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Packing Random Intervals On-Line

E. G. Coffman, Jr.,1 L. Flatto,1 P. Jelenkovi´c,1 and B. Poonen2

Abstract. Starting at time 0, unit-length intervals arrive and are placed on the positive real line by a unit-
intensity Poisson process in two dimensions; the probability of an interval arriving in the time interval [t, t+1t ]
with its left endpoint in [y, y+1y] is 1t1y+ o(1t1y). Fix x ≥ 0. An arriving interval isacceptedif and
only if it is contained in [0, x] and overlaps no interval already accepted.

We study the numberNx(t) of intervals accepted during [0, t ]. By Laplace-transform methods, we derive
large-x estimates of ENx(t) and VarNx(t) with error terms exponentially small inx uniformly in t ∈ (0, T),
whereT is any fixed positive constant. We prove that, asx → ∞, ENx(t) ∼ α(t)x, Var Nx(t) ∼ µ(t)x,
uniformly in t ∈ (0, T), whereα(t) andµ(t) are given by explicit, albeit complicated formulas. Using these
asymptotic estimates we show thatNx(t) satisfies a central limit theorem, i.e., for any fixedt

Nx(t)− ENx(t)√
Var(Nx(t))

d→ N (0,1) as x→∞,

whereN (0,1) is a standard normal random variable, and
d→ denotes convergence in distribution. This stochas-

tic, on-line interval packing problem generalizes the classical parking problem, the latter corresponding only
to the absorbing states of the interval packing process, where successive packed intervals are separated by gaps
less than 1 in length. We verify that, ast →∞,α(t)andµ(t) converge toα∗ = 0.748. . .andµ∗ = 0.03815. . .,
the constants of R´enyi and Mackenzie for the parking problem. Thus, by comparison with the parking analysis
in a single space variable, ours is a transient analysis involving both a time and a space variable.

Our interval packing problem has applications similar to those of the parking problem in the physical
sciences, but the primary source of our interest is the modeling of reservation systems, especially those
designed for multimedia communication systems to handle high-bandwidth, real-time demands.

Key Words. Interval packing, Parking problem, Reservation systems, Asymptotic probabilistic analysis,
On-line packing.

1. Introduction. Let (a1,b1), . . . , (an,bn) be a sequence ofn independent random
intervals inR+ to be packed on-line in a given interval [0, x]; an intervalIi = (ai ,bi ) is
packed (marked as occupied in [0, x]) if and only if Ii ⊆ [0, x] and Ii does not overlap
any interval in I1, . . . , Ii−1 that has already been packed. Suppose theIi are drawn
independently from a given interval distribution. To avoid trivialities, we assume that
the distribution is such thatIi ⊆ [0, x] with probability 1. Theon-line interval packing
problemasks for the expectation of the numberNx(n) of intervals packed as a function
of n and the parameters of the interval distribution.

The asymptotic behavior of the expected number packed on-line was found in [4] for
the case where, for eachi , ai andbi are taken as the smaller and larger of two independent
random draws from [0, x]. In this case,x is only a scale factor and does not figure in the
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result. The asymptotic expected number packed is given by

ENx(n) ∼ cn(
√

17−3)/4

asn→∞, wherec ≈ 0.98 approximates the value of an explicit formula given in [4].
In this paper, by a completely different analysis, we obtain the corresponding result

for the case where theai are independent uniform random draws from [0, x− 1] and all
intervals have unit lengths (bi = ai + 1). Now, the result clearly depends onx; indeed,
we prove in Section 2 the following limit law for the expected number packed: If for
some constantλ > 0, we putn = bλxc, then

lim
x→∞

ENx(bλxc)
x

= α(λ),(1)

where

α(λ) =
∫ λ

0
β(v)dv, β(v) = exp

(
−2

∫ v

0

1− e−x

x
dx

)
.(2)

We note in passing that the probabilistic analysis of optimaloff-line interval packing
has been worked out in [10], where the number packed is to be maximized, and in [5],
where the unoccupied space of the packing is to be minimized. Also, for the worst-case
analysis of combinatorial models of on-line interval packing, see [8] and [11].

Our interest in on-line interval packing originated in a stochastic version, where the
arrival times and left endpoints of the intervals to be packed form a two-dimensional
Poisson process with a mean normalized to 1 per unit time per unit distance. For this
version, which we will call thePoissonmodel, we use the same notationNx(t) for
the number packed during [0, t ] in [0, x]; except where noted otherwise, a continuous
argument signals that it refers to the Poisson model. We letK (t, x) denote the expected
number packed during [0, t ] into [0, x], and we prove in Section 2 that, as might be
expected,K (t, x) has a property similar to that in (1),

K (t, x) ∼ α(t)x(3)

asx→∞ with t fixed, whereα(·) is given by (2). As we will verify, the Poissonization
of the input length makes the analysis easier; we then obtain (1) from (3) via a simple
argument based on the concentration of the Poisson distribution around its mean.

The classical parking problem of R´enyi [17] has an intimate relationship with on-line
interval packing. In the former problem, unit-length cars are parked sequentially along
a curb (interval) [0, x], x > 1. Each car chooses a parking place independently and
uniformly at random from those available, i.e., from those where it will not overlap
cars already parked or the curb boundaries. Thus, the left endpoint of the first car is a
uniform random draw from [0, x − 1], and if the first car is parked in [y, y + 1], then
the left endpoint of the second car parked is drawn uniformly at random from [0, y−1],
[0, y − 1] ∪ [y + 1, x − 1], or [y + 1, x − 1] according asy ≥ 1 andy > x − 2,
1 ≤ y ≤ x − 2, or y < 1 andy ≤ x − 2, respectively. This uniform parking of cars
continues until every unoccupied gap is less than 1 in length, i.e., no further cars can be
parked. R´enyi [17] showed that the mean ofÑx, the number parked at the conclusion of
the process, satisfies ẼNx ∼ α∗x, x→∞, with theRényi constantα∗ = limλ→∞ α(λ)
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determined by (2). This result actually follows from a more refined estimate of EÑx

which was later improved by Dvoretzky and Robbins [6]. (The more precise estimate is
given in Section 3 for comparison with our new results.) For many other improvements
and extensions of the results on the parking problem, see [6], [7], [12]–[14], and the
references therein.

Although the parking process differs from the on-line (unit) interval packing process,
it is easy to verify that, givenn cars (unit intervals) already parked (packed) in [0, x],
the conditional joint distribution of then + 1 gaps is the same under both processes.
Moreover, (1) proves

lim
λ→∞

lim
x→∞

ENx(bλxc)
x

= lim
x→∞

EÑx

x
= α∗.(4)

Thus, in the limit, the fraction of the positive real line that is occupied is the same under
both processes.

The interval packing process is said to have converged to an absorbing state if it has
reached a state in which all gaps have lengths less than 1. Although one expects some
strong form of convergence to an absorbing state, i.e., ofNx(t) to Ñx ast → ∞, it is
surprising at first to find that, for allx > 2, the expected time to absorption of the interval
packing process is infinite. We show in Section 2 that ifTx denotes the time-to-absorption
of the interval packing process, then, for any fixedx, P(Tx > t) tends to 0 like 1/t , and,
hence,Tx is finite almost surely, but ETx = ∞.

Mackenzie [12] showed that the asymptotic variance, asx→∞, is given by

Var(Ñx) ∼ µ∗x,(5)

whereα̃(y) := α∗ − α(y), and

µ∗ = 4
∫ ∞

0

[
e−y(1− e−y)

α̃(y)

y
− e−2y(e−y − 1+ y)α̃2(y)

β(y)y2

]
dy− α∗(6)

= 0.03815. . . .

For the Poisson model of on-line interval packing, the variance of the number packed
in [0, x] during [0, t ] has a similar form. As shown in Section 4,

Var(Nx(t)) ∼ µ(t)x,(7)

as x → ∞, whereµ(t) depends only ont and is strictly positive for allt > 0;
a complicated, explicit formula is given later and shown to have the property that
µ(t) → µ∗, as t → ∞, which is not surprising in view of the convergence of the
on-line interval packing problem to the parking problem.

Dvoretzky and Robbins [6] gave a central limit theorem for the parking problem,
basing the second of their two proofs on the boundÑx ≤ x and the fact that the variance
of Ñx was asymptotically linear inx. SinceNx(t) has the same properties, one might
hope to adapt the technique to our problem so as to obtain a central limit theorem for
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any fixedt . This is indeed possible, as we see in Section 4; the difficulties arising from
our more general model are easily handled.

We conclude this section with a brief discussion of applications. There have been
many applications of the parking problem in the physical sciences, including space-
filling problems, molecular adsorption on surfaces, order–disorder theory, and problems
in the theory of liquids (see [12], [15], and [17]). We expect that the on-line interval
packing problem is also worth considering in these settings, especially as a model of
time-dependent behavior, but our interest stems from the scheduling problems of existing
and proposed multimedia communication systems. The application of this type cited in
[4] arises in a one-dimensional loss network (modeled by the interval [0,1]) where the
intervals to be packed represent calls between pairs of communicating stations (points
in [0,1]).

Modeling reservation protocols in communication systems was the source of our
stochastic version of on-line interval packing (see, e.g., [9] and the references therein).
In a baseline reservation model, there is a single resource and there are randomly arriving
requests, each specifying a future time interval during which it wants to use the resource.
A request arriving at timet identifies the desired interval [t1, t2] by giving the advance
noticet1− t and the durationt2− t1. Scheduling decisions are made on-line: a requested
reservation is approved/accepted if and only if the specified interval does not overlap an
interval already reserved for some earlier request. Now consider the following stochastic
set-up: requests are Poisson arrivals at rateλ, advance notices are independently and
uniformly distributed over [0,a] for some givena, and intervals have unit durations.
Suppose that, at some timet in equilibrium, we look at the pattern of unit intervals
that were reserved during [t − x, t ] for some largex. If a is large relative tox, one
expects that, except for negligible edge effects, this pattern is approximately the same
stochastically as the pattern of intervals packed in [0, x] by the Poisson model of on-line
interval packing during the time interval [0, λ]. This statement is made rigorous and a
corresponding limit law proved in [3]; certain generalizations of the above model are
also accommodated.

2. Absorption Time. Consider the Poisson model on [0, x], and recall that unit inter-
vals in this model continue to be packed until all of the gaps between packed intervals
are smaller than 1, i.e., the process absorbs. Let the time to absorption be denoted byTx.

It is clear that, for 0≤ x < 1, Tx ≡ 0; for x = 1, Tx = ∞; and for 1< x ≤ 2, Tx is
exponentially distributed

P[Tx > t ] = e−t (x−1).(8)

THEOREM1. For x > 2, there exist two positive functionsτ1(x) andτ2(x) such that

τ1(x)

t
≤ P(Tx > t) ≤ τ2(x)

t
,(9)

the right inequality holding for t> 0 and the left for t> 1.
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REMARK. A simple consequence of this theorem is that

ETx = ∞, Tx <∞ a.s., and Nx(Tx)
d= Ñx,(10)

where
d= denotes equality in distribution.

PROOF. Upper Bound. We prove the upper bound forx ∈ (n,n+ 1] by induction on
n = 2,3, . . .. Let v be the arrival time of the first interval to be packed in [0, x], and let
y, 0≤ y ≤ x − 1, be the position of its left endpoint. Then

P(Tx > t)=
∫ t

0
e−(x−1)v dv

∫ x−1

0
P(max(Ty, Tx−y−1) > t − v)dy+ e−t (x−1)(11)

≤
∫ t

0
e−(x−1)v dv

∫ x−1

1
2P(Ty > t − v)dy+ e−t (x−1).

The last term in (11) is the probability of no arrival during [0, t ]. We break down the
integral over [0, t ] into integrals over [0, t/2] and [t/2, t ], and use the trivial bounds
P(Ty > t − v) ≤ 1,∫ t/2

0
e−(x−1)v dv <

∫ ∞
0

e−(x−1)v dv = 1

x − 1
,∫ t

t/2
e−(x−1)v dv <

∫ ∞
t/2

e−(x−1)v dv = e−t (x−1)/2

x − 1
,

to get from (11)

P(Tx > t) ≤ 2
∫ t/2

0
e−(x−1)v dv

∫ x−1

1
P
(

Ty >
t

2

)
dy(12)

+ 2(x − 2)
∫ t

t/2
e−(x−1)v dv + e−t (x−1)

≤ 2

x − 1

∫ x−1

1
P
(

Ty >
t

2

)
dy+ 2

x − 2

x − 1
e−t (x−1)/2+ e−t (x−1).

For the basis of the induction, we now upper bound
∫ x−1

1 P(Ty > t/2)dywith 2< x ≤ 3.
From (8), we obtain∫ x−1

1
P
(

Ty >
t

2

)
dy≤

∫ ∞
1

e−(y−1)t/2 dy≤ 2

t
,

and so from (12) ande−z < 1/z, z> 0, we obtain the upper bound in (9) for 2< x ≤ 3
with the choice

τ2(x) = 5

x − 1
+ 4

x − 2

(x − 1)2
.
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Now let n < x ≤ n + 1, n > 2, and assume that the upper bound in (9) holds for
2< x ≤ n. By (8), we get∫ x−1

1
P
(

Ty >
t

2

)
dy =

∫ 2

1
P
(

Ty >
t

2

)
dy+

∫ x−1

2
P
(

Ty >
t

2

)
dy

≤
∫ ∞

1
e−(y−1)t/2 dy+ 2(x − 3)

t
max

2<y≤x−1
τ2(y)

= 2

t
+ 2(x − 3)

t
max

2<y≤x−1
τ2(y),

so from (12) we obtain the upper bound in (9) with the choice

τ2(x) = 5

x − 1
+ 4

x − 2

(x − 1)2
+ 4(x − 3)

x − 1
max

2<y≤x−1
τ2(y), x > 3.

Lower Bound. For the easier lower bound proof an inductive argument is not needed.
Let T0

y , y > 1, be the first time a unit interval is packed in [0, y]; then the conditional
probability ofTx > t , given that the first unit interval in [0, x] arrived at timev ∈ (0, t),
with its left endpoint aty ∈ (1, x − 1) is bounded by

P(Tx > t |v, y) ≥ P(T0
y > t − v) = e−(y−1)(t−v),

which implies

P(Tx > t)≥
∫ t

0
e−(x−1)v dv

∫ x−1

1
e−(y−1)(t−v) dy(13)

=
∫ t

0
e−(x−1)v 1− e−(x−2)(t−v)

t − v dv.

By calculus, one checks that

ϕ(v) := 1− e−(x−2)(t−v)

t − v
increases over [0, t ]. Hence, we conclude from (13) that

P(Tx > t) ≥ ϕ(0)
∫ t

0
e−(x−1)v dv = 1− e−(x−2)t

t

1− e−(x−1)t

x − 1
.(14)

Since 1− e−t is increasing int , (14) yields the lower bound in (9) with the choice

τ1(x) = (1− e−(x−2))(1− e−(x−1))

x − 1
.

3. Expected Number Packed. In Section 3.1 we begin with the Poisson model and
derive a first-order estimate of the expected number of intervals packed in [0, x] during
[0, t ], which we have denoted byK (t, x). We then show how this result can be used
to prove (1), the corresponding result for the model in which the number of available
intervals is fixed. In Section 3.2 we prove a much more precise estimate forK (t, x).
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3.1. Proof of(1). Consider the Poisson model and note thatK (t, x) = 0 if 0 ≤ x < 1,
since no interval of length 1 can fit into [0, x] in that case. As in R´enyi’s analysis in
one dimension, we compute a Laplace transform in the space dimension, eventually to
obtain a first-order partial differential equation for

K(t,u) :=
∫ ∞

0
K (t, x)e−ux dx,(15)

which can be solved by standard methods. Note that, sinceK (t, x) ≤ x, t, x ≥ 0, we
know thatK(t,u) converges fort ≥ 0, <u > 0. Furthermore, for fixedt ≥ 0,K(t,u)
is analytic for<u > 0.

