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Packing Random Intervals On-Line
E. G. Coffman, Jri, L. Flatto}! P. Jelenkow* and B. Pooneh

Abstract.  Starting at time 0, unit-length intervals arrive and are placed on the positive real line by a unit-
intensity Poisson process in two dimensions; the probability of an interval arriving in the time intetval\t]

with its left endpointin {, y + Ay] is AtAy + o(AtAy). Fix x > 0. An arriving interval isacceptedf and

only if it is contained in [0 x] and overlaps no interval already accepted.

We study the numbelly (t) of intervals accepted during [€]. By Laplace-transform methods, we derive
largex estimates of By (t) and VarNy (t) with error terms exponentially small sauniformly int € (O, T),
whereT is any fixed positive constant. We prove that)as> oo, ENy(t) ~ a(t)x, VarNy(t) ~ u(t)x,
uniformly int € (0, T), wherea(t) andu(t) are given by explicit, albeit complicated formulas. Using these
asymptotic estimates we show thd(t) satisfies a central limit theorem, i.e., for any fixed

w—dﬂ\/(o,l) as X — oo,

VVar(Nx ()

whereN (0, 1) is a standard normal random variable, a?ﬂcﬂenotes convergence in distribution. This stochas-
tic, on-line interval packing problem generalizes the classical parking problem, the latter corresponding only
to the absorbing states of the interval packing process, where successive packed intervals are separated by gaps
lessthan 1inlength. We verify that,ias> oo, a(t) andu(t) converge tax, = 0.748...andu, = 0.03815.. .,
the constants of &iyi and Mackenzie for the parking problem. Thus, by comparison with the parking analysis
in a single space variable, ours is a transient analysis involving both a time and a space variable.

Our interval packing problem has applications similar to those of the parking problem in the physical
sciences, but the primary source of our interest is the modeling of reservation systems, especially those
designed for multimedia communication systems to handle high-bandwidth, real-time demands.

Key Words. Interval packing, Parking problem, Reservation systems, Asymptotic probabilistic analysis,
On-line packing.

1. Introduction. Let (a3, by),..., (a,, by) be a sequence aof independent random
intervals inR ;. to be packed on-line in a given interval K}; an intervall; = (g, by) is
packed (marked as occupied in |J) if and only if I; C [0, x] and |; does not overlap
any interval inly, ..., lj_; that has already been packed. Supposelitere drawn
independently from a given interval distribution. To avoid trivialities, we assume that
the distribution is such thdt C [0, x] with probability 1. Theon-line interval packing
problemasks for the expectation of the numbér(n) of intervals packed as a function
of n and the parameters of the interval distribution.

The asymptotic behavior of the expected number packed on-line was found in [4] for
the case where, for eachs, andb; are taken as the smaller and larger of two independent
random draws from [0x]. In this casex is only a scale factor and does not figure in the
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result. The asymptotic expected number packed is given by
ENy(n) ~ cnV17-3/4

ash — oo, wherec ~ 0.98 approximates the value of an explicit formula given in [4].

In this paper, by a completely different analysis, we obtain the corresponding result
for the case where the are independent uniform random draws from}G- 1] and alll
intervals have unit lengthdy(= a + 1). Now, the result clearly depends »nindeed,
we prove in Section 2 the following limit law for the expected number packed: If for
some constarit > 0, we putn = [Ax], then

(1) lim SN XD o
X—00 X
where
A v]_ @X
(2) a(A) :/ B(v) dv, B) = exp(—Zf dx).
0 0 X

We note in passing that the probabilistic analysis of optiof&line interval packing

has been worked out in [10], where the number packed is to be maximized, and in [5],
where the unoccupied space of the packing is to be minimized. Also, for the worst-case
analysis of combinatorial models of on-line interval packing, see [8] and [11].

Our interest in on-line interval packing originated in a stochastic version, where the
arrival times and left endpoints of the intervals to be packed form a two-dimensional
Poisson process with a mean normalized to 1 per unit time per unit distance. For this
version, which we will call thePoissonmodel, we use the same notatidi(t) for
the number packed during,[] in [0, x]; except where noted otherwise, a continuous
argument signals that it refers to the Poisson model. W {e€tx) denote the expected
number packed during [@] into [0, x], and we prove in Section 2 that, as might be
expectedK (t, x) has a property similar to that in (1),

3 K(t, X) ~ a(t)x

asx — oo with t fixed, wherex(-) is given by (2). As we will verify, the Poissonization
of the input length makes the analysis easier; we then obtain (1) from (3) via a simple
argument based on the concentration of the Poisson distribution around its mean.

The classical parking problem ofRyi [17] has an intimate relationship with on-line
interval packing. In the former problem, unit-length cars are parked sequentially along
a curb (interval) [0x], x > 1. Each car chooses a parking place independently and
uniformly at random from those available, i.e., from those where it will not overlap
cars already parked or the curb boundaries. Thus, the left endpoint of the first car is a
uniform random draw from [Ox — 1], and if the first car is parked iry[ y + 1], then
the left endpoint of the second car parked is drawn uniformly at random fropH@.],

O,y —1JuU[y+1,x—1],0r[y+ 1,x — 1] according ay > 1 andy > x — 2,
l<y<x-—20ry < landy < x — 2, respectively. This uniform parking of cars
continues until every unoccupied gap is less than 1 in length, i.e., no further cars can be
parked. Rhyi [17] showed that the mean B, the number parked at the conclusion of

the process, satisfiedNg ~ a,.x, X — oo, with theRényi constanty, = lim;_, ,c a(})
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determined by (2). This result actually follows from a more refined estimateNgf E
which was later improved by Dvoretzky and Robbins [6]. (The more precise estimate is
given in Section 3 for comparison with our new results.) For many other improvements
and extensions of the results on the parking problem, see [6], [7], [12]-[14], and the
references therein.

Although the parking process differs from the on-line (unit) interval packing process,
it is easy to verify that, givem cars (unit intervals) already parked (packed) in{[)
the conditional joint distribution of the + 1 gaps is the same under both processes.
Moreover, (1) proves

(4) jim fim XD BNy

A—> 00 X—>00 X X—o0o X

= oy

Thus, in the limit, the fraction of the positive real line that is occupied is the same under
both processes.

The interval packing process is said to have converged to an absorbing state if it has
reached a state in which all gaps have lengths less than 1. Although one expects some
strong form of convergence to an absorbing state, i.el,@f) to N, ast — oo, it is
surprising at first to find that, for all > 2, the expected time to absorption of the interval
packing process is infinite. We show in Section 2 tha ilenotes the time-to-absorption
of the interval packing process, then, for any fixed(Ty > t) tends to O like 1t, and,
hence,Ty is finite almost surely, but & = oo.

Mackenzie [12] showed that the asymptotic variances as oo, is given by

(5) Var(Ny) ~ X,

wherea(y) := a, — a(y), and

4/” [e_y(l _ ey _ e (e — 1+ y)aiy)
0

6
© w B(Y)Y2

] dy — o,

0.03815....

