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Abstract

We consider an infinite buffer fluid queue with a constant capacity and an M/G/∞ arrival
process. M/G/∞ process consists of sessions with Poisson starting times, independent inter-
mediately regularly varying session durations and constant arrival rates. The session duration
distributions and arrival rates are selected from a finite set of distinct choices. For this queue we
derive the asymptotic behavior of the stationary queue length distribution under the assumption
that exactly one long session is enough to cause a large queue build-up.

Increased utilization in communication networks (e.g. the Internet) can be achieved through
sharing of bandwidth and buffer resources among different user sessions. This sharing may result
in increased congestion and reduced quality of service. Therefore, it is important to have efficient
computational methods for predicting the congestion. A fluid queue with M/G/∞ arrivals is often
considered as a baseline model of congestion. In this queueing system sessions arrive at Poisson
times and have independent duration during which they produce fluid at a constant rate. Our
investigation focuses on the asymptotic behavior of the stationary queue length distribution of this
system when session lengths are heavy-tailed. The heavy-tailed nature of Internet traffic has been
observed in numerous statistical experiments. Further motivation and additional references on this
problem can be found in [1, 4, 6, 9, 2, 8]. Our main result is presented in Theorem 1.

More formally, consider a Poisson process on the positive real axes with rate λ and jump points
{Tn, n ≥ 1} representing session initiation times. Let {τ, τn, n ≥ 1} be a sequence of i.i.d. session
lengths independent of {Tn}. Then, for any r > 0

A0(t)
def
= r

∞∑
n=1

1(Tn ≤ t < Tn + τn) (1)

represents an M/G/∞ process with starting point at 0 and peak rate r; the distribution of this
process is completely specified with (λ, r, τ). Next, assume that Eτ < ∞ and define τ e to be the
excess time of τ with its distribution equal to P[τ e ≤ x] =

∫ x
0 P[τ > u]du/Eτ . Let {τ en, n ≥ 1} be

independent copies of τ e and N a Poisson random variable with mean EN = λEτ . Assume that
all random variables are mutually independent. Now, if we define

Ae(t)
def
= r

N∑
n=1

1(0 ≤ t < τ en), (2)



then the stationary M/G/∞ process A(t) has the following representation

A(t) = Ae(t) +A0(t);

note that ρ
def
= EA(t) = rλEτ . Next, let Ai(t), 1 ≤ i ≤ L, be a collection of independent M/G/∞

processes with parameters (λi, ri, τ
i) and, with a small violation of notation, define an M/G/∞

process with L session classes as

A(t) ≡ A(t, L) =

L∑
i=1

Ai(t);

here ρ = EA(t) =
∑L

i=1 ρi, ρi = EAi(t).
Now, consider an infinite buffer fluid queue with arrival rate A(t) and constant capacity c, c > ρ.

Then, since A(t) is stationary and reversible, standard queueing arguments show that the stationary
queue length is equal in distribution to

Q
d
= M

def
= sup

t≥0
(A(t)− ct).

In order to state our main result we need to introduce the class of intermediately regularly
varying distributions. A nonincreasing positive function f(t) is said to be intermediately regularly
varying (f ∈ IR) if

lim
δ↑1

lim sup
t→∞

f(δt)

f(t)
= 1.

For a random variable τ we say that it is intermediately regularly varying (τ ∈ IR) if P[τ > t] ∈ IR.
It is well known that τ ∈ IR,Eτ < ∞, implies τ e ∈ IR. Pareto distributions are well known
examples from IR. Also, for τ i ∈ IR, 1 ≤ i ≤ L there exist α ≥ 0 and a finite constant C such
that for all x > 0

max
1≤i≤L

P[τ i > x] ≤ C

xα
;

see equation (1.6) of [7]. In this paper we assume that α > 1. This technical condition is necessary
because the proof of our main theorem uses Theorem 1 of [7] which requires it.

Throughout the paper we use the customary notation f(x) ∼ g(x) as x → ∞ to denote
limx→∞ f(x)/g(x) = 1.

Theorem 1 If ρ < c < ri + ρ, τ i ∈ IR, 1 ≤ i ≤ L,α > 1, then

P[Q > x] ∼
L∑
i=1

ρi
c− ρ

P

[
τ i,e >

x

ri + ρ− c

]
as x→∞.

Remarks: For a single class case (L = 1) this theorem was first conjectured in [4], where a tight
lower bound was proved. An informal sketch of a proof of this conjecture was presented in [3].
The result was proved rigorously (for L = 1) in [8] under the assumption of τ being regularly
varying. Here, we provide a generalization and an alternative proof to Theorem 1 from [8]. This
theorem suggests that related results for the discrete time M/G/∞ model, obtained in [5] for Pareto
distributions, should hold for a larger intermediately regularly varying class.

The proof of Theorem 1 will be based on the following two auxiliary lemmas. Let

M0(c)
def
= sup

t≥0
(A0(t)− ct) (3)
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and

M e(c)
def
= sup

t≥0
(Ae(t)− ct), (4)

where A0 and Ae are defined in (1) and (2).