First, we relate the expected number of intervals packed in timet+1t to the expected
number packed in timet based on the events in the first1t time units. Arriving intervals
with left endpoints in(x − 1, x] are rejected, so if no interval with its left endpoint in
[0, x − 1] arrives at some time in [0,1t ], then nothing happens andK (t + 1t, x) =
K (t, x). On the other hand, if an interval [y, y + 1] arrives andy ∈ [0, x − 1], then
K (t + 1t, x) will be the sum ofK (t, y) and K (t, x − y − 1) plus 1 for the interval
packed. Thus, we have

K (t +1t, x) = [1− (x − 1)1t ]K (t, x)(16)

+1t

[∫ x−1

0
(K (t, y)+ K (t, x − y− 1)+ 1) dy

]
,

ignoring terms of ordero(1t) (which correspond to the probabilities of events in which
multiple arrivals occur during [0,1t ]). By symmetry, the integral simplifies and the
above becomes

K (t +1t, x) = [1− (x − 1)1t ]K (t, x)+1t

[
2
∫ x−1

0
K (t, y)dy+ x − 1

]
,(17)

which yields

∂K

∂t
(t, x) = (x − 1)[1− K (t, x)] + 2

∫ x−1

0
K (t, z)dz,(18)

for t ≥ 0 andx ≥ 1. Now multiply both sides bye−ux, whereu > 0, and integrate with
respect tox over [1,∞). Exploiting the fact thatK (t, x) = 0, 0 ≤ x < 1, we get, for
the transform of (18),

∂K
∂t
= e−u

u2
+K + ∂K

∂u
+ 2

∫ ∞
1

e−ux dx
∫ x−1

0
K (t, z)dz.(19)

Next, reverse the order of integration in (19) so that the integral becomes∫ ∞
z=0

∫ ∞
x=z+1

(·)dz dx.

Carrying out the integration gives 2(e−u/u)K for the last term in (19), so (19) can be
written

∂K
∂t
= e−u

u2
+
(

1+ 2e−u

u

)
K + ∂K

∂u
.(20)
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For the boundary conditions, observe thatK (0, x) = 0 implies thatK(0,u) = 0. The so-
lution to the first-order partial differential equation satisfying this initial condition can be
determined by standard methods. In our case, we simply input (19) intoMathematicac©,
and found that

K(t,u) = e−2Ei(−u)
∫ t

0
e−u+2Ei(−u−v) dv

(u+ v)2 ,(21)

where Ei(x) = ∫ x
−∞(e

y/y)dy, x 6= 0, is the exponential integral. However, it is also
easy to obtain (21) directly, as (20) can be reduced to an ordinary differential equation
with the change of variablesr = u+ t, s= t . To put (21) into a form that we can check
against R´enyi’s result in the limitt →∞, we rewrite (21) as

K(t,u) =
∫ t

0
e−u+2(Ei(−u−v)−Ei(−u)) dv

(u+ v)2

= e−u
∫ t

0
exp

(
2
∫ u+v

u

e−x

x
dx

)
dv

(u+ v)2(22)

= e−u

u2

∫ t

0
exp

(
−2

∫ u+v

u

1− e−x

x
dx

)
dv.(23)

At this point, we can easily prove

THEOREM2. The fraction ofR+ that is occupied after time t is given by

lim
x→∞

K (t, x)

x
= α(t) =

∫ t

0
exp

(
−2

∫ v

0

1− e−x

x
dx

)
dv.(24)

REMARK. In the limit t →∞, no remaining gap in the final, absorbing state ofR+ is
large enough to accommodate an interval, so we obtain (4) for the Poisson model.

PROOF. From (23) it easily follows that

K(t,u) ∼ α(t)

u2
as u↘ 0.(25)

Now, since
∫ x

0 K (t, z)dz is monotonically increasing inx, application of Karamata’s
Tauberian theorem [2, p. 37], yields∫ x

0
K (t, z)dz∼ α(t)x

2

2
as x→∞,(26)

whereα(t) is the same as in (24). Next, sincex is the expected number of arrivals per
unit time in [0, x], we have(∂/∂t)K (t, x) ≤ x, which implies in particular that

(∂/∂t)K (t, x)

x2
→ 0 as x→∞.(27)

Now divide (18) byx2, let x→∞, and substitute (26) and (27) to obtain

K (t, x) ∼ α(t)x as x→∞.(28)
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We now return to the problem with fixed-length input.

THEOREM3. The limit in (1) holds for the on-line interval packing problem when
intervals are unit-length and have left endpoints independently and uniformly drawn
from [0, x − 1].

PROOF. It simplifies notation (and loses no generality) if we consider the problem on
the interval [0, x+ 1]. We may expressK (λ, x+ 1) as an average ofNx+1(X) whereX
is Poisson distributed with parameterλx:

K (λ, x + 1) =
∞∑

n=0

e−λx (λx)n

n!
ENx+1(n).(29)

Next, choose a smallε > 0; break up the sum in (29) into three partial sums, the middle
one straddling the mean, and apply elementary bounds to obtain

K (λ, x + 1) ≤
b(λ−ε)xc∑

n=0

e−λx (λx)n

n!
· n(30)

+
b(λ+ε)xc∑

n=b(λ−ε)xc+1

e−λx (λx)n

n!
ENx+1(b(λ+ ε)xc)

+
∞∑

n=b(λ+ε)xc+1

e−λx (λx)n

n!
· n.

It is an elementary exercise in calculus to show that, for anyε > 0, there exists a constant
θ ≡ θ(ε) > 0, such that

1−
b(λ+ε)xc∑

n=b(λ−ε)xc+1

e−λx (λx)n

n!
= O(e−θx).(31)

By substituting (31) into (31), we obtain

K (λ, x + 1) ≤ ENx+1(b(λ+ ε)xc)(1+ o(1))+ o(1),

asx→∞. Let 0< ε < λ, and replaceλ by λ− ε in the above to arrive at

lim inf
x→∞

ENx+1(bλxc)
x

≥ lim
x→∞

K (λ− ε, x + 1)

x
= α(λ− ε)↗ α(λ)

asε→ 0.
Similarly, for a lower bound, we find

K (λ, x + 1) ≥ ENx+1(b(λ− ε)xc)(1+ o(1)),

asx→∞, and so

lim sup
x→∞

ENx+1(bλxc)
x

≤ α(λ+ ε)↘ α(λ),

asε→ 0, which completes the proof of the theorem.
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It is interesting to note that we can in fact prove (1) without direct reference to the
stochastic version, although this seems much easier to see in hindsight. We start with a
recurrence

ENx+1(n)= 2

x

n−1∑
j=0

(
n−1

j

)∫ x

0

(
y− 1

x

)j(x−y−1

x

)n− j−1

ENy( j )dy+1,(32)

which expresses the fact that ENx+1(n) is one plus the sum of the expected numbers
packed to the left and right of the first interval packed; the factor of 2 comes from
symmetry and the binomial law describes the number (≤ n−1) packed to the left of the
first-packed interval [y, y+ 1]. At this point, we view the expected value

K (λ, x + 1) =
∞∑

n=0

e−λx (λx)n

n!
ENx(n)

as a transform, apply it to (32), and after a fair amount of algebra, we obtain (18). The
remainder of the analysis is as before.