For the Poisson model of on-line interval packing, the variance of the number packed
in [0, X] during [0, t] has a similar form. As shown in Section 4,

(7) Var(Ny (t)) ~ u(t)x,

asx — oo, whereu(t) depends only ort and is strictly positive for alt > 0;
a complicated, explicit formula is given later and shown to have the property that
ut) — wus, ast — oo, which is not surprising in view of the convergence of the
on-line interval packing problem to the parking problem.

Dvoretzky and Robbins [6] gave a central limit theorem for the parking problem,
basing the second of their two proofs on the botid< x and the fact that the variance
of N, was asymptotically linear in. SinceN,(t) has the same properties, one might
hope to adapt the technique to our problem so as to obtain a central limit theorem for
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any fixedt. This is indeed possible, as we see in Section 4; the difficulties arising from
our more general model are easily handled.

We conclude this section with a brief discussion of applications. There have been
many applications of the parking problem in the physical sciences, including space-
filling problems, molecular adsorption on surfaces, order—disorder theory, and problems
in the theory of liquids (see [12], [15], and [17]). We expect that the on-line interval
packing problem is also worth considering in these settings, especially as a model of
time-dependent behavior, but our interest stems from the scheduling problems of existing
and proposed multimedia communication systems. The application of this type cited in
[4] arises in a one-dimensional loss network (modeled by the interyal)@here the
intervals to be packed represent calls between pairs of communicating stations (points
in [0, 1]).

Modeling reservation protocols in communication systems was the source of our
stochastic version of on-line interval packing (see, e.g., [9] and the references therein).
In a baseline reservation model, there is a single resource and there are randomly arriving
requests, each specifying a future time interval during which it wants to use the resource.
A request arriving at time identifies the desired interval[ t;] by giving the advance
noticet; —t and the duratioty, — t;. Scheduling decisions are made on-line: a requested
reservation is approvedccepted if and only if the specified interval does not overlap an
interval already reserved for some earlier request. Now consider the following stochastic
set-up: requests are Poisson arrivals at ratadvance notices are independently and
uniformly distributed over [Pa] for some givena, and intervals have unit durations.
Suppose that, at some tinten equilibrium, we look at the pattern of unit intervals
that were reserved during | x, t] for some largex. If a is large relative tax, one
expects that, except for negligible edge effects, this pattern is approximately the same
stochastically as the pattern of intervals packed jix[®y the Poisson model of on-line
interval packing during the time interval,[@]. This statement is made rigorous and a
corresponding limit law proved in [3]; certain generalizations of the above model are
also accommodated.

2. Absorption Time. Consider the Poisson model on §g, and recall that unit inter-

vals in this model continue to be packed until all of the gaps between packed intervals

are smaller than 1, i.e., the process absorbs. Let the time to absorption be denbted by
Itisclearthat,forO< x <1, Ty =0;forx =1, Ty = oo;andfor1< x < 2, Ty is

exponentially distributed

(8) P[Tx > t] = e'* D,
THEOREM1. For x > 2, there exist two positive functiong(x) and to(Xx) such that

71(X) <P, > 1) < 72(X)
= X = t [l

(9)

the right inequality holding for t~ 0 and the left for t> 1.
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REMARK. A simple consequence of this theorem is that
(10) ETy =00, Ty<ooas, and Ne(Ty) = N,
where2 denotes equality in distribution.

ProOF Upper Bound We prove the upper bound fare (n, n + 1] by induction on
n=23,....Letv be the arrival time of the first interval to be packed inXQ and let
y, 0 <y < x—1, be the position of its left endpoint. Then

X—

t 1
(11) P(Mx>1) =/ g by dvf P(max(Ty, Ty_y_1) > t —v) dy+ e t* D
0 0

t Xx—1
5[ e*(X*D"dv/ 2P(Ty >t —v)dy+ e &P,
0 1

The last term in (11) is the probability of no arrival during { We break down the
integral over [Qt] into integrals over [0t/2] and {/2,t], and use the trivial bounds
P(Ty >t—wv) <1,

t/2 00 1
/ e - Drgy < / e XDy = —— |
0 0 x—1

t 00 e tx-1/2
/ e X Drgy < / e Xy ==
t/2 t/2 x—1

to get from (11)

(12) P(Tx > t)

IA

t/2 x—1 t
zf e*(xfbvdv/ F><Ty > —> dy
0 1 2

t
+2x—2) | ey et D
t/2

IA

2 (1 t X—2
P(Ty> ) dy+2-——e D2y gt=h),
x—1 fl < vy 2> Yyt +

Forthe basis of the induction, we now upperboyffﬁdl P(Ty > t/2)dywith2 < x < 3.
From (8), we obtain

x—1 t 'S} 2
1 1

and so from (12) and* < 1/z, z > 0, we obtain the upper bound in (9) forx < 3
with the choice
5 X—2

2(X) = 1 +4(X— 1?2
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Now letn < x < n+ 1, n > 2, and assume that the upper bound in (9) holds for
2 < X <n.By(8), we get

x—1 t 2 t Xx—1 t
/ P(Ty>—)dy=/ P(Ty>—)dy—|—/ P<Ty>—>dy
1 2 1 2 2 2

o 2(x — 3

< / e 2gy s 2529 max ()
1 t 2<y<x—1

_ 2,229 ax V)

Tt 2<y<x—1 w2y,

so from (12) we obtain the upper bound in (9) with the choice

5 X—2 4(x — 3)
() = x—17 4(x —1)? X1 2oy w2(Y), x> 3.

Lower Bound For the easier lower bound proof an inductive argument is not needed.
Let T)E’, y > 1, be the first time a unit interval is packed in |; then the conditional
probability of Ty > t, given that the first unit interval in [X] arrived at timev € (0, t),

with its left endpoint aty € (1, x — 1) is bounded by

P(Te > tlv, y) = P(TY > t —v) = e VD),

which implies

t x—1
(13) P(Tyx > t)z/ e—<X—1>vdv/ e =Dt gy
0 1
t — e=(Xx=2)(t-v)
Z/ gt €I
0 t—v

By calculus, one checks that
) = ime ™7 et (_X ;)(t !
increases over [@]. Hence, we conclude from (13) that
1— e *x2t ] _ g=(x=Dt
- t x—1

t
(14) P(Ty > t) > ¢(0) / e *Dvdy
0

Since 1- e ! is increasing irt, (14) yields the lower bound in (9) with the choice

1-e*2)1—-e*D
(X)) = ( )( )' 0
x—1

3. Expected Number Packed. In Section 3.1 we begin with the Poisson model and
derive a first-order estimate of the expected number of intervals packeddihd0ring

[0, t], which we have denoted bl (t, x). We then show how this result can be used
to prove (1), the corresponding result for the model in which the number of available
intervals is fixed. In Section 3.2 we prove a much more precise estimake(fox).
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3.1. Proof of(1). Consider the Poisson model and note #ét, x) = 0if0 < x < 1,

since no interval of length 1 can fit into,[®] in that case. As in Bfyi's analysis in

one dimension, we compute a Laplace transform in the space dimension, eventually to
obtain a first-order partial differential equation for

(15) K, u) = /Oo K(t, x)e"*dx,
0

which can be solved by standard methods. Note that, s$fritex) < x, t,x > 0, we
know that/C(t, u) converges fot > 0, %iu > 0. Furthermore, for fixetl > 0, KC(t, u)
is analytic foritu > 0.

