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We consider an aggregate arrival process AN obtained by multiplexing N On-Off sources
with exponential Off periods of rate A and generally distributed On periods 7°". When N goes
to infinity, with AN — A, AN approaches an M/G /oo type process. For a fluid queue with
the limiting M/G /oo arrivals A%°, regularly varying On periods with noninteger exponent, and
capacity ¢, we obtain a precise asymptotic behavior of the queue length random variable Qf
observed at the beginning of the arrival process activity periods
P[Qf>$]~A7T+p_C/OO P[r°" > u]du = — oo,

c—p z/(r+p—c)
where p = EA® < ¢; r (¢ < r) is the rate at which the fluid is arriving during an On period.
(In particular, when P[7°" > z] ~ 7%, 1 < a < 2, the above formula applies to the so-called
long-range dependent On-Off sources.) Based on this asymptotic result and the results from a
companion paper we suggest a computationally efficient approximation for the case of finitely
many long-tailed On-Off sources. The accuracy of this approximation is verified with extensive
simulation experiments.

1. Introduction

The problem of multiplexing On-Off sources arises frequently as the basic model of
contention in multimedia communication systems (as well as in some storage systems).
The most basic mathematical model for this problem is an infinite buffer queue loaded
with (multiplexed) On-Off arrivals; for ATM based communication systems the main
performance measure (Quality of Service parameter) is the buffer overflow probability
distribution.

Quantitative analysis of the buffer overflow probability distribution for this queueing
problem dates back to [37,13]. In [13], Cohen obtained a complete Laplace transform
solution to this problem! (More recently, he revisited the problem in [14].) However,
inverting the Laplace transform is usually a very tedious process. Hence, it is necessary
to investigate computationally tractable exact and approximate solution techniques. For
Markovian (fluid) On-Off sources, a thorough investigation of this problem was done in
[2]. Many other results for multiplexing finite Markovian On-Off sources followed. These
led to the Equivalent Bandwidth theory for finite Markovian (or, in general, exponentially
bounded) arrival processes; extensive references can be found, for example, in [17,18,16].



Recently, statistical analysis has increasingly shown that the traffic streams in modern
broadband networks exhibit long-tailed characteristics. [29] pointed out first the existence
of long-tailed statistics in Ethernet traffic. These statistical results have stimulated re-
search in queueing analysis under the heavy tailed (non Cramér) assumptions. Queueing
analysis with self-similar long-range dependent arrival processes appear in [32,16,30,35,38,
36]. Recently, long-tailed characteristics of the scene length distribution of MPEG video
streams were explored in [25,20,26,22].

Parallel to the modeling approach through self-similar long-range dependent processes,
a more analytically tractable approach using fluid renewal type models, in which inter-
renewal times are long-tailed, has been explored in [1,19]. Queueing results in these
two papers rely on the classical result by Pakes [33] on the subexponential (long-tailed)
asymptotics of the waiting time distribution in a GI/GI/1 queue (or the earlier work of
Cohen [12] which considered a regularly varying GI/GI/1 queue).

Recently, the result of Pakes has been generalized to a Markov modulated setting
[4,24]. In [4] the subexponential asymptotics of a Markov modulated M/G/1 queue was
investigated. Work in [24] further generalized these results to Markov modulated G/G/1
queues. In the same paper it was shown that a subexponential GI/GI/1 queue is invariant
under Markov modulation. In other words, a subexponential Markov modulated G/G/1
queue has the same asymptotics as the corresponding GI/GI/1 queue. These results made
possible the analysis of a subexponential semi-Markov fluid queue ([24]).

The analysis of a fluid queue in which more than one long-tailed source is multiplexed
appears to be a very difficult problem. This is due to the fact that the renewal structure
of an aggregate arrival process may be very complex, although the appearance of each
individual source may be truly innocuous (like an On-Off source). The complex auto-
correlation structure of the aggregate source obtained by multiplexing long-tailed On-Off
sources was examined in [19]. General bounds for multiplexing long-tailed fluid processes
was obtained in [9]. In [7] a limiting case of an infinite number of On-Off sources with reg-
ularly varying On distribution was investigated. In the same paper a case of two sources,
in which one source had regularly varying On periods, and the other had exponential On
periods, was solved. The literature does not explicitly give precise asymptotic results for
the case of multiplexing two or more long-tailed sources.

More precise asymptotic results for multiplexing long-tailed On-Off sources have re-
cently been obtained in [23] (see also [21]). From an engineering standpoint, this paper
advances two important results. The first result intuitively says that when a source with
subexponential characteristics (e.g., MPEG video) is multiplexed with a source that has
exponential characteristics (e.g., voice), the contribution to the large buffer asymptotics
of the exponential sources is reflected only through their mean values. This result sug-
gests that (under the appropriate conditions) for admission control of both VBR, video
and voice streams, the voice streams need to be characterized only by their means. The
second result is a general asymptotic lower bound on the buffer overflow probabilities for
multiplexing a large number of On-Off sources.

The main result derived in this paper proves that the lower bound obtained in [23] is
exact. Based on this asymptotic result, we suggest an approximation for the buffer over-
flow probabilities. We verify the accuracy of the approximation with extensive simulation
experiments. Besides accuracy, it is of a special importance for engineering the MUX



that this approximation has basically negligible computational complexity! To the best
of our knowledge, this is the only result in the literature (of comparable computational
complexity) that is both proven theoretically and demonstrated experimentally as a good
approximation for the buffer overflow probabilities with multiplexed long-tailed arrivals.

The rest of the paper is organized as follows. Section 2 contains necessary definitions
and examples of long-tailed and subexponential distributions. In Section 3, we examine
the aggregate arrival process obtained by multiplexing a large number (N — o0) inde-
pendent and identical On-Off sources with regularly varying (with noninteger exponent)
On periods. Using Karamata’s theory, we obtain a precise asymptotic behavior of the
server overflow distribution during the arrival process activity period. In Section 4, using
these asymptotic relations, we derive a precise fluid queue asymptotics with multiplexed
long-tailed On-Off arrivals. In the same section, based on queueing theoretic results,
we suggest a computationally efficient approximation for multiplexing a finite number of
subexponential On-Off sources. The paper is concluded in Section 5.

2. Long Tailed and Subexponential Distributions

This section contains the necessary definitions of long-tailed and subexponential distri-
butions. Since it is not obvious what distributions belong to these classes, immediately
from the definitions, we list several well known examples. For more details on long-tailed
and subexponential distributions the reader is referred to [28].

Definition 1 A distribution function F' on [0,00) is called long-tailed (F' € L) if

. 1-F(z—y)
lim ———— == =1 R. 1
R ) , YE (1)
Definition 2 A distribution function F' on [0,00) is called subexponential (F' € S) if
- *2
i 2@ (2)
=00 1 — F(x)

where F** denotes the 2-nd convolution of F with itself, i.e., F**(x) = [0 F(z —
y)F(dy).

The class of subexponential distributions was first introduced by Chistakov [8]. The
definition is motivated by the simplification of the asymptotic analysis of the convolution
tails. Some well known families of distribution functions in & (and L) are: regularly
varying, lognormal, Weibull (e=*" 0 < a < 1), Benktander Type I, II, [28].

In this paper functions of Regular (R_,) will be of our main interest. This functions
were invented by Karamata [27] (the main reference is [6]).

Definition 3 F € R_,, if it is given by

1—F(x):li—i), a >0,

where l(z) : Ry — Ry is a function of slow variation, i.e., lim, . ((dx)/l(x) = 1,V > 1.

(Karamata’s motivation was to derive Tauberