
Kelly's LAN Model Revisited 

Yuliy Baryshnikov 
Bell Labs, Lucent Technologies 

Murray Hill, NJ 07974 USA 

E. G. Coffman, Jr., Predrag Jelenkovi6 
Columbia University 

New York, NY 10027, USA 

1 Introduction 

For a given k > 1, subintervals of a given interval [0, X] ar- 
five at random and are accepted (allocated) so long as they 
overlap fewer than k subintervals already accepted. Subin- 
tervals not accepted are cleared, while accepted subintervals 
remain allocated for random retention times before they are 
released and made available to subsequent arrivals. Thus, the 
system operates as a generalized many-server queue under a 
loss protocol. We study a discretized version of this model 
that appears in reference theories for a number of applica- 
tions; the one of most interest here is linear communication 
networks, a model originated by Kelly [2]. Other applications 
include surface adsorption/desorption processes and reserva- 
tion systems [3, 1]. 

The interval [0, X], X an integer, is subdivided by the inte- 
gers into slots of length 1. An interval is always composed of 
consecutive slots, and a configuration C of intervals is simply 
a finite set of intervals in [0, X]. A configuration C is ad- 
missible if every non-integer point in [0, X] is covered by at 
most k intervals in C. Denote the set of admissible config- 
urations on the interval [0, X] by Cx. Assume that, for any 
integer point i, intervals of length g with left endpoint i arrive 
at rate At; the arrivals of intervals at different points and of 
different lengths are independent. A newly arrived interval is 
included in the configuration if the resulting configuration is 
admissible; otherwise the interval is rejected. It is convenient 
to assume that the arrival rates At vanish for all but a finite 
number of lengthsg, sayAt > 0, 1 < g <  L, andAt = 0 
otherwise. 

The departure of intervals from configurations has a simi- 
lar description: the flow of "killing" signals for intervals of 
length g arrive at each integer i at rate #t. If  at the time such a 
signal arrives, there is at least one interval of length g with its 
left endpoint at i in the configuration, then one of them leaves. 

Our primary interest is in steady-state estimates of the va- 
cant space, i.e., the total length of available subintervals 
k X  - ~ gi, where the gi are the lengths of the subintervals 
currently allocated. We obtain explicit results for k = 1 and 
for general k with all subinterval lengths equal to 2, the classi- 
cal dimer case of chemical applications. Our analysis focuses 
on the asymptotic regime of large retention times, and brings 
out an apparently new, broadly useful technique for extracting 
asymptotic behavior from generating functions in two dimen- 
sions. 

Our model, as proposed by Kelly [2], arises in a study of one- 
dimensional communication networks (LAN's). In this appli- 
cation, intervals correspond to the circuits connecting com- 
municating parties and [0, X] represents the bus. Kelly's main 
results apply to the case k = 1 and to the case of general k 
with interval lengths governed by a geometric law. 

The focus here is on space utilization, so the results here add 
to the earlier theory in three pnncipal ways. First, we give 
expected vacant space for k = 1, with special emphasis on 
small-# asymptotics. Behavior in this regime is quite differ- 
ent from that seen in the "jamming" limit (absorbing state) 
of the pure filling model (all # 's are identically 0). Second, 
the important dimer case of chemical applications, where all 
intervals have length 2, is covered. Finally, the approach of 
the analysis itself appears to be new and to hold promise for 
the analysis of similar Markov chains. In very broad terms, 
expected vacant space is expressed in terms of the geomet- 
ric properties of a certain plane curve defined by a bivariate 
generating function. 

2 Results 

Let qt = A t /p t ,  and note immediately that the Markov chain 
defined on Cx is reversible. Its stationary probabilities are 
given by 

t:qt>O CECx t:qt>O 

where nt  (C) is the number of intervals of length £ in the con- 
figuration C, and Z x  is the partition function. Let u(C) = 
El ent(C) be the total used space and v(C) = k X  - u(C) 
the total vacant space in configuration C, and extend the parti- 
tion function to the following polynomial in a formal variable 
X: 

qnt(C) 

CECx t:qe>O 

In words, Zx(x ,~ i )  is the generating polynomial for the va- 
cant space in admissible configurations on [0, X]. One easily 
finds that the average vacant space over admissible configu- 

~-1  ~ I where the rations in [0, X] is given by ( v ) x  = ~ x  oz Ix=l 
subscript in ( v ) x  denotes averaging over the stationary prob- 
abilities of the Markov chain on Cx.  To find the two terms on 
the fight-hand side, one may use the residue method to obtain 
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T h e o r e m  1 Assume that Z x  = P / Q  is rational, and assume 
that there is a single root Ym of Q with the least absolute 
value. Then the ratio ~ / Z x  is given by X y ~  1 ~L~ up to a 
O ( X  °) term. 

at # = 0: the occupancy approaches 100% as # ~ 0 +, but 
in the model where p = 0 the average occupancy in the jam- 
ruing state is a.  A rigorous proof of the details of transient 
behavior appears to be a challenging open problem. 

3 The case  k = 1 

Define the generating function 
~ x  zx (z; ~)yX. 

z(z ,  v; ~) 

Lemma 1 We have that Z ( x, y; ~) = 1/[1 - y z  - ~ e  qtyt]. 

A singularity analysis then proves 

Theorem  2 The vacant space rate is given by 

1 
( v ) x / X  = 1 + 2..~ ~ f-1 + O ( 1 / X ) .  

Of interest to us is the behavior of this result as the rates 
qi ---r c~. One cannot expect any reasonable (nondegener- 
ate) limiting behavior without further assumptions. We need: 
Let p be the unique real root of the polynomial ~ e  qlyt _ 1. 
Then we assume that p --r 0 and that the (nonzero) rescaled 
coefficients ql/p ~ converge to nonnegative coefficients cl = 
lira qtp -e 

We notice that ~ c, = 1 and therefore 1 is the unique real 
root of the polynomial Q = 1 - ~ cry l. It follows in par- 
ticular that y l / p  --r 1. Further, easy calculations yield the 
following asymptotic result. Let ~ := l i r n x ~ o o ( v ) x / X  be 
the rate of vacant space, i.e., the vacant space per unit length. 

Theorem3 Under the above assumption, the vacant- 
space rate scales as p. More precisely, as p ~ O, 
p-1 l imx--roo(v)x/X ~ 1 / ~ ,  get 

One might interpret the denominator on the fight-hand side as 
the average conditional length in the rescaled interval flow. 

Transient behavior for a version of our model has been stud- 
ied by Talbot, Tarjus, and Viot [4]. Through simulations, they 
describe convergence to statistical equilibrium starting with 
[0, X] empty, as the departure rate p tends to 0 +. The process 
begins with an initial, essentially pure filling phase in which 
vacant space reduces at a O(1/t)  rate until the [0, X] is filled 
to a fraction that is approximately equal to Renyi's constant 
a = .748 ... .  Thereafter, equilibrium behavior is approached 
in a very slow densification phase with vacant space decreas- 
ing at a O(1/ log t )  rate; as a typical event in this process, 
awkwardly placed subintervals straddled by gaps summing 
to greater than 1 eventually depart and are replaced by two 
subintervals. Note particularly the singular perturbation point 

4 D i m e r  packing,  k-channels  

For general k, the analysis seems to be quite involved, but for 
the important dimer case, where all subintervals have length 
2, an essentially complete analysis is possible, once one dis- 
covers the inductive structure of packings. As above, we de- 
note by Z(x ,  y; q) the partition function. In our current situ- 
ation we have only one parameter q, the retention rate for the 
incoming intervals. 

Let f ~  [n] be the number of elements in the set CJx In] of ad- 
missible configurations on [0, X + 1] with exactly j dimers 
straddling X and n units of vacant space in [0, X]. The key 
recurrence is given in the following result. 

Lemma 2 The fJ  rnl satisfy f ~  In] ~-J x t  J = E m = 0 f ~ - l [ n  
(k. - m - n)]: and so the generating polynomial 
f ~  (x) = E n  f~c [hi zn  for vacant space satisfies f ~  = 

E k - j  ~ k - m - j  era X > 1. 
m = O  ~ d X - l ~  

A formal solution is easily derived for the generating 
(vector) function 7(x, y) = ~ x  7 x Y  x ,  with 7x(X) = 
(f~c (x ) , . . . ,  f x  k (x)). A singularity analysis requires consid- 
erable effort, however, and leads to the following asymptotic 
result. 

Theorem 4 As q -+ oo, the average vacant space per unit 
length scales as q-k~2: (~x qk/2 ~ c(k) for some e(k) > 
O. The constants c( k ) can be found explicitly. In particular, 
1 - c(k) scales as k -2. 
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