First, we relate the expected number of intervals packed inttirst to the expected
number packed in timebased on the events in the first time units. Arriving intervals
with left endpoints in(x — 1, X] are rejected, so if no interval with its left endpoint in
[0, x — 1] arrives at some time in [Q\t], then nothing happens ari€l(t + At, X) =
K(t, x). On the other hand, if an intervay[y + 1] arrives andy € [0, x — 1], then
K(t + At, x) will be the sum ofK (t, y) andK (t,x — y — 1) plus 1 for the interval
packed. Thus, we have

(16) K+ At,x) = [1— (x — DA]K(t, X)
x—1
—l—At[/ (Kt,y)y+Kt,x—y-1D+1) dy],
0

ignoring terms of ordeo(At) (which correspond to the probabilities of events in which
multiple arrivals occur during [QAt]). By symmetry, the integral simplifies and the
above becomes

x—1
A7) K+ At,x) =[1— (X —DAt]IK(t, x) + At |:2/ K, y)dy+x — l} ,
0
which yields
K x—-1
(18) H(t,x):(x—l)[l— K(t,X)]+2/ K(t,2dz
0

fort > 0 andx > 1. Now multiply both sides bg~"*, whereu > 0, and integrate with
respect tax over [1, oo). Exploiting the fact thaK (t, x) = 0, 0 < x < 1, we get, for
the transform of (18),

Ik e
at  u?

Next, reverse the order of integration in (19) so that the integral becomes

/ f ()dzdx
z=0 Jx=z+1

Carrying out the integration giveg@ " /u)X for the last term in (19), so (19) can be
written

K e 2e! K
20 —==_4(1 —.
(20) ot u? +( + u )ICJF au

oK [ee) x—1
(19) +lC+—+2f e*“def K(t,z)dz
Ju 1 0
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For the boundary conditions, observe tKa0, x) = 0 implies tha#C(0, u) = 0. The so-
lution to the first-order partial differential equation satisfying this initial condition can be
determined by standard methods. In our case, we simply input (19ylatioematicé?,

and found that

(21) K(t, u) = e 2ECW /t o UH2Ei(—U—v) dv
0

u+v)?’

where E(x) = ffoo(ey/y)dy, X # 0, is the exponential integral. However, it is also
easy to obtain (21) directly, as (20) can be reduced to an ordinary differential equation
with the change of variables= u+t, s =t. To put (21) into a form that we can check
against Rhyi's result in the limit — oo, we rewrite (21) as

dv

Kt w RS

t
fe—u+2(Ei(—u—v)—Ei(—u))
0

t u+v e—x dv
22 =e" [ exp(2 —dx
(22) /o p( /u X > (u+v)?
e u t u+v 1—eX
(23) = ?/O\ eXp(-Z/J X dx> dU.

At this point, we can easily prove

THEOREM2. The fraction ofR, that is occupied after time t is given by

t v _ X
(24) jim (&%) :a(t):/ exp<—2/ 1-e dx) dv.
X o o X

X—>00

REMARK. Inthe limitt — oo, no remaining gap in the final, absorbing stat&qfis
large enough to accommodate an interval, so we obtain (4) for the Poisson model.

PrROOFE From (23) it easily follows that

(25) K(t,u) ~ % as u\ 0.

Now, sincefox K (t, 2) dz is monotonically increasing i®, application of Karamata’s
Tauberian theorem [2, p. 37], yields

X X2
(26) / K(t,z)dz~oz(t)7 as X — oo,
0

wherea(t) is the same as in (24). Next, singas the expected number of arrivals per
unit time in [0, X], we have(d/at)K (t, X) < x, which implies in particular that

O/3KEx)

(27) .

0 as X — oo.

Now divide (18) byx?, letx — oo, and substitute (26) and (27) to obtain

(28) K(t, X) ~ a(t)x as X — oo. O
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We now return to the problem with fixed-length input.

THEOREM3. The limit in (1) holds for the on-line interval packing problem when
intervals are unit-length and have left endpoints independently and uniformly drawn
from [0, x — 1].

PrOOF It simplifies notation (and loses no generality) if we consider the problem on
the interval [Q x + 1]. We may expresK (1, X + 1) as an average dfy, 1(X) whereX
is Poisson distributed with parametet:

00 A n
(29) KO, x+1) = n; e*“%ENX“(n).

Next, choose a smadl > 0; break up the sum in (29) into three partial sums, the middle
one straddling the mean, and apply elementary bounds to obtain

L(A—e)x] n
A
(30) Koox+D = Y e‘“%-

n=0
L(A+e)x] e_)\x ()\.X)n

+
n!

ENx1(L(A + &)X])
n=10.—e)x)+1

[ee} e_)\x ()\‘X)n .

+
n!

n=[(A+e)x]+1

Itis an elementary exercise in calculus to show that, forsasy0, there exists a constant
9 =0(¢) > 0, such that

(31) 1—

LG+e)x] n
AX
e WX I) = O(e ™).

n=1(t—e)x|+1
By substituting (31) into (31), we obtain
K&, x4+ 1) < ENgy1 (L +&)x (1 +0(1)) + 0o(D),
asx — oo. Let0 < ¢ < A, and replace. by . — ¢ in the above to arrive at

fiminf St XD w —a(—2) S a()

X—00 X X—00

ase — 0.
Similarly, for a lower bound, we find

K@, x+1) = ENga (L — e)x])(1 + 0(1),

asx — oo, and so

lim sup

X—00

M <a(i46) \ a(),

ase — 0, which completes the proof of the theorem. O
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It is interesting to note that we can in fact prove (1) without direct reference to the
stochastic version, although this seems much easier to see in hindsight. We start with a
recurrence

_Zn—l n—1\ r* y—lj Xx—y—1 n—j-1 ]
@ evam=23 () [(50) () enaay

j=0

which expresses the fact thalNi, 1(n) is one plus the sum of the expected numbers
packed to the left and right of the first interval packed; the factor of 2 comes from
symmetry and the binomial law describes the numken ¢ 1) packed to the left of the
first-packed intervaly, y + 1]. At this point, we view the expected value

K, x+1) = Zef“(%)nENx(n)
n=0 ’

as a transform, apply it to (32), and after a fair amount of algebra, we obtain (18). The
remainder of the analysis is as before.