Lemma 1 If r = 1, ρ < c < 1 and τ ∈ IR, α > 1, then

P[M0(c) > x] ∼ ρ1 + ρ− c
c− ρ

P

[
τ e >

x

1 + ρ− c

]
as x→∞.

Proof: Let U0 = 0 and Un, n ≥ 1, be the ends of activity periods in A0(t). Then, since c < 1, it is
clear that

M0(c) = sup
n≥0

(A0(Un)− cUn).

Hence, this result is the same as Theorem 4.6 of [4], which was proved for τ regularly varying
with non-integer exponents. This more general result is immediate consequence of the proof of
Theorem 4.6 of [4] and Theorem 1 of [7]. 3

Lemma 2 If r = 1, 0 ≤ c < 1 and τ e ∈ IR, then

P[M e(c) > x] ∼ ρP
[
τ e >

x

1− c

]
as x→∞.

Proof: The proof follows easily from the established theory of heavy-tailed distributions. For
completeness a detailed proof is given in the appendix. 3

Proof of Theorem 1: We start with the case L = 1. The lower bound was proved in Theorem 4.5
of [4]. For the upper bound, since sup(A(t) − c) = r1 sup(A(t)/r1 − c/r1), it is enough to prove
the result for r1 = 1. For simplicity we suppress the index 1 in (ρ1, τ

1,e). Assume first that c < 1.
Then, for c− ρ− ε ≥ 0, by elementary algebra

M = sup
t≥0

(A0(t)− (ρ+ ε)t+ (Ae(t)− (c− ρ− ε)t))

≤ sup
t≥0

(A0(t)− (ρ+ ε)t) + sup
t≥0

(Ae(t)− (c− ρ− ε)t))

= M0(ρ+ ε) +M e(c− ρ− ε). (5)

Similarly,
M ≤M0(c) +M e(0),

which together with (5) yields

M ≤ min(M0(ρ+ ε) +M e(c− ρ− ε),M0(c) +M e(0))

≤ max(M0(c),M e(c− ρ− ε)) + min(M0(ρ+ ε),M e(0)).

The last inequality and independence of M0(ρ+ ε), M e(0) implies

P[M > x] ≤ P[M0(c) > δx] + P[M e(c− ρ− ε) > δx]

+ P[M0(ρ+ ε) > (1− δ)x]P[M e(0) > (1− δ)x]. (6)
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Observe that the last term in the preceding inequality is equal to o(P[τ e > x]) as x → ∞ by
Lemmas 1 and 2. Now, by using this observation and Lemmas 1 and 2 in (6) we derive

lim sup
x→∞

P[M > x]

P[τ e > x/(1 + ρ− c)]
≤ ρ lim sup

x→∞

P[τ e > δx/(1 + ρ+ ε− c)]
P[τ e > x/(1 + ρ− c)]

+ ρ
1 + ρ− c
c− ρ

lim sup
x→∞

P[τ e > δx/(1 + ρ− c)]
P[τ e > x/(1 + ρ− c)]

which, since τ e ∈ IR, by passing δ ↑ 1 and ε ↓ 0 yields the upper bound for c < 1.
When c ≥ 1, for any h > 0 we decompose the arrival process A(t) into two stationary indepen-

dent M/G/∞ processes Ah(t) and ah(t) containing all the sessions greater and smaller/equal than

h, respectively. Note that ρh
def
= EAh(t) = λEτ1[τ > h] and Eah(t) = λEτ1[τ ≤ h] < ρ (for more

details see the proof of Theorem 4.5 in [4]). Now, for all h large enough such that ρh < c− ρ

M ≤ sup
t≥0

(Ah − (c− ρ)t) + sup
t≥0

(ah − ρt)

def
= Mh +mh,

with both mh and Mh being almost surely finite. Hence, for any 0 < δ < 1

P[M > x] ≤ P[Mh > δx] + P[mh > (1− δ)x].

Next, using standard Chernoff type bounds, it is easy to show that mh is exponentially bounded.
Therefore, P[mh > x] = o(P[τ e > x]) and

lim sup
x→∞

P[M > x]

P[τ e > x/(1 + ρ− c)]
≤ ρh
c− ρ− ρh

Eτ

Eτ1[τ > h]
lim sup
x→∞

P[τ e > δx/(1 + ρh + ρ− c)]
P[τ e > x/(1 + ρ− c)]

.

Thus, by passing h → ∞ and δ ↑ 1 we obtain the desired upper bound and conclude the proof of
the case L = 1. Now, we proceed to prove the case L = 2.

(L = 2, Upper bound.) For any ε > 0, such that ρ+ ε < c

M ≤ sup
t≥0

(Ai(t)− (c− ρ3−i − ε)t) + sup
t≥0

(A3−i(t)− (ρ3−i + ε)t)

= Mi +M3−i,

where Mi
def
= supt≥0(Ai(t) − (c − ρ3−i − ε)t) and M i

def
= supt≥0(Ai(t) − (ρi + ε)t) are both almost

surely finite random variables. Thus,

M ≤ min(M1 +M2,M2 +M1) ≤ max(M1,M2) + min(M1,M2),

which, for any 0 < δ < 1, implies

P[M > x] ≤ P[M1 > δx] + P[M2 > δx] + P[M1 > (1− δ)x]P[M2 > (1− δ)x].