3.2. A Refined Estimate. In principle, we can compute exact formulas forK (t, x), 0≤
x ≤ j , inductively as we increasej = 1,2, . . .. To derive an equation for this purpose,
we can view (18), for fixedx, as an ordinary differential equation int with the initial
conditionK (0, x) = 0. The solution is

K (t, x) = e−t (x−1)
∫ t

0

[
x − 1+ 2

∫ x−1

0
K (v, z)dz

]
ev(x−1) dv(33)

= 1− e−t (x−1) + 2e−t (x−1)
∫ t

0
ev(x−1) dv

∫ x−1

0
K (v, z)dz.

REMARK. We can also derive (33) by probabilistic reasoning. Our first recurrence in
(16) and (17) was based on events in the first1t time units. However, we can also write
a recurrence based on the time and place of the first arrival. Thus, usinge−v(x−1)1v1y
as the probability that the first arrival occurs during [v, v + 1v] with left endpoint at
[y, y+1y], we obtain

K (t, x) =
∫ t

0

∫ x−1

0
e−v(x−1)[K (t − v, y)+ K (t − v, x − y− 1)+ 1] dv dy,

which is easily put into the form of (33).

We now calculate exact formulas for 0≤ x ≤ 3. By (33) and the trivial fact that
K (t, x) = 0, 0≤ x < 1, we have, for 1≤ x ≤ 2,

K (t, x) = 1− e−t (x−1),(34)

noting that the limitt →∞ is 1, as it should be, and, for 2≤ x ≤ 3,

K (t, x) = 1− e−t (x−1) + 2e−t (x−1)
∫ t

0
dv
∫ x−1

1
ev(x−1)(1− e−v(z−1))dz(35)
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= 1− e−t (x−1) + 2e−t (x−1)
∫ t

0

[
ev − ev(x−1)

v
+ (x − 2)ev(x−1)

]
dv

=
(

3− 2

x − 1

)
(1− e−t (x−1))+ 2e−t (x−1)

∫ t

0

ev − ev(x−1)

v
dv,

the limiting value 3−2/(x−1) ast →∞ agreeing, as we expect, with the corresponding
parking result of Dvoretzky and Robbins [6, equations (2.8) and (2.9)].

With the growth in complexity shown for the valuesj = 1,2,3, one is well advised
to develop useful asymptotics. For the parking problem, the following refined estimate
of EÑx is well known. There exists a constantξ > 0 such that, asx→∞,

EÑx = α∗x + α∗ − 1+ O(e−ξx logx).(36)

Rényi [17] proved this result with a larger error term (namely,O(1/xm) for everym);
Dvoretzky and Robbins [6] supplied the tighter error term. The estimate (36) is the limit
t →∞ of the estimate below for the Poisson model of on-line (unit) interval packing,
the main result of this section.

THEOREM4. For any fixedξ, 0< ξ < 1, and fixed T> 0, we have

sup
0≤t≤T

|K (t, x)− (α(t)x + α(t)+ β(t)− 1)| = O(e−ξx logx).(37)

Before giving the proof, we briefly discuss our approach and prove two lemmas. To
this point,u has been treated as a positive real, but for the remainder of the section it
is to be taken as complex. For simplicity, on many occasions we suppresst and write
K(u) = K(t,u), t then being any fixed nonnegative constant. A similar convention
applies toα = α(t) andβ = β(t).

The inversion formula for Laplace transforms gives, forx > 0,

K (x) = 1

2π i

∫ σ+i∞

σ−i∞
K(u)exu du,(38)

the integration path being the vertical line<u = σ directed upward, whereσ is any
positive real. The main idea in the proof of Theorem 4 is to shift this integration path
as far left as possible and to use the Cauchy residue theorem to deal with singularities
encountered in this shift. To do this, we need to study the analytic continuation ofK(u)
and to obtain a growth estimate for|K|.

LEMMA 5. The functionK(u) is analytic for all u 6= 0. At u = 0,K(u) has a second-
order pole and the expansion

K(u) = α

u2
+ α + β − 1

u
+ · · · ,(39)

whereα andβ are as given in(24) and(2).
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PROOF. Note thatα(u) andβ(u) are entire functions of the complex variableu, so if
we rewrite (23) as

K(u) = e−u

u2
· 1

β(u)

∫ t

0
β(u+ v)dv = e−u

u2β(u)
[α(u+ t)− α(u)],(40)

we see thatK(u) is analytic foru 6= 0. The expansions ofe−u/β(u) andα(u+ t)−α(u)
aboutu = 0 are given by

e−u

β(u)
= exp

(
−u+ 2

∫ u

0

(
1− y

2
+ · · ·

)
dy

)
= exp

(
u− u2

2
+ · · ·

)
= 1+ u+ 0 · u2+ · · ·

and

α(u+ t)− α(u) = [α(t)− α(0)] + [β(t)− β(0)]u+ · · ·
= α(t)+ [β(t)− 1]u+ · · · .

Multiplying these gives the expansion in (39).

LEMMA 6. Let t > 0, and letσo be real numbers. Then

|K(t,u)| ≤ c(t, σo)

|u|2 , for |u| ≥ 2t, <u ≥ σo,(41)

where c(t, σo) denotes a positive constant depending on t andσo.

PROOF. Use the elementary estimates

|e−u| ≤ e−σo for <u ≥ σo,

|u+ v| ≥ |u|
2
≥ t for |u| ≥ 2t, 0≤ v ≤ t,

to obtain∣∣∣∣exp

(
2
∫ u+v

u

(
e−y

y

)
dy

)∣∣∣∣ ≤ exp

(∣∣∣∣2∫ u+v

u

(
e−y

y

)
dy

∣∣∣∣) ≤ exp(2e−σo),

|u| ≥ 2t, <u ≥ σo, 0≤ v ≤ t,

so that, from (22),

|K(t,u)| ≤ 4t exp(−σo + 2e−σo)

|u|2 , |u| ≥ 2t, <u ≥ σo,

which gives (41) with the choice

c(t, σo) = 4t exp(−σo + 2e−σo).(42)
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Fig. 1.Rectangular contour of integration.

We observe thatc(t, σo) increases int , a fact to be used in the proof of Theorem 4.

PROOF OFTHEOREM4. We begin by proving the theorem with the weaker error esti-
mate:O(e−ϑx) for all ϑ > 0. We shift the vertical integration path in (38) to the left
of 0 and apply the residue theorem. First observe that, by Lemma 5,K(u)exu is ana-
lytic for all u, except for a pole atu = 0. From (39) and the power series expansion
exu = 1+ xu+ · · ·, we conclude that

K(u)exu = α

u2
+ αx + α + β − 1

u
+ · · · , u 6= 0.(43)

Apply the residue theorem to the rectangular contour0(ρ) sketched in Figure 1, where
ρ > 0 andσ, ϑ ≥ 2T . As K(u) is analytic on and inside0(ρ), except for a pole at
u = 0, we get from (43)

1

2π i

∫
0(ρ)

K(u)exu du= αx + α + β − 1.(44)

By Lemma 6, the total contribution of the integrals along the horizontal sides of0(ρ)

tends to 0 asρ →∞, so (44) becomes

1

2π i

∫ σ+i∞

σ−i∞
K(u)exu du= αx + α + β − 1+ 1

2π i

∫ −ϑ+i∞

−ϑ−i∞
K(u)exu du.(45)

However, if we writeu = −ϑ + iy,−∞ < y <∞, ϑ > 0, then, by Lemma 6,

sup
0≤t≤T

∣∣∣∣ 1

2π i

∫ −ϑ+i∞

−ϑ−i∞
K(u)exu du

∣∣∣∣ ≤ c(T,−ϑ)e−ϑx

2π

∫ ∞
−∞

dy

ϑ2+ y2
(46)

= c(T,−ϑ)
2|ϑ | e−ϑx,

and so sup0≤t≤T |K (t, x)− (α(t)x + α(t)+ β(t)− 1)| = O(e−ϑx) for all ϑ > 0 fol-
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lows from (45) and (46). Finally, theO(e−ϑx) error term can be improved toO(e−ξx logx)

for any 0< ξ < 1 by using in (46) the explicit value forc(T,−ϑ) provided by(42) and
maximizing overϑ > 0 for fixedx. This is a routine calculus problem, so we omit the
details.

4. Second Moment. The main result of this section is the following estimate for the
second momentM(t, x) := EN2

x (t).

THEOREM7. For any T> 0, we have

sup
0≤t≤T
|M(t, x)− (α2(t)x2+m(t)x +m1(t))| = O(e−ξx logx),(47)

for all ξ ∈ (0,1), where m(t) and m1(t) are explicitly computable constants(the com-
putations are given below in Lemma10).