3.2. ARefined Estimate In principle, we can compute exact formulaskogt, x), 0 <

X < j, inductively as we increasg= 1, 2, .. .. To derive an equation for this purpose,
we can view (18), for fixeck, as an ordinary differential equation frwith the initial
conditionK (0, x) = 0. The solution is

t x—1
(33) K(t,x) = e“‘x‘l)/ [x -1+ 2/ K (v, z)dz} =D gy,
0 0

t -1
= 1—e—“x—1>+2e—“x—1>/ e’ Vdy /x K(v,2)dz
0 0

REMARK. We can also derive (33) by probabilistic reasoning. Our first recurrence in
(16) and (17) was based on events in the fixstime units. However, we can also write

a recurrence based on the time and place of the first arrival. Thus,esitigh AvAy

as the probability that the first arrival occurs during{ + Av] with left endpoint at

[y, y + Ay], we obtain

t x—1
K, x) = / / eV DKt —v,y)+ Kt —v,x—y—1) +1]dvdy,
0 JO
which is easily put into the form of (33).

We now calculate exact formulas for€ x < 3. By (33) and the trivial fact that
K, x)=0, 0<x <1, wehave, forl< x < 2,

(34) K(t,x) =1—et®D,

noting that the limit — oo is 1, as it should be, and, for2 x < 3,

t -1
(35) K(t,x) = 1—et®D 4 g tx=D f dv /X D1 — e @ V)dz
0 1
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t e — ev(x—l)
= 1— e—t(X—l) + ze—t(x—l)/ |: + (X _ z)eu(x—l)i| dv
0 v

t —1
(3 3 2 ) (1— e -0y 4 2e—t(x—1)/ ev — evx-1 .
X—1 0 v

the limiting value 3-2/(x—1) ast — oo agreeing, as we expect, with the corresponding
parking result of Dvoretzky and Robbins [6, equations (2.8) and (2.9)].

With the growth in complexity shown for the valugs= 1, 2, 3, one is well advised
to develop useful asymptotics. For the parking problem, the following refined estimate
of ENy is well known. There exists a constant- 0 such that, ag — oo,

(36) ENX =@ X+a,—1+ O(e%xlogx)_

Rényi [17] proved this result with a larger error term (namé);1/x™) for everym);
Dvoretzky and Robbins [6] supplied the tighter error term. The estimate (36) is the limit
t — oo of the estimate below for the Poisson model of on-line (unit) interval packing,
the main result of this section.

THEOREM4. For any fixed, 0 < & < 1, and fixed T> 0, we have

(37) sup [K(t, X) — (@)X + a(t) + B(t) — 1)| = O(e **19%),
o<t<T

Before giving the proof, we briefly discuss our approach and prove two lemmas. To
this point,u has been treated as a positive real, but for the remainder of the section it
is to be taken as complex. For simplicity, on many occasions we supipeggswrite
K(u) = K(t,u), t then being any fixed nonnegative constant. A similar convention
applies tax = «(t) andg = B(t).

The inversion formula for Laplace transforms gives,xat 0,

1 o+ioco U
(38) K(X) = ﬁ/pm Kuwe'du,

the integration path being the vertical lifls = o directed upward, where is any
positive real. The main idea in the proof of Theorem 4 is to shift this integration path
as far left as possible and to use the Cauchy residue theorem to deal with singularities
encountered in this shift. To do this, we need to study the analytic continuaticcupf

and to obtain a growth estimate f@g|.

LEMMA 5. The function’C(u) is analytic for all u# 0. At u = 0, K(u) has a second-
order pole and the expansion

_oa etp-1
(39) KW =G+—r—+"

wherex and 8 are as given in24) and (2).
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ProoF Note thatw(u) and8(u) are entire functions of the complex variahigso if
we rewrite (23) as

—Uu —Uu

e 1t e
(40) K(U)ZFWA ,B(U—l-v)dv:m[a(u—l—t)—a(u)],

we see thak’(u) is analytic foru £ 0. The expansions & /8(u) anda (U +1t) — a(u)
aboutu = 0 are given by

gu B u y B u?
B _exp<—u+2/0 (1—§+~-~>dy>_exp(u—EJr-..)

=1+u40-u*+--.
and
aU+t) —a) = [a®) —a@] +[B1) —BO]JU+ -
=a) +[pM) —1Ju+---.
Multiplying these gives the expansion in (39). O

LEMMA 6. Lett > 0,and leto, be real numbersThen

C(t’GO)
luiz -’

(41) K, w| < for |ul>2t, %Ru> o,
where qt, o,) denotes a positive constant depending on t énd

PROOF Use the elementary estimates

eVl < e  for %Ru> oo,

\
|
\

U+ v| > for ju=2t, O<v<t,

to obtain

u+v ey u+v ey
wolo [ (5) o) zonle [ () ) 2w

|u| ZZts mUEO'Os OSUSt,

so that, from (22),

At exp(—o, + 267 )

Kt w| =< T

9 |u| 2 2t9 &Ru Z 0o,

which gives (41) with the choice

(42) c(t, op) = 4t exp(—o, + 267%°). O
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I'(p)

-ip
Fig. 1. Rectangular contour of integration.

We observe that(t, o,) increases in, a fact to be used in the proof of Theorem 4.

PrROOF OFTHEOREM4. We begin by proving the theorem with the weaker error esti-
mate: O(e~?*) for all ¥ > 0. We shift the vertical integration path in (38) to the left
of 0 and apply the residue theorem. First observe that, by Lemn@&Bbe*" is ana-
Iytic for all u, except for a pole ai = 0. From (39) and the power series expansion
e =1+ xu+ ---, we conclude that

X -1
(43) K(U)ex“=%+%+m, u#0.
Apply the residue theorem to the rectangular conto(r) sketched in Figure 1, where
o > 0ando, ¥ > 2T. As K(u) is analytic on and insid€ (p), except for a pole at
u =0, we get from (43)

(44) Kwe'du=ax+a+ -1

27 T'(p)
By Lemma 6, the total contribution of the integrals along the horizontal sid&g®f
tends to 0 ap — o0, SO (44) becomes

—9+ioo

1 o+ioco 1
(45) —/ Kwe'du=ax+a+B8—1+ —/ Kwedu.
271 Joioo 27 J_

¥ —ioco

However, if we writeu = —9 + iy, —o00 <y < o0, ¢ > 0, then, by Lemma 6,

O o(T, —)e ™ [ dy
46 L Kwed ’
(40) oztusa 2ri -/;19—ioo w 4= 21 /;OO B2 4 y2
— o(T, =9) s«
BT T

and so sup. 7 |K(t,x) — (@)X + a(t) + f(t) — 1)| = O(e"*) forall ¥ > 0 fol-
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lows from (45) and (46). Finally, th® (e~"*) error term can be improved @ (e £*109%)
forany O< & < 1 by using in (46) the explicit value fax(T, —¢) provided by(42) and
maximizing overy > O for fixed x. This is a routine calculus problem, so we omit the
details. 0

4. Second Moment. The main result of this section is the following estimate for the
second moment (t, x) := ENZ(t).

THEOREM7. Forany T > 0,we have
(47) sup [M(t, X) — (@®(t)X* + m(t)X + my(t))| = O(e™¥*'°9%),
o<t<T

forall £ € (0, 1), where mit) and my(t) are explicitly computable constantdhe com-
putations are given below in Lemm&).