The preceding inequality and the already proved case L = 1 yields for all sufficiently large x

P[M > x] ≤ (1 + ε)

c− ρ− ε

2∑
i=1

ρiP[τ i,e > δx/(ri + ρ+ ε− c)] +O(P[τ1,e > x]P[τ2,e > x]). (7)

Thus, by using the fact that τ i,e ∈ IR implies
∑

P[τ i,e > x] ∈ IR, dividing (7) with
∑

P[τ i,e >
x/(ri + ρ− c)], and taking lim supx→∞ and limδ↑1,ε↓0 we derive the desired bound.
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(L = 2, Lower bound.) First, observe that for any ε > 0 such that c− ρ3−i − ε > ρi + ε we have

Mi ≤M i. (8)

Then,

P[M > x] ≥ P[M > x,M1 > y,M2 ≤ y] + P[M > x,M1 ≤ y,M2 > y]

def
= P1 + P2. (9)

Now, for ε > 0 define Zi
def
= supt≥0((ρi − ε)t − Ai(t)); note that these variables are almost surely

finite. Next, we derive the following sequence of elementary inequalities

P1 ≥ P[M > x,M1 > y,M2 ≤ y, Z2 < y]

= P[sup
t≥0

(A1(t) +A2(t)− ct) > x,M1 > y,M2 ≤ y, sup
t≥0

((ρ2 − ε)t−A2(t)) ≤ y]

≥ P[sup
t≥0

(A1(t) + [(ρ2 − ε)t− y]− ct) > x,M1 > y,M2 ≤ y, sup
t≥0

((ρ2 − ε)t−A2(t)) ≤ y]

= P[sup
t≥0

(A1(t)− (c− ρ2 + ε)t) > x+ y,M1 > y,M2 ≤ y, Z2 ≤ y]

= P[M2 ≤ y, Z2 ≤ y]P[M1 > x+ y,M1 > y]

= P[M2 ≤ y, Z2 ≤ y]P[M1 > x+ y],

where the last equality follows from (8). Similarly, we derive an analogous bound for P2, which,
when substituted in (9) renders

P[M > x] ≥
∏
i=1,2

P[M i ≤ y, Zi ≤ y](P[M1 > x+ y] + P[M2 > x+ y]).

Now, by applying the result for L = 1 and then passing y → ∞ yields the lower bound and
completes the proof for L = 2.

The general case L > 2 follows easily by induction. Assume that the result holds for L ≥ 2

classes. Now, if the arrival process has L+1 classes, define A′1(t)
def
=
∑L

i=1Ai(t) and A′2(t) = AL+1(t)
and complete the proof by using the induction hypothesis and exactly the same arguments as for
the case L = 2. We omit the details. 3

Appendix

In the following proof we use some known results from the theory of subexponential distributions
S; it is well known that τ ∈ IR implies τ ∈ S (see [4, 10]).
Proof of Lemma 2: Let S(n) =

∑n
i=1 τ

e
i and I(n) = max1≤i≤n τ

e
i , then clearly M e(c) ≡ S(N)−

cI(N). First, we show that

P[S(n)− cI(n) > x] ∼ nP[τ e > x/(1− c)] as x→∞. (10)

The lower bound is immediate from S(n)− cI(n) ≥ (1− c)I(n) and τ e being subexponential. For
the upper bound, Theorem 2.1 of [10] yields

P[S(n)− I(n) > x] ∼
(
n

2

)
P2[τ e > x] as x→∞.
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This and

P[S(n)− cI(n) > x] ≤ P[(1− c)I(n) > δx] + P[S(n)− I(n) > (1− δ)x]

yields

lim sup
x→∞

P[S(n)− cI(n) > x]

P[τ e > x/(1− c)]
≤ n lim sup

x→∞

P[τ e > δx/(1− c)]
P[τ e > x/(1− c)]

,

which by using τ e ∈ IR and passing δ ↑ 1 yields the upper bound and finishes the proof of (10).
Next, since τ e ∈ S, for any ε > 0 we can choose a finite constant Kε, such that for all n and x ≥ 0
(see Lemma A.4 (ii) of [4])

P[S(n)− cI(n) > x] ≤ P[S(n) > x] ≤ Kε(1 + ε)nP[τ e > x].

Hence,

P[S(N)− cI(N) > x]

P[τ e > x/(1− c)]
≤ 1

P[τ e > x/(1− c)]

∞∑
n=1

P[N = n]P[S(n) > x]

≤ KεE(1 + ε)N sup
x≥0

P[τ e > x]

P[τ e > x/(1− c)]
<∞. (11)

Thus, using (10), (11) and dominated convergence we finish the proof

lim
x→∞

P[S(N)− cI(N) > x]

P[τ e > x/(1− c)]
= lim

x→∞

1

P[τ e > x/(1− c)]

∞∑
n=1

P[N = n]P[S(n)− cI(n) > x]

=

∞∑
n=1

P[N = n] lim
x→∞

P[S(n)− cI(n) > x]

P[τ e > x/(1− c)]
= ρ.
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