As in the previous section, before proving Theorem 7, we compute the transform in
the space dimension

M(t,u) :=
∫ ∞

0
M(t, x)e−xu dx.(48)

SinceM(t, x) ≤ x2, t, x ≥ 0,M(t,u) converges fort ≥ 0 and<u > 0. Furthermore,
for fixedt ≥ 0,M(t,u) is analytic for<u > 0. After computing the transform in Section
3.1, we prove analyticity properties ofM(t,u) in Section 3.2, and then complete the
proof of Theorem 7.

4.1. The TransformM(t,u). The derivation of the formula forM(t,u) duplicates
that forK(t,u), so we will be brief. In analogy with (16), we have

M(t +1t) = EN2
x (t +1t)

= [1− (x − 1)1t ]M(t, x)

+ 1t
∫ x−1

0
E[1+ N2

y(t)+ N2
x−y−1(t)+ 2Ny(t)+ 2Nx−y−1(t)

+ 2Ny(t)Nx−y−1(t)] dy+ o(1t),

and hence

∂M

∂t
(t, x) = (x − 1)[1− M(t, x)] + 2

∫ x−1

0
M(t, y)dy+ 4

∫ x−1

0
K (t, y)dy(49)

+2
∫ x−1

0
K (t, y)K (t, x − y− 1)dy,

the analogue of (18). Now multiply both sides bye−ux, whereu > 0, and integrate with
respect tox over [1,∞]. Exploiting the fact thatM(t, x) = 0, 0 ≤ x < 1, we get for
the transform of (49)

∂M
∂t

(t,u) = ∂M
∂u

(t,u)+M(t,u)

(
1+ 2e−u

u

)
(50)

+e−u

u2
A(t,u), t ≥ 0, u > 0,
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where

A(t,u) = 1+ 4uK(t,u)+ 2(uK(t,u))2,(51)

with the boundary conditionM(0,u) = 0, as before. Solving (50) as we did (20), we
find

M(t,u) = e−u
∫ t

0

A(t − v,u+ v)
(u+ v)2 exp

(
2
∫ u+v

u

e−y

y
dy

)
dv(52)

which is equivalent to

M(t,u) = e−u

u2

∫ t

0
A(t − v,u+ v)exp

(
−2

∫ u+v

u

1− e−y

y
dy

)
dv(53)

= e−u

u2β(u)

∫ t+u

u
A(t + u− v, v)β(v)dv.

4.2. Analytic Properties ofM(t,u). We first establish the analytic properties of
K(t − v, v),A(t − v, v), andB(t, v) := A(t − v, v)β(v) as functions ofv for fixed t ;
in the following two lemmas botht andv are assumed to be complex variables.

LEMMA 8. The functionK(t − v, v) is analytic for all t and for allv 6= 0. At v = 0,
K(t − v, v) has a second-order pole and the expansion

K(t − v, v) = α(t)

v2
+ α(t)− 1

v
+ O(1),(54)

asv→ 0.

PROOF. From (40) we obtain

K(t − v, v) = e−v

v2β(v)
[α(t)− α(v)].(55)

Then the analytic properties ofK(t − v, v) for v 6= 0 are evident from (40). Atv = 0,
the right-hand side of (55) can be expanded to(

1

v2
+ 1

v
+ O(v)

)
(α(t)− v + O(v2)),

which, after simple algebra, becomes equal to the right-hand side of (54).

LEMMA 9.

(i) A(t − v, v) is analytic for all t and for allv 6= 0 and has a second-order pole at
v = 0 along with the expansion

A(t − v, v) = 2α2(t)

v2
+ 4α2(t)

v
+ O(1),(56)

asv→ 0.
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(ii) B(t, v) is analytic for all t andv 6= 0 and has a second-order pole atv = 0 along
with the expansion

B(t, v) = 2α2(t)

v2
+ O(1),(57)

asv→ 0.

PROOF. For v 6= 0, analyticity properties ofA(t − v, v) andB(t, v) follow from
Lemma 8 and the definition ofA in (51). Expansion (56) follows from (51) and (54).

For part (ii), note thatβ(u) is entire and that its expansion atu = 0 is given by

β(v) = exp

(
−2

∫ v

0

1− e−y

y
dy

)
= exp

(
−2

∫ v

0

(
1+ y

2
+ · · ·

)
dy

)
(58)

= e−2v+v2+··· = 1− 2v + · · · .

Now multiply (56) by (58) to obtain (57).

Define

κ(t, v) := B(t, v)− 2α2(t)

v2
.(59)

By straightforward, but tedious algebra we obtain from (51) and (55)

κ(t, v) = κ0+ 4α(t)κ1(v)+ 2α2(t)κ2(v),(60)

with

k0 = β(v)− 4e−2v α(v)

v
+ 2e−2v

β(v)

(
α(v)

v

)2

,

k1 = e−2v

v
− e−2vα(v)

β(v)v2
,

k2 = 1

v2

[
e−2v

β(v)
− 1

]
.

It is readily checked that each of the three functionsκi , i = 1,2,3, is entire inv. Hence,
(60) shows thatκ(t, v) is entire int, v.

LEMMA 10. The transformM(t,u) has an analytic continuation for all u6= 0, and at
u = 0 it has the expansion

M(t,u) = 2α2(t)

u3
+ m(t)

u2
+ m1(t)

u
+ O(1),(61)

as u→ 0, where

m(t) = 4α(t)β(t)+ 2α2(t)(1− t−1)+
∫ t

0
κ(t, v)dv,(62)
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and

m1(t) = 2[β2(t)+ α(t)β ′(t)] + 4α(t)β(t)

(
1− 1

t

)
+ 2α2(t)

(
1

t2
− 1

t

)
(63)

+κ(t, t)− κ(t,0)+
∫ t

0

∂κ(t, v)

∂t
dv +

∫ t

0
κ(t, v)dv.

PROOF. The analytic continuation ofM(t,u) follows from the properties ofA(t−v, v),
β(v), and (54). Next, for the expansion atu = 0, we rewrite (53) as

M(t,u)= e−u

u2β(u)

(
2α2(t + u)

∫ t+u

u

dv

v2
+
∫ t+u

u
κ(t + u, v)dv

)
(64)

= e−u

u2β(u)

(
2α2(t + u)

u
− 2α2(t + u)

t + u
+
∫ t+u

u
κ(t + u, v)dv

)
.

To expand (64) atu = 0, observe that

e−u

u2β(u)
= 1

u2
+ 1

u
+ O(u),(65)

asu→ 0. Also,

2α2(t + u)

u
= 2α2(t)

u
+ 4α(t)β(t)+ 2(β2(t)+ α(t)β ′(t))u+ O(u2),(66)

asu → 0. We know thatα(t)/t is entire and, as stated earlier,κ(t, v) is entire int, v.
Hence, the functionsα2(t + u)/(t + u) and

∫ u+v
u κ(t + u, v)dv appearing in (64) are

entire int,u. It remains to observe that

2α2(t + u)

t + u
= 2

t
(α2(t)+ 2α(t)β(t)u+ O(u2))

(
1− u

t
+ O(u2)

)
(67)

= 2α2(t)

t
+ u

(
4α(t)β(t)

t
− 2α2(t)

t2

)
+ O(u2),

and

(68)∫ t+u

u
κ(t+u, v)dv =

∫ t

0
κ(t, v)dv+u

(
κ(t, t)−κ(t,0)+

∫ t

0

∂κ(t, v)

∂t
dv

)
+O(u2),

asu→ 0. Substitution of the estimates (65)–(68) into (64) proves the lemma.

Next, we need a bound on the growth of|M(u)|.