As in the previous section, before proving Theorem 7, we compute the transform in
the space dimension

(48) M(t,u) = /oo M (t, x)e XU dx.
0

SinceM(t, x) < x2, t, x > 0, M(t, u) converges fot > 0 and%u > 0. Furthermore,
for fixedt > 0, M(t, u) is analytic fortu > 0. After computing the transform in Section
3.1, we prove analyticity properties d#{(t, u) in Section 3.2, and then complete the
proof of Theorem 7.

4.1. The TransformM (t, u). The derivation of the formula foM(t, u) duplicates
that forC(t, u), so we will be brief. In analogy with (16), we have

M(t + At) = EN2(t + At)
= [1 - (X —1DAt]M(, x)
Xx—1
+ At/ E[1+ NJ(t) + NZ_,_3(t) + 2Ny(t) 4+ 2Nx_y_1(t)
0
+ 2Ny (1) Nx_y_1()] dy + 0(Al),
and hence

x—1

x—1
(49) %(t,x) = (x—D[1 - M(, x)] +2f M(t,y)dy+4/ K,y dy
0 0

x—1
+2/ K, y)K(, x—y—1)dy,
0

the analogue of (18). Now multiply both sides &y, whereu > 0, and integrate with
respect tax over [1, oo]. Exploiting the fact thaM (t, x) = 0, 0 < x < 1, we get for
the transform of (49)

oM aM 2e !
(50) T(tﬁu) = W(tvu)‘i‘M(t,U) <1+ u )

—Uu

+?A(t, u), t>0, u>0,
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where
(51) A(t,u) = 1+ 4uk(t, u) + 2(uK(t, u))?,

with the boundary conditioiM (0, u) = 0, as before. Solving (50) as we did (20), we
find
YAt — v, u+v) utv g-y
52 M(t,u =e*”/ — — ‘ex <2/ —d)dv
(52) t.w o ooz Sy
which is equivalent to

u+v 1— e—y

—Uu t
(53) M(t, u) =e—2/ A(t—v,u+v)exp<—2/
u 0 u

e—u t+u

~wBW) Jy

dy) dv

At 4+ u—v,v)8(v)dv.

4.2. Analytic Properties ofM(t,u). We first establish the analytic properties of
Kt —v,v), At — v, v), andB(t, v) := At — v, v)B(v) as functions ob for fixedt;
in the following two lemmas bothandv are assumed to be complex variables.

LEMMA 8. The functionC(t — v, v) is analytic for all t and for allv # 0. Atv = 0,
K(t — v, v) has a second-order pole and the expansion

(54) Kt —v,v) = % L0 6,
asv — 0.

PrROOF From (40) we obtain

(55) Kt —v,v) = ZB) [a®) — a(v)].

Then the analytic properties &f(t — v, v) for v # 0 are evident from (40). At = 0O,
the right-hand side of (55) can be expanded to

1 1
<—2 + -+ O(v)) (@(t) — v+ O(?),
v v
which, after simple algebra, becomes equal to the right-hand side of (54). O

LEMMA 9.

(i) A(t — v, v) is analytic for all t and for allv # 0 and has a second-order pole at
v = 0 along with the expansion

2 2
(56) At — vy = 22O 47O 50

v2 v

asv — 0.
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(i) B(t, v) is analytic for all t andv # 0 and has a second-order pole at= 0 along
with the expansion
202(t)

(57) B(t.v) = ==+ O().

asv — 0.

PROOF Forv # 0, analyticity properties ofA(t — v, v) and B(t, v) follow from
Lemma 8 and the definition o4 in (51). Expansion (56) follows from (51) and (54).
For part (ii), note thag(u) is entire and that its expansionwat= 0 is given by

(®8) A = exp(—Z/OU 1—ye—y dy) = exp<—2/0U (1+ % +) dy)

vz wee
— 872U+L+ =1—2v+---.

Now multiply (56) by (58) to obtain (57). O
Define
2
t
(59) k(t,v) == B(t,v) — Zavz( ).

By straightforward, but tedious algebra we obtain from (51) and (55)
(60) K(t, v) = Ko + 4a(t)ia (v) + 207 (Hiea(v),

with

_ B (V) 2e~ % <a(v))2
ko = B(v) —4e + B . ,

e B e 2u(v)
v B(w)v2’

1 e—2v
]
ve L B(v)
Itis readily checked that each of the three functions = 1, 2, 3, is entire inv. Hence,
(60) shows that (t, v) is entire int, v.

LEMMA 10. The transformM (t, u) has an analytic continuation for all ¢ 0, and at
u = 0it has the expansion

(61) M(t,u) =

2
2 3(t) + m(zt) + Mt +0®,
u u u

as u— 0,where

t
(62) m(t)=4a(t),3(t)+2a2(t)(1-r1)+f K(t, v) dv,
0
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and

1 1 1
(63) mu(t) = 2[B%(t) + a(t)B' (D] + da(t)B(1) (1 — ;) + 202(t) (t_z — ;)
dk (t, v)

at

t
+K(t,t)—l<(t,0)+/ dv ~|—/ k(t, v) do.
0

PROOF The analytic continuation o¥1(t, u) follows from the properties ofl(t —v, v),
B(v), and (54). Next, for the expansionwat= 0, we rewrite (53) as

e—u t+u d t+u
(64) M(t,u)= <2a (t+u)/ / k(t+u, v)dv)

u2p(u)
e 20[2(t +u) 2Lx2(t +u) t4u
=U2ﬂ(u)< u - t+u ‘I’\/u K(t—}—u,v)dv).
To expand (64) at = 0, observe that
e v 1 1
(65) m =2 + - + O(uw),

asu — 0. Also,

2 2
(66) 20 (tu—i— u 2o (t)

+ 4o (DB() + 2(B2(1) + (B (1)U + O,

asu — 0. We know thatx(t)/t is entire and, as stated earlie«t, v) is entire int, v.
Hence, the functiona?(t 4 u)/(t + u) andfu”” k(t + u, v) dv appearing in (64) are
entire int, u. It remains to observe that

202 2
(67) 27t +w _ Z(@2(t) + 2a () B(Hu + O(uz))<1 _d + O(u2)>
t+u t t
2 2
_ 2 ‘u <4oe(t)ﬁ(t) _2a (t>> L owd),
t t t2
and
(68)
t+u t t
/ k(t+u,v)dv = / k(t,v)dv+u (K(t, t)—k(t, O)+/ BK(att, v) dv>+O(u2),
u 0 0

asu — 0. Substitution of the estimates (65)—(68) into (64) proves the lemma. O
Next, we need a bound on the growth|aff (u)|.

