorem 5 is the heavy traffic ap-
proximation, and they are basically corollaries of Theorem

where the last inequality follows from Lemma 8 and thes.2 in Chapter Xlll and Theorem 7.1 in Chapter X of [54].

fact that{A,, ;} are conditionally i.i.d. copies oA, given
{Jn}. Letlly = p(J;)p(Ji1) - - - p(Jp—1) and recallC¥c =

For a sequence of i.i.d. random variables, },>1, define
G, to be the ladder height distribution of the random



walk {S — Z’? 110g Ji}n>1 with ||G+|| — P[Sn < ) Exact Asymptotics of Reflected Branching Process
1= = —

10" ¢

0 for all n > 1]. - —+- Lower barrier = 1
. is Qi - -+ Lower barrier =5
Theqrem 4:1f the sequence;{log Jntn>1 is idd. and e i Lgxg: bgmz;:lg
nonlattice,E[log J1] < 0, E[J¥ | = 1, E[Jf] < oo for i Re, —»— Lower barrier = 21
a* —e<a<a*+e¢and||Gy| <1, then
. 1- |G
lim P[M > z] -2 = = ” ] . — 107k
T—00 o [ ze*" Gy (dx) x
Proof: The result is a direct consequence of Theorer_z
5.2 in Chapter XllI of [54]. [ ] T

Remark 5:1f S, is lattice valued, see Remark 5.4 of [54].
Theorem 5:If {J,(lk)}nzl, indexed byk, are i.i.d. for each
fixed k& with m;, = E[log Jl(k)], o2 £ Var[log Jl(k)], and the 10k
random Walks{S,(lk) =y, 1ogJi(k)}n21 satisfy m; <

2
0, limp_.oo mg = O, H_mkﬂoooz > 0, and (1OgJ1(k)) is
10" ‘ ; : ‘

uniformly integrable, then, 1©0° 10 10° 10° 10°
X
. —my/o} } _ 2
klggop [M(k) > y| =1/y" Fig. 2. Simulation ofP[A!/l > x| versusz parameterized by.
Proof: From Theorem 7.1 in [54], we have
Jim P [—m—f log M%) > z} =e 2 V. DISCUSSION OFRELATED MODELS
—00 g
_ i _ Here, we briefly address the two related models: randomly
and, by lettingz = log y, we obtain Theorem 5. B stopped processes and modulated branching processes with

Remark 6:The preceding two theorems essentially proabsorbing barriers.
vide a new general explanation of the measured double
Pareto phenomena, e.g., see [56], [58]. A. Randomly Stopped Processes
In this subsection we study randomly stopped multiplica-
B. On the Exact Asymptotics of Reflected Branching Praive and branching processes, respectively.
cesses 1) Multiplicative Processes¥ollowing the approach of
{Chapter VIl of [54], we study the ladder heights of a multi-

Deriving the exact asymptotics for RMBPs is a difficult™’ <"’ o e
cative process. For any RMP with independent multiglier

problem. However, in the scaling region when the bounda : . ) )
I grows as well, albeit slowly, one can derive an explicit”! can be represented in terms of the ladder heights. To this

asymptotic characterization. In this subsection, assumae t €Nd: definell, = HZ:O Ji and the ladder height process

{Jn}n>1 is ii.d and nonlattice, and lefi, be the ladder {Hi}iz1 of {Sn =320y 1°g‘£i}"§_1 with |Gy || = P[5, <

height distribution of the nonlattice random wafks, = U foralln> 1] <1,andHF = e -

Z;z:l log 4(J;) }ns1 With |G| = P[S, < 0foralln > .Theorem 7:Suppose tha{.J,},>1 is an i.i.d. sequence
with E[log J;] < 0, then,

1] < 1.
Theorem 6:1f inf; u(j) = p > 0, E[logpu(J1)] < 0, LN
Eu(J1)* =1, E[u(J1)*] < oo for a* —e < a < a* +e¢ JV[:HHE, (22)
and E e"S“pk{‘B}(’“)*“(k)‘}} < o0, § > 0, then for any =1
v >0, whereN is independent of H¢},>1 and follows a geometric

distributionP[N > n] = ||G4+||".