LEMMA 11. Let t > 0 andσo be real numbers. Then for|u| > 3t,<u ≥ σo,

|M(t,u)| ≤ c1(t, σo)

|u|2 ,(69)

where c1(t, σo) denotes a positive constant depending on t andσo.
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PROOF. Let v satisfy 0< v ≤ t , so that, by the conditions of the lemma,t − v > 0,
|u+ v| ≥ 2t, and<(u+ v) ≥ σo. We conclude from Lemma 6 that

|(u+ v)K(t − v,u+ v)| ≤ c(t − v, σo)

|u+ v| ≤
c(t, σo)

2t
,(70)

wherec(t, σo) is defined by (42). Now (51) and (70) give, for the above ranges oft,u, v,

|A(t − v,u+ v)| ≤ 1+ 2
c(t, σo)

t
+ 1

2

[
c(t, σo)

t

]2

.(71)

Using (52) and (71), the remainder of the proof mimics that of Lemma 6, so we omit the
details. We obtain the bound (69) with the choice

c1(t, σo) =
(

1+ 2
c(t, σo)

t
+ 1

2

[
c(t, σo)

t

]2)
c(t, σo).

We observe thatc1(t, σo) increases int , a fact to be used in the proof below of
Theorem 7.

PROOF OFTHEOREM7. Proceeding as in the proof of Theorem 4, we have by
Lemma 10 thatM(u)exu is analytic for all u, except for a pole atu = 0. From
Lemma 10 and the power series expansionexu = 1+ xu+ (xu)2/2 · · ·, we conclude
that the residue ofM(t,u)exu at u = 0 is α2x2 + mx+ m1. Apply the residue theo-
rem to the rectangular contour0(ρ) sketched in Figure 1, whereρ > 0 andσ, ξ ≥ 3t .
AsM(u) is analytic on and inside0(ρ), except for a pole atu = 0, we get

1

2π i

∫
0(ρ)

M(u)exu du= α2x2+mx+m1.(72)

The remainder of the proof uses the bound in Lemma 11 and follows exactly the proof
of Theorem 4. Again, we omit the details.

5. Central Limit Theorem. In this section our first result is a precise variance estimate
in Theorem 13 for the Poisson model. Then, in Theorem 14, we show thatNx(t) satisfies
a central limit theorem.

Before turning to the Poisson model, we give, again for contrast, a more precise
variance estimate for the parking problem than was given in the Introduction.

THEOREM12 [12], [6]. Withµ∗ given by(6), and with any constantξ , 0< ξ < 1, the
variance of the number parked in the parking problem satisfies

Var(Ñx) = µ∗x + µ∗ + O(e−ξx logx) as x→∞.(73)
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REMARK. Dvoretzky and Robbins [6] proved (73) without giving an explicit formula
for µ∗. Earlier, by computing the continuous limit of a result derived in a discretized
version of the parking problem, Mackenzie [12] obtained formula (6) forµ∗.

The combined analysis of Mackenzie and of Dvoretzky and Robbins gives a round-
about proof of the variance estimate which is unnecessary. A direct proof can be based
on a careful analysis of an inverse Laplace transform, as in the previous section. A sketch
of our new proof of (73) is given in the Appendix.

THEOREM13. For any T> 0, we have

sup
0≤t≤T

|Var(Nx(t))− (µ(t)x + µ1(t))| = O(e−ξx logx),(74)

for all ξ ∈ (0,1),
µ(t) = m(t)− 2α(t)(α(t)+ β(t)− 1),(75)

µ1(t) = m1(t)− (α(t)+ β(t)− 1)2,(76)

with m(t) and m1(t) given by(62) and(63). In addition, µ(t) > 0 for all t > 0.

REMARKS. From(75), (76), (62), and (63),wefind that limt→∞ µ1(t) = limt→∞ µ(t) =
µ∗ consistent with (73) and the fact that the on-line interval packing problem becomes
the parking problem in the limitt → ∞. Numerical values ofµ(t),0 < t ≤ 10, are
illustrated in Figure 2. We prove below thatµ(t) > 0 for t > 0; but a proof thatµ(t) is
unimodal as indicated in the figure seems difficult. We note thatµ(t) > 0 is needed for
the existence of a central limit theorem.

Fig. 2.Numerical values ofµ(t), 0< t ≤ 10.
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PROOF. Estimate (74) is an immediate consequence of Theorems 4 and 7.
It remains to prove thatµ(t) > 0 for all t > 0; we proceed as follows. (The proof

will not attempt to analyze directly the complicated expression forµ(t).) We first write
formulas for Var(Nx(t)), x ≥ 0, that will facilitate the argument. (In what follows,t ≥ 0
is always tacitly assumed.) For 1≤ x ≤ 2, we have

M(t, x) = 1− e−t (x−1),(77)

which when combined with (34) yields

Var(Nx(t)) = e−t (x−1) − e−2t (x−1), 1≤ x ≤ 2.(78)

Now condition on the event that the first interval arrives at time [t−v, t−v+dv], and is
packed with its left endpoint in [y, y+ dy]. The expectation of the conditional variance
is smaller than the variance, so we arrive at

Var(Nx(t)) ≥ 2
∫ t

0
e−(t−v)(x−1) dv

∫ x−1

0
Var(Ny(v))dy, x ≥ 1.(79)

Next, we claim that the function

f (t, x) = Var(Nx(t)) (0≤ x ≤ 2)(80)

= 2
∫ t

0
e−(t−v)(x−1) dv

∫ x−1

0
f (v, y)dy (x ≥ 2)(81)

has the property that

Var(Nx(t)) ≥ f (t, x), x ≥ 0.(82)

Thisclaim iseasilyestablishedbyprovingby inductiononm= 1,2, . . . thatVar(Nx(t)) ≥
f (t, x), m≤ x ≤ m+ 1. We omit the details.

We are now reduced to an analysis of the functionf (t, x). First, note that (81) is
equivalent to

∂ f (t, x)

∂t
= −(x − 1) f (t, x)+ 2

∫ x−1

0
f (t, y)dy, x ≥ 2,(83)

with f (0, x) = 0, x ≥ 2. To solve (83), definēf (t,u) := ∫∞2 f (t, x)e−ux dx for u > 0,
multiply (83) bye−ux, and integrate with respect tox over [2,∞). Exploiting the fact
that f (t, x) = 0, 0≤ x ≤ 1, we get

∂ f̄ (t,u)

∂t
= ∂ f̄ (t,u)

∂u
+ f̄ (t,u)+ 2e−u

u

(∫ 2

1
f (t, x)e−ux dx+ f̄ (t,u)

)
,(84)

with f̄ (0,u) = 0, u > 0. Rewrite (84) as

∂ f̄ (t,u)

∂t
= ∂ f̄ (t,u)

∂u
+
(

1+ 2e−u

u

)
f̄ (t,u)+ e−u

u2
A f (t,u),(85)



468 E. G. Coffman, Jr., L. Flatto, P. Jelenkovi´c, and B. Poonen

where

A f (t,u) = 2u
∫ 2

1
f (t, x)e−ux dx.(86)

Solving (85) as we did (50), we get

f̄ (t,u) = e−u
∫ t

0

A f (t − v,u+ v)
(u+ v)2 exp

(
2
∫ u+v

u

e−y

y
dy

)
dv(87)

which reduces to

f̄ (t,u) = e−u

u2β(u)

∫ t+u

u
A f (t + u− v, v)β(v)dv.(88)

Karamata’s Tauberian theorem then implies∫ x

0
f (t, y)dy∼ ν(t)x

2

2
, as x→∞,(89)

where

ν(t) =
∫ t

0
A f (t − v, v)dv.(90)

From (78), (80), and (86) we conclude thatA f (t,u) > 0,u > 0, and hence thatν(t) > 0
by (90). This observation together with (74) and (82) then gives the desired inequality:

µ(t) = lim
x→∞

2

x2

∫ x

0
Var(Ny(t))dy

≥ lim
x→∞

2

x2

∫ x

0
f (t, y)dy= ν(t) > 0.

We are now ready to prove a central limit theorem forNx(t) as x becomes large,
holdingt fixed.