LEMMA 11. Lett > Oando, be real numbersThen for|u| > 3t, Ru > o,

c1(t, 0o)
upz -’

(69) IM(t,u)| <

where G (t, o,) denotes a positive constant depending on t @énd
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PROOF Letv satisfy 0< v < t, so that, by the conditions of the lemnta;- v > 0,
[u-+v| > 2t, andR(u + v) > o,. We conclude from Lemma 6 that

t—v,00) - c(t, o)

C
(70) [(U+ VKE —v,u+v)| < Uro S &

wherec(t, o,) is defined by (42). Now (51) and (70) give, for the above rangésuwofv,

c(t, 0p) N 1 [C(t,ao)]z

71 t—v,u <142 -
(71) At —v. utv)f <1+2— 5| 1

Using (52) and (71), the remainder of the proof mimics that of Lemma 6, so we omit the
details. We obtain the bound (69) with the choice

2
ci(t, op) = <1+ zc(t’t%) + % [C(t’tg")] )c(t, o). O

We observe that;(t, o,) increases irt, a fact to be used in the proof below of
Theorem 7.

PROOF OFTHEOREM7. Proceeding as in the proof of Theorem 4, we have by
Lemma 10 thatM(u)e* is analytic for allu, except for a pole at = 0. From
Lemma 10 and the power series expangbh= 1+ xu + (xu)?/2- - -, we conclude
that the residue aM(t, u)e*¥ atu = 0 is a®x? + mx + my. Apply the residue theo-
rem to the rectangular contolip) sketched in Figure 1, whege > 0 ando, & > 3t.

As M(u) is analytic on and insidE (p), except for a pole ai = 0, we get

(72) M@edu = a®x% + mx+ m,.

271 )

The remainder of the proof uses the bound in Lemma 11 and follows exactly the proof
of Theorem 4. Again, we omit the details. O

5. Central Limit Theorem. Inthis section our firstresultis a precise variance estimate
in Theorem 13 for the Poisson model. Then, in Theorem 14, we showjtiBtsatisfies
a central limit theorem.

Before turning to the Poisson model, we give, again for contrast, a more precise
variance estimate for the parking problem than was given in the Introduction.

THEOREM12 [12], [6]. With u, given by(6), and with any constarit, 0 < £ < 1,the
variance of the number parked in the parking problem satisfies

(73) Var(Ny) = X + i + O@$%°9%)  as  x— oco.
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REMARK. Dvoretzky and Robbins [6] proved (73) without giving an explicit formula
for .. Earlier, by computing the continuous limit of a result derived in a discretized
version of the parking problem, Mackenzie [12] obtained formula (6)for

The combined analysis of Mackenzie and of Dvoretzky and Robbins gives a round-
about proof of the variance estimate which is unnecessary. A direct proof can be based
on a careful analysis of an inverse Laplace transform, as in the previous section. A sketch
of our new proof of (73) is given in the Appendix.

THEOREM13. Forany T > 0, we have

(74) Sup Nar(Nx(t) = (X + ua(V)]| = O (e xloox)

forall € € (0, 1),

(75) p(t) = met) — 2a(t) (@) + Bt) — 1),
(76) pat) = my(t) — (@) + B(t) — 1)?,

with m(t) and my(t) given by(62) and (63). In addition . (t) > Oforallt > 0.

REMARKS. From (75), (76), (62), and (63), we find that lim,, p1(t) = lim¢_ oo u(t) =

s consistent with (73) and the fact that the on-line interval packing problem becomes
the parking problem in the limit — oo. Numerical values ofi(t),0 < t < 10, are
illustrated in Figure 2. We prove below thatt) > 0 fort > 0; but a proof thaj.(t) is
unimodal as indicated in the figure seems difficult. We note ttitit > 0 is needed for

the existence of a central limit theorem.

0.04k 0.03815

0 2 4 6 8 10
t

Fig. 2. Numerical values ofi(t), 0 < t < 10.
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PrROOFE Estimate (74) is an immediate consequence of Theorems 4 and 7.

It remains to prove that(t) > O for allt > 0; we proceed as follows. (The proof
will not attempt to analyze directly the complicated expressiondy.) We first write
formulas for Vat Ny (t)), x > 0, that will facilitate the argument. (In what follows> 0
is always tacitly assumed.) Ford x < 2, we have

(77) M(t, x) =1 — e t&*D,
which when combined with (34) yields

78 Var(Ny(t)) = e t*=D _ @721 l<x<2
(

Now condition on the event that the first interval arrives at time{, t — v +dv], and is
packed with its left endpoint iny, y + dy]. The expectation of the conditional variance
is smaller than the variance, so we arrive at

t x—1
(79)  Var(Ny(t)) > 2 / e t-v-D gy / Var(Ny(v)) dy, x> 1.
0 0

Next, we claim that the function
(80) f(t,x) = Var(Ny(t)) (0<x<2

t x—1
(81) = 2/ e’(t’”)(x’l)dv/ fo,y)dy (x>2)
0 0

has the property that
(82) Var(Ny (t)) > f(t, x), x> 0.

Thisclaimis easily established by proving by inductiomoe: 1, 2, . . . that VarNy(t)) >
f(t,x),m < x <m+ 1. We omit the details.

We are now reduced to an analysis of the functiom, x). First, note that (81) is
equivalent to

x—1
83) af(att’x)z—(x—l)f(t,x)+2/ ft,yydy, x>2
0

with (0, x) = 0,x > 2. To solve (83), defind (t, u) := [;° f(t, x)e"“*dxforu > 0,
multiply (83) bye™"*, and integrate with respect toover [2 co). Exploiting the fact
that f(t,x) =0,0< x < 1, we get

aft.uy  oaftu 27V ([ Cux -
(84) T = 4 + f(t,u) + u (/1 f(t,x)e dx+f(t,u)>,

with (0, u) = 0,u > 0. Rewrite (84) as
2e7Y
+ (1 +
u

aft,uy  oaf(tu
ot du

_ e u
(85) ) f(t,u)"‘?Af(t,u),
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where
2
(86) Af(t,u) = 2u/ f(t, x)e ¥ dx.
1
Solving (85) as we did (50), we get
t U+v o
2 - At — v, U+ v) ( ey >
87 f(t,u =e“/—ex 2/ —dy) dv
&7 - o wrv?z Pt v
which reduces to
_ e—u t+u
f = — ]
(88) (t,u) 2B J, As(t +u—wv,v)B()dv

Karamata’'s Tauberian theorem then implies

2

(89) / ft,y)ydy~ v(t)%, as X — oo,
0
where
t
(90) v(t) = / A (t — v, v) dv.
0

From (78), (80), and (86) we conclude thét(t, u) > 0,u > 0, and hence that(t) > 0
by (90). This observation together with (74) and (82) then gives the desired inequality:

w(t) = lim 32/ Var(Ny (1)) dy
0

X—00 X
X

lim 32 f(t,y)dy=v() > 0. |
0

— Xx—>o00 X

We are now ready to prove a central limit theorem féy(t) asx becomes large,
holdingt fixed.