m  PAN L > 2 = Oi = ||*G+|| _ Proof: Based on the well-known Pollaczek-Khinchin
la 2 (log )37 a* [y we** Gy (dx) representation (see Chapter VIII of [54])
Again, the proof of this theorem is deferred to the extended N
version of the paper [57]. Instead, we illustrate it with the Q -3 ZHi’
following simulation example. =

Example 5:Assume that{.J,,},>1 is a Bernoulli process
with P[J, = 1] = 04 = 1 - P[J, = 0], variables
{B(1)};>1 follows Poisson distribution with meah5 and N N
{B!(0)}s>1 with mean0.6. The simulation results, for = P[M > z] =P {ezi:] i > fc} =P [H Hi > x] :
1,5,13,21, are drawn in Figure 5. From the figure we can i=1
clearly see thaP[A'- /I, > x| approaches the limiting value [ ]
very quickly, i.e., forl = 13 and! = 21, the plots of Conversely, we can prove that for a stationary multiplica-
P[A!/l > z] are basically indistinguishable. tive process, if the observation time has exponential tiad,

whereP[N > n] = ||G4||", it immediately follows that



stopped process has a power law tail under rather geneBal Branching Processes with Absorbing Barriers

conditions. . . . For many dynamic processes (e.qg., city sizes), quite often
Theorem 8:Let N be an integer random variable inde-yhen the size of the object of interest falls below a threshol
pendent ofil,, with (e.g., urban decay), the whole object disappears. Thexefor

. logP[N > z] we study a branching process with an absorbing barrier.

2—00 x This can also model the arrivals to popular Web sites

If as n — oo, n tlogE[(II,)*] — ¥(a) < oo in a (hotspots), since information (news) is distributed adouy
neighborhood ofa* with ¥(a) being differentiable an*,  to a branching process, e.gi tells B, C' and furtherB may
U(a*) = A\, ¥'(a*) > 0 and E[(I1,)*"] < oo for n > 1, tell D, etc. Empirical examination shows that Web requests
then, follow power law distributions, e.g., see [31], [32].
lim logP[lly > 2] For a threshold > 0, define stopping time® £ inf{n >
pr—— log x o ) 0: ZL <1} to be the life cycle, within which the branching
The complete proof of Theorem 8 will be presented in [S7]process is modulated by a sequence of i.i.d. random vasiable
Here, we only prove a special case, stated in Theorem @ 1 and afterP the process is absorbed/disappears. We
bellow, which establishes a connection between the RMRfnote this process b¥p. Let the arrival procestA; b s — o
and geometrically stopped multiplicative processes #ou pe g sequence of i.i.d. Poisson random variables with pa-
aM/GI/1 queue. Assume thgt/,, },>1 is ani.i.d. process, rameterE[4,] = g. At time ¢, A, objects are created,
Il, is the corresponding multiplicative process) is @& each evolving according to an i.i.d. copy of the modulated
geometric random variable that is independentiof with  ranching procesg . This system converges to a stationary
PIN > n] = p", andG(t),t > 0, is a positive decreasing process withN (¢) objects alive at time. Assume that the
function. _ . - system has reached its stationarity, then, by Little’s Law,
Theor(zm ?O-lfv for some a”, e > Oéofg e "G(x)dr = E[N()] = ¢E[P]. Objectj observed at time = 0 is
p K = [T we® w(t;(ff)df <00, [y Gllogs/e)ds < oo generated at time-P7, 1 < j < N(0), with a sizeZ. .
andPllog J; < t] = [y G(s)ds/ [;° G(s)ds,t >0, then,we | emma 11:The total size of all objectsZ, observed at

can always construct a RMP such tHilt < Iy, and, time ¢t = 0 in stationarity can be represented as
« 1— P No
. o
mlingo?[H_N >l = a*pK’ z, 4 ZZLP,M
Proof: We will give a constructive proof based on the = ’