THEOREM14. For any fixed t, we have Zx(t)
d→ N (0,1), as x→∞, where

Zx(t) = Nx(t)− ENx(t)√
Var(Nx(t))

,

N (0,1) is a standard normal random variable, and
d→ denotes convergence in distri-

bution.

PROOF. We apply an approach of Dvoretzky and Robbins [6]; it is the second of their
two proofs of a central limit theorem for the parking problem. The new features to be
dealt with here are minor, so we only sketch the basic technique.

The idea is to observe the state of the packing process after a small numbernx = o(x)
of intervals have been packed, leaving a vector of successive gapsy = (y1, . . . , ynx+1).
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The key fact is that the continuation of the packing process consists ofnx+1 independent
packing subprocesses, one taking place in each gapyi . If τx is the earliest time by which
the initialnx intervals are packed, then at any timet > τx, thenx+1 subprocesses define a
triangular array of independent random variablesNyi (t−τx) indexed byi , 1≤ i ≤ nx+1,
andx = nx+

∑
yi > 1. After a suitable normalization, we apply a version of Liapunov’s

theorem for triangular arrays (see Lemma 6 of [6]) and obtain a conditional central limit
theorem forZx(t), the normalized version ofNx(t) = nx+

∑
Nyi (t−τx), given(τx, y).

Finally, an extension of the Dvoretzky–Robbins argument shows that the central limit
theorem holds uniformly over a set of(τx, y) whose probability tends to 1 asx → ∞.

This extension is straightforward once it is observed thatτx
d→ 0 asx → ∞, and that

the estimate of the variance ofNx(t) is uniform in t (see Theorem 13). It follows that
the central limit theorem also holds for the unconditional packing processZx(t).

6. Final Remarks. We have focused on asymptotics inx for fixed t . It would also
be of interest to obtain good large-t estimates for fixedx, and more information on
the convergence to the parking problem. Figure 3 was produced from exact formulas
for smallx (see (34)), and is instructive in connection with time dependence. The figure
illustrates that convergence ofK (t, x) toα(t)x+α(t)+β(t)−1 is very fastuniformlyin t .

A more technical problem of interest is the extension of our results on the Poisson
model to the model with fixed-length input. Here, we have shown only that the leading-
term asymptotics for the expected number packed carry over without change to the latter
model.

Fig. 3. Solid lines represent exact values ofK (t, x) for t = 1,5,∞, and 1≤ x ≤ 4; dashed lines are drawn
using linear approximationα(t)x + α(t)+ β(t)− 1.
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We have made some headway in the generalization of the Poisson model to the case
of a general interval-length distribution (see [15] and [13] for results of this type for the
parking problem). We also have partial results on the discrete version of our problem
with the interval [0, x] replaced by the integers(1,2, . . . ,m) and with the intervals to
be packed all having integer lengthsa ≤ m (see [16] and [12] for the analysis of this
model of the parking problem). A paper on these results is in preparation.

Appendix

PROOF OF(73). Using transformmethods,wederiveanestimate for thesecond-moment
EÑ2

x that is equal to the variance in (73) plus the square of the mean given by (36). The
second-moment transformG(u) := ∫∞0 EÑ2

x e−ux dx is naturally expressed in terms of
the first-moment transformF(u) := ∫∞0 EÑxe−ux dx, which is given by (see [17])

F(u) = e−uα̃(u)

u2β(u)
,(91)

whereα̃(u) = α∗ − α(u) and, as before,

β(u) = exp

(
−2

∫ u

0

1− e−y

y
dy

)
, α(u) =

∫ u

0
β(v)dv.

Since EÑx ≤ x and EÑ2
x ≤ x2, we know thatF(u) andG(u) converge and are analytic

for <u > 0. We show thatF(u) andG(u) have analytic continuations foru 6= 0, and,
at u = 0, they have poles of order 2 and 3, respectively. We then bound the growth of
|F(u)| and |G(u)|. Our estimate of the second moment is derived from the inversion
formula for Laplace transforms, the residue theorem, and the growth bounds.

The formulas derived for the parking problem (such as those forF(u) andG(u)) are
analogous to the previous ones obtained for on-line interval packing. Indeed, they are
obtained formally from the previous ones by lettingt →∞. To emphasize this analogy,
we denote corresponding functions by the same letter (such asA(u) andB(u)).

The main difference between the parking and on-line interval packing results is that
both|F(u)| and|G(u)| areO(1/|u|) in any half-plane<u ≥ 0, whereas the correspond-
ing transformsK(t,u) andM(t,u) wereO(1/|u|2) in modulus. By adopting a trick of
Rényi [17], we avoid any difficulty caused by the larger bound.

We begin the analysis by developing the bound on|F(u)|. Observe thatF(u) has an
analytic continuation to all complexu 6= 0 given by (91). From (91) we obtain thatF(u)
has a double pole at the origin and the expansion

F(u) = α∗
u2
+ α∗ − 1

u
+ O(u),(92)

asu→ 0 (the expansion has no constant term).
Let η(u) := ∫ u

0 ((1− e−y)/y)dy.

LEMMA 15. For every negativeσ there exists a constant c(σ ) > 0 such that

|η(u)− log|u|| ≤ c(σ ), <u ≥ σ, |u| ≥ 1.
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PROOF. Let u := r v(θ), wherer ≥ 1 andv = v(θ) := ei θ . We have

η(u) = η(v)+
∫ u

v

1− e−ζ

ζ
dζ(93)

= η(v)+ logr −
∫ u

v

e−ζ

ζ
dζ.

To estimate the integral, integrate by parts and get∫ u

v

e−ζ

ζ
dζ = −e−u

u
+ e−v

v
−
∫ u

v

e−ζ

ζ 2
dζ,

then fix the path of integration of this last integral to be the straight line segmentζ =
vt, 1≤ t ≤ r, which joinsu to v, and obtain∫ u

v

e−ζ

ζ 2
dζ = 1

v

∫ r

1

e−vt

t2
dt.

The pointsζ on the straight line segment joiningu andy satisfy<ζ ≥ σ, |ζ | ≥ 1, so
that the last two identities give∣∣∣∣∫ u

v

e−ζ

ζ
dζ

∣∣∣∣ ≤ 2e−σ + e−σ
∫ ∞

1

dt

t2
= 3e−σ .

Together with (93), this bound and the choicec(σ ) = 3e−σ +max|v|=1 η(v) proves the
lemma.

We are now ready for the growth estimate.

LEMMA 16. For every negativeσ , there exists a constant c1(σ ) > 0 such that

|F(u)| ≤ c1(σ )

|u| , |u| ≥ 1, <u ≥ σ.

PROOF. Let |u| = r and write

α(u) =
∫ r

0
β(τ)dτ +

∫
00

β(ζ )dζ,

where00 is the circular arc, centered at the origin, which joinsr to u. Then, by (91), we
have

F(u) = e−u

u2β(u)

[∫ ∞
r
β(τ)dτ −

∫
00

β(ζ )dζ

]
.(94)

Let g(u) := η(u)− logr so thatβ(u) = e−2η(u) = e−2g(u)/r 2 and (94) becomes

F(u) = e−u

u2
e2g(u)r 2

[∫ ∞
r

e−2g(τ )

τ 2
dτ −

∫
00

e−2g(u)

r 2
du

]
.
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Since00 has length at mostπr , we conclude from the above equation that

|F(u)| ≤ e−σe2|g(u)|
[∫ ∞

r

e2|g(τ )|

τ 2
dτ + π

r
max
|u|=r

e2|g(u)|
]
.(95)

The lemma then follows from Lemma 15 and (95) with the choicec1(σ ) = (1 +
π)e4c(σ )−σ .

In our next step, we computeG(u) and prove properties similar to those forF(u).
We begin with a recurrence for the second moment. We use the notation E[Ñ2

x+1|y] to
denote the expectation of̃N2

x+1 given that the first car parks at location [y, y+ 1].