THEOREM14. For any fixed t we have £(t) 4 N(O, 1), as x— oo, where

Ny (t) — ENk(t
Z,(t) = x (D) x()’
Var(Ny (1))
N (0, 1) is a standard normal random variabland—d> denotes convergence in distri-
bution

PrOOF We apply an approach of Dvoretzky and Robbins [6]; it is the second of their
two proofs of a central limit theorem for the parking problem. The new features to be
dealt with here are minor, so we only sketch the basic technique.

The ideais to observe the state of the packing process after a small nuymbexn(x)
of intervals have been packed, leaving a vector of successiveygapsi, - - -, Yn,+1)-
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The key fact is that the continuation of the packing process consisgstdf independent
packing subprocesses, one taking place in eaclyg#fpzy is the earliest time by which

the initialny intervals are packed, then atany tilme t,, theny+1 subprocesses define a
triangular array of independent random varialNgst —z,) indexed by, 1 < i < ny+1,

andx = ny+Y_y > 1. After a suitable normalization, we apply a version of Liapunov’s
theorem for triangular arrays (see Lemma 6 of [6]) and obtain a conditional central limit
theorem forZ, (t), the normalized version &y (t) = ny+ ) Ny, (t — 7)), given(zy, y).
Finally, an extension of the Dvoretzky—Robbins argument shows that the central limit
theorem holds uniformly over a set ¢, y) whose probability tends to 1 as— oo.

This extension is straightforward once it is observed ttaati 0 asx — oo, and that
the estimate of the variance bk (t) is uniform int (see Theorem 13). It follows that
the central limit theorem also holds for the unconditional packing proZeds. O

6. Final Remarks. We have focused on asymptoticsrfor fixed t. It would also

be of interest to obtain good largeestimates for fixek, and more information on

the convergence to the parking problem. Figure 3 was produced from exact formulas
for smallx (see (34)), and is instructive in connection with time dependence. The figure
illustrates that convergencelif(t, x) toa (t)x+a(t)+ B8 (t)—1is very fasuniformlyint.

A more technical problem of interest is the extension of our results on the Poisson
model to the model with fixed-length input. Here, we have shown only that the leading-
term asymptotics for the expected number packed carry over without change to the latter
model.

1 1.5 2 2.5 3 3.5 4
X

Fig. 3. Solid lines represent exact valueskoft, x) fort = 1,5, oo, and 1< x < 4; dashed lines are drawn
using linear approximatioa(t)x + «a(t) + g(t) — 1.
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We have made some headway in the generalization of the Poisson model to the case
of a general interval-length distribution (see [15] and [13] for results of this type for the
parking problem). We also have partial results on the discrete version of our problem
with the interval [Q x] replaced by the integerd, 2, ..., m) and with the intervals to
be packed all having integer lengths< m (see [16] and [12] for the analysis of this
model of the parking problem). A paper on these results is in preparation.

Appendix

ProOF OF(73). Usingtransform methods, we derive an estimate for the second-moment
EI\]E that is equal to the variance in (73) plus the square of the mean given by (36). The
second-moment transforg(u) := fow El(lfe‘”xdx is naturally expressed in terms of

the first-moment transfori# (u) = f0°° EN,e U*dx, which is given by (see [17])

_eta(u)
(91) Fu) = m,

wherea(u) = a,, — a(u) and, as before,

Yl1—eY u
BU) = exp<—2/ dy) , a(u) = / B) dv.
0 y 0

Since N, < x and El(lx2 < x2, we know thatF (u) andG(u) converge and are analytic

for Ru > 0. We show thatF(u) andG(u) have analytic continuations for # 0, and,

atu = 0, they have poles of order 2 and 3, respectively. We then bound the growth of
|F(u)| and|G(u)|. Our estimate of the second moment is derived from the inversion
formula for Laplace transforms, the residue theorem, and the growth bounds.

The formulas derived for the parking problem (such as thos&fop andg(u)) are
analogous to the previous ones obtained for on-line interval packing. Indeed, they are
obtained formally from the previous ones by letting> co. To emphasize this analogy,
we denote corresponding functions by the same letter (sugi{@sand5(u)).

The main difference between the parking and on-line interval packing results is that
both|F(u)| and|G(u)| areO(1/|u]) in any half-planéiu > 0, whereas the correspond-
ing transformgC(t, u) and M(t, u) wereO(1/|u|?) in modulus. By adopting a trick of
Rényi [17], we avoid any difficulty caused by the larger bound.

We begin the analysis by developing the boundBtu)|. Observe thaf# (u) has an
analytic continuation to all complax= 0 given by (91). From (91) we obtain thaiu)
has a double pole at the origin and the expansion

o, — 1
u

asu — 0 (the expansion has no constant term).
Letn(u) := f5'((1—e™)/y)dy.

O
(92) Fu) = i + O(u),

LEMMA 15. For every negative there exists a constant€) > 0 such that

In(u) — logjul| < c(o), Ru>o, Ju =01
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PROOF Letu :=rv(9), wherer > 1 andv = v(0) := €. We have

1—e*¢

(93) p(U) = () + / d¢

ueg=¢
= n(v) + logr —/ Td;.

To estimate the integral, integrate by parts and get

ue—g efu efv u87{
—d = —— - —d
/v ¢ ¢ TR o ¢? &

then fix the path of integration of this last integral to be the straight line segiment
vt, 1 <t <r, which joinsu to v, and obtain

u e—{ 1 r e—vt
—d¢ = - dt.
, 2% v/1 2

The points¢ on the straight line segment joiningandy satisfy¢ > o, |¢] > 1, so
that the last two identities give

ueast
R d{'
| %
Together with (93), this bound and the choige’) = 3e7° + max, =1 n(v) proves the
lemma. O

° dt

=3e’.

<2 %+¢€e° /

, 2

We are now ready for the growth estimate.

LEMMA 16. For every negative, there exists a constan{@) > 0 such that

C1(o)

F)| < ,
|[FW| < m

u>1 NRu=>o.

PROOF Let|u| =r and write

a<u>=fo porde+ [ pe,

wherel'q is the circular arc, centered at the origin, which jairte u. Then, by (91), we
have

e—U o0
(94) f(“)zm[/r B(r)dr — roﬂ(c)d;]

Letg(u) := n(u) — logr so thatg(u) = e 21V = 29 /r2 gand (94) becomes

e_U oo e—zg(f) e—2g(u)
— = 292 —
Fu) = uze2 r [/ = dr / = dul.
r
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Sincel'g has length at mostr, we conclude from the above equation that

o0 219(0)] -
—dr + — maxe?9W! | |
T I |ul=r

(95) |F(u)| < e7e?9W! [ /

The lemma then follows from Lemma 15 and (95) with the chaiger) = (1 +
7)), O

In our next step, we computg(u) and prove properties similar to those t6u).