connection (duality) that we establish between M@¢GI/1

gueue and the geometrically stopped multiplicative preces [ P[P > u]du
Consider aM/GI/1 queue with service distribution PP} > a] = .
P[S > t] = G(t)/G(0),t = 0 and Poisson arrivals of  Next, we show thatZ, follows a power law. The proof
rate \ = plES. Then, by Pollaczek-Khintchine formula, of the following theorem, which is essentially a corollary o
the variable is equal in distribution toy ;" , H;, where Theorem 2, will be given in [57].
P[N > n] = p" and Theorem 11:Suppose that the conditions described in this
JP[S > slds [ G(s)ds subsection hold{.J,, } satisfies the assumptions of Theorem 4
P[H; > z] = ES ~ T amds Pllog J; > z]. Eﬁzﬁept for the nonlattice one) afije?5»] < oo for § > 0,
Therefore, ’ . logP[Zs > x]
lim ——— = —Oé*.
N z—00 log x
PlQ > logz] =P ZHZ > logx| =PIy > z], VI, PROOES
=1

and, by Cramér-Lundberg theorem (e.g., see Theorem 5.2 inT Nis section contains the proofs of the technical lemmas
Chapter XIII of [54]), we obtain 4,5, 6, 8 and 10.

. o l—p A. proof of Lemma 4
lim P[Q > logz]z® = ——, o } _
=00 a*pK Similarly as in the proof of Lemma 1y, = Z! /11, is a
which completes the proof. m martingale. Then for any > 0,

2) Branching Processedn the following theorem, we ex-

l f— .
tend the preceding results to the context of randomly stppe P[Z, > o] = B[Wy - 1L, > 2]

[

branching processes. Similarly as before, we postpone the =P[(Wne™") - (Ie™) >
proof of the theorem to the full version of the paper [57]. <PWpe " > 1] + P[,,e™ > z]

Theorem 10:SupposeBE(J,,) > 1 for all n,k. Under < E[Wpne™] + P[Ie™ > ). (23)
the same conditions as in Theorem 8 wilh«) being -
differentiable in a neighborhood of*, we have, Observe that

e e e~ €T 1
wh_)ngo % =—a". Z E[W,e "] = Z e " < T =° <$_ﬁ) . (24)

n>x n>x



By the first condition of Theorem 2, we can seléct >0 C. Proof of Lemma 6

small enough and large en?ugh SU?Q*E*}?”(G* —0)+ Due to space limitations, the detailed proof of this lemma
2¢(@” —6) = =¢ <0 andn " logE[ll," ] < ¥(a® —  can be found in the extended version of this paper [57].

d) + e(a* — ), then, forz > ny,
D. Proof of Lemma 8

ZP[Hnem > ] < Z]E[Hﬁf‘**5)]66(0‘**“"/1:(“**5) First, it is easy to show that, for any real numbers
n>x n>x X1,22,Y1:Y2,
o0 7CI
< Z e*Qn/x(a*fé) < € max( 21 +x2, y1+y2 ) <max( x1,y1 )+ max( x2,ya ).

n>x (1 - e—C)xa*—é

Now, by the preceding inequality,

1
=0 (—) asxr — oo. (25) y1+y2
B

APy = max( Z Bi(J1), y1 + 2 )
Therefore, replacing (26) and (27) into (25) completes the i=1

proof. - v ya .
<max (MBI + Y BiCh) v+ )
B. Proof of Lemma 5 i=1 i=y1+1
d
Observe that <AV AL

P[AL >z =P {Aﬁl >, (Bff,l)c} +P [AﬁI >, Bff,l} The proof is completed by induction

M A
< ]P’[{ B;,l(Jn_l) > I} A-ZlJ:rly? = max ( Z Bi(Jn), Y1+ Y2 )
i=1 =1
L e z . AVL4AY2
U {Z B,y (J1) > } C(Bi)) | +P (B <max( >0 Bi(h), mtw )
im1 i=1
o .
<P| { A plu)(1+6) > ) <A AV
| l,e u
U{ w(Jn-1)(1 +¢€) >£C/l} —HP’{Bl’ }
_ E. Proof of Lemma 10
<P { AL (T )1+ 6) >z } Similarly as for Lemma 6, the proof is presented in [57].
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