EÑ2
x+1 =

∫ x

0
E[Ñ2

x+1|y]
dy

x
(96)

=
∫ x

0
E[1+ Ñ2

y + Ñ2
x−y + 2Ñy + 2Ñx−y + 2Ñy Ñx−y]

dy

x

= 1+ 2

x

∫ x

0
EÑ2

y dy+ 4

x

∫ x

0
EÑy dy+ 2

x

∫ x

0
EÑy Ñx−y dy.

Take the transform of both sides of (97) and obtain, after routine manipulations,

dG
du
= −

(
1+ 2e−u

u

)
G − e−u

u2
A(u), u > 0,(97)

where

A(u) = 1+ 4uF(u)+ 2(uF(u))2.(98)

We haveÑ0 = 0 andÑx ≤ x, so the desired solution forG(u) is

G(u) = e−u

u2β(u)

∫ ∞
u
A(τ )β(τ)dτ, u > 0.(99)

Observe that, by Lemma 16 and (98), we get limu→∞A(u) = 1, which implies that the
integral appearing in (99) is finite. We know from the properties ofF(u) thatA(u) and
B(u) := A(u)β(u) are analytic foru 6= 0. It is routine to verify from (92) and (98) that,
atu = 0, we have

A(u) = 2α2
∗

u2
+ 4α2

∗
u
+ (2α2

∗ − 1)+ · · · ,(100)

B(u) = 2α2
∗

u2
− (α2

∗ + 1)+ · · · .(101)

Define

κ(u) := B(u)− 2α2
∗

u2

and note that, by (101),κ(u) is entire. By Lemma 15 and the fact that limu→∞A(u) = 1,
we conclude that, for<u ≥ σ , B(u) and henceκ(u) are O(1/|u|2) as u → 0. In
particular,κ(u) is integrable on [0,∞).
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As noted earlier,G(u) is analytic foru 6= 0. If we letκ∗ := ∫∞0 κ(τ)dτ, then we can
rewrite (99) as

G(u) = e−u

u2β(u)

∫ ∞
u

[
κ(τ)+ 2α2

∗
τ 2

]
dτ(102)

= e−u

u2β(u)

[
2α2
∗

u
+ κ∗ −

∫ u

0
κ(τ)dτ

]
,

which shows thatG(u) is analytic foru 6= 0. The functione−u/(u2β(u)) can be expanded
as in the derivation of (92) from (91), and by (101) we have

∫ u
0 κ(τ)dτ = −(α2

∗ +1)u+
· · ·. Thus, (102) yields

G(u) = 2α2
∗

u3
+ κ∗ + 2α2

∗
u2

+ κ∗ + α
2
∗ + 1

u
+ · · · .(103)

The bound on the growth ofG(u) is as follows.

LEMMA 17. For every negativeσ , there exists a constant c2(σ ) > 0 such that

|G(u)| ≤ c2(σ )

|u| , <u ≥ σ, |u| ≥ 1.

PROOF. Use (102) and mimic the proof of Lemma 16. We omit the details.

Finally, we estimate ẼN2
x from the inversion formula

EÑ2
x =

1

2π i

∫ σ+i∞

σ−i∞
exuG(u)du,(104)

for anyσ > 0. As is readily verified,exuG(u) is analytic foru 6= 0 and has a third-order
pole at the origin. Multiplying (103) byexu = 1+ xu+ (xu)2/2+ · · · the residue of
exuG(u) is found to beα2

∗x
2+ (κ∗ + 2α2

∗)x+ κ∗ +α2
∗ + 1. Thus, by the residue theorem

(see the argument in the proof of Theorem 3), we get

EÑ2
x = α2

∗x
2+ (κ∗ + 2α2

∗)x + κ∗ + α2
∗ + 1+ 1

2π i

∫ −σ+i∞

−σ−i∞
exuG(u)du,(105)

for anyσ > 0. It remains to estimate the integral.
The estimate in Lemma 17 is not sufficient, as it fails to guarantee the absolute

convergence of the integral. To get around this difficulty, we adopt a trick of R´enyi [17].
Rewrite (97) as

d

du
(euG(u)) = −2

u
G(u)− A(u)

u2

and deduce from Lemma 17 that∣∣∣∣ d

du
(euG(u))

∣∣∣∣ ≤ 2c2(σ )+ 1

|u|2 , <u ≥ σ, |u| ≥ 1.(106)
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An integration by parts and substitution of (106) gives∫ −σ+i∞

−σ−i∞
exuG(u)du =

∫ −σ+i∞

−σ−i∞
e(x−1)u(euG(u))du (σ > 0)

= − 1

x − 1

∫ −σ+i∞

−σ−i∞
e(x−1)u d(euG(u)) (σ > 0)

= O(e−σ x) for all σ > 0.

As at the end of the proof of Theorem 3, we remark that an optimization of parameters
improves the bound toO(e−ξx logx) for all ξ ∈ (0,1); as before, the details are routine
and left to the interested reader. This bound together with (105) gives an estimate for the
second moment which, after subtracting the square of the mean in (36), yields (73) with
µ∗ = κ∗ + 2α∗, where

κ∗ =
∫ ∞

0
κ(u)du(107)

=
∫ ∞

0

{
β(u)[1+ 4uF(u)+ 2u2F2(u)] − 2α2

∗
u2

}
du.

The calculations of the discrete model leading to (6) were omitted in [12], and it is not
obvious thatκ∗ + 2α∗ and (6) give the same constant. To prove that they do, we start by
integrating the first term in (107), getting

∫∞
0 β(u)du= α∗, and then writingκ∗ + 2α∗

in the form

κ∗ + 2α∗ = 4α∗ +
∫ ∞

0

Q(u)
u2

du− α∗,(108)

where

Q(u) := u2β(u)[4F1(u)+ 2F2
1(u)] − 2α2

∗
with

F1(u) := uF(u) = e−uα̃(u)

uβ(u)
.(109)

Comparing (108) with (6) written in terms ofF1, we see thatκ∗ + 2α∗ and (6) yield the
same constant if

4α∗ +
∫ ∞

0

Q(u)
u2

du = 4
∫ ∞

0
β(u)F1(u)(1− e−u)du(110)

−4
∫ ∞

0
β(u)F2

1(u)(e
−u − 1+ u)du.

We work with the left-hand side and begin by noting that sinceκ(u) = β(u)+Q(u)/u2

is entire (by design), then so isQ(u)/u2. Thus,Q(u)/u vanishes at 0, and sinceF1(u)
is exponentially small inu, we haveQ(u)/u = O(1/u) asu→∞ and soQ(u)/u also
vanishes at infinity. Therefore, an integration by parts and use of

β ′(u) = −2
1− e−u

u
β(u)(111)
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gives, after some simplification,

4α∗+
∫ ∞

0
Q(u)du

u2
=
∫ ∞

0
Q′(u)du

u
(112)

= 4α∗ + 4
∫ ∞

0
β(u)e−u[2F1(u)+ F2

1(u)] du

+ 4
∫ ∞

0
uβ(u)F ′1(u)du+ 4

∫ ∞
0

uβ(u)F ′1(u)F1(u)du.(113)

Now isolate the penultimate integral, integrate by parts, again using (111), and get

4
∫ ∞

0
uβ(u)F ′1(u)du = 4uβ(u)F1(u)|∞0 − 4

∫ ∞
0
F(u)[β(u)+ uβ ′(u)] du

= −4α∗ + 4
∫ ∞

0
β(u)(1− 2e−u)F1(u)du.

Substituting back into (113) gives, after a little algebra,

4α∗ +
∫ ∞

0

Q(u)
u2

du= 4
∫ ∞

0
β(u)(F1(u)+ e−uF2

1(u)+ uF1(u)F ′1(u))du.(114)

A straightforward calculation shows that

F ′1(u) = F1(u)
1− u− 2e−u

u
− e−u

u
,(115)

which is also easily deduced from the differential equation forF given in [6]. This gives

uF1(u)F ′1(u) = (1− u− 2e−u)F2
1(u)− e−uF1(u)

which we substitute back into (114). In the resulting expression, we collect separately
the coefficients ofβ(u)F1(u) andβ(u)F2

1(u) and obtain the right-hand side of (110), as
desired.
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