We begin with a recurrence for the second moment. We use the notatig) ff] to
denote the expectation &f; +1 given that the first car parks at location y + 1].

d
o0 e, = [ EnZ.mY

x O - - - - .d
= / E[1+ NJ + Nf_y+2Ny+2Nx_y+2Nny_y]7y
0

2 (% _5 4 (*x . 2 [*_ . .
1+ - ENZd — EN, d — ENyNy_y dy.
+X/0 yy+X/0 yY+X/O yNx—y dy.

Take the transform of both sides of (97) and obtain, after routine manipulations,

dg 2e” e
(97) %“(l J >g——A(u) us 0,
where
(98) AU) = 1+ 4uF(u) + 2(uF (u))>.

We haveN, = 0 andNy < X, so the desired solution f@k(u) is

(99) G(u) = / A()B () dt, us>o0.

Uzﬁ W
Observe that, by Lemma 16 and (98), we getlim, A(u) = 1, which implies that the
integral appearing in (99) is finite. We know from the propertieg@afi) that A(u) and
B(u) := A(u)B(u) are analytic folu # 0. Itis routine to verify from (92) and (98) that,
atu = 0, we have

202 4da?
(100) Aw = S+ 22—+,

u u

2
(101) Bu) = 25‘2* — @+ D+
Define
2
k(u) = B(u) —

and note that, by (101y,(u) is entire. By Lemma 15 and the fact that Jim,, A(u) = 1,
we conclude that, foltu > o, B(u) and hencec(u) are O(1/|u?) asu — 0. In
particular, (u) is integrable on [0oco).
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As noted earlierg (u) is analytic foru # 0. If we letk, ;= ]O°° k(1) dr, then we can

rewrite (99) as
e u () az
- *1d
u%*(u)fu [K 2] !

e u 20(2 u
T, — dr|.
u2ﬁ<u>[ R A t]
which shows tha (u) is analytic foru # 0. The functiore™"/(u?8(u)) can be expanded

as in the derivation of (92) from (91), and by (101) we h;ﬁa‘)&(r) dr = —(e2+Du+
--. Thus, (102) yields

(102) G(u)

202 Kk, + 202 Kk.+o2+1
(103) o) e e R
u u u

The bound on the growth @f(u) is as follows.

LEMMA 17. For every negative, there exists a constant@) > 0 such that

C2(0)

ul ’

G| = Ru>o, |u>1

PROOF Use (102) and mimic the proof of Lemma 16. We omit the details. O

Finally, we estimate B2 from the inversion formula

1 o+ioo
(104) ENZ = > elG(u)du,

o—1o0
for anyo > 0. As is readily verifiede*“G (u) is analytic foru # 0 and has a third-order
pole at the origin. Multiplying (103) bg*¥ = 1 + xu + (xu)?/2 + - - - the residue of
e*UG(u) is found to bex?x? + (i, + 202)X + k., + a2 + 1. Thus, by the residue theorem
(see the argument in the proof of Theorem 3), we get

B 1 —o+ioco
(105) ENZ = aX® + (k4 + 202)X + k6 + 0% + 1+ 5 eG(u) du,
T —o—ioo
foranyo > 0. It remains to estimate the integral.
The estimate in Lemma 17 is not sufficient, as it fails to guarantee the absolute
convergence of the integral. To get around this difficulty, we adopt a tricleai/H17].
Rewrite (97) as

4
—<e G(u) = ——g( u — ﬂ

and deduce from Lemma 17 that

d 2c(0)+1 N
(106) ‘@(e”Q(U))‘ < o Ru>o, Ju>1
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An integration by parts and substitution of (106) gives

—o4ico —o+ioo
/ eG(u) du / e DUguyydu (o > 0)

o—ioco o—ioo

1 —o+ioco
= / e*=Dude'G(u)) (o > 0)

_X -1 o—ioo
= O™ forall o > 0.

As at the end of the proof of Theorem 3, we remark that an optimization of parameters
improves the bound t@®(e~§%1°9%) for all £ € (0, 1); as before, the details are routine
and left to the interested reader. This bound together with (105) gives an estimate for the
second moment which, after subtracting the square of the mean in (36), yields (73) with
s = Ky + 20, Where

(207) Ky = foox(u)du
0

[e'9) 20[2
= / {ﬁ(u)[l + 4uF (u) 4+ 202 F?(u)] — u2* } du.
0
The calculations of the discrete model leading to (6) were omitted in [12], and it is not
obvious thatk, + 2o, and (6) give the same constant. To prove that they do, we start by
integrating the first term in (107), gettirfgOO B(u)du = «,, and then writinge, + 2a,
in the form

(108) ke + 200, = da, + /
0

— Oy,

Qu(;n du
where

Q(u) := UBW[4F1(U) + 2F7(W)] — 202
with
e Ya(u)
up(u) -

Comparing (108) with (6) written in terms @f;, we see that, + 2«, and (6) yield the
same constant if

(209) Fi(u) :=uF(u) =

(110) 4w, + foo Qu(f) du = 4/00,3(u)f1(u)(1— e")ydu
0 0
—4 f T puFWE -1+ udu
0

We work with the left-hand side and begin by noting that sin@® = g(u) + Q(u)/u?
is entire (by design), then so @(u)/u?. Thus,Q(u)/u vanishes at 0, and sinc&,(u)
is exponentially small ii, we haveQ(u)/u = O(1/u) asu — oo and soQ(u)/u also
vanishes at infinity. Therefore, an integration by parts and use of

e u
BU)

u

(111) B(u) =—2
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gives, after some simplification,
& du o0 du
112) 4o, — = '(U)—
(112) +/O oW’ /O W
= 4o, +4 / B(we " [2F(u) + F2(w)] du
0

(113) + 4/ ug(u)Fy(u)ydu+ 4/ uB(u)Fy (W) Fi(u) du.
0 0

Now isolate the penultimate integral, integrate by parts, again using (111), and get

4/0 ug(u)Fy(uydu 4Uﬂ(U)fl(u)l8°—4/0 FWI[B(U) + up’(w] du

—4a, + 4/00 B (1 -2 F(u)du.
0

Substituting back into (113) gives, after a little algebra,

Qu(ﬁ ) du=4 / B(U)(Fi(u) + € F2(u) + uF1(U)Fy(u)) du.
0

(114) 4o, + /0 h

A straightforward calculation shows that

l1-u—-2eY e
(115) Fi(u) = fl(u)f -

which is also easily deduced from the differential equatiorAi@iven in [6]. This gives
UFL(WF,(U) = (1 — u— 267 F2(u) — e U Fi(u)

which we substitute back into (114). In the resulting expression, we collect separately
the coefficients o (u) F1(u) andﬂ(u)]-‘f(u) and obtain the right-hand side of (110), as
desired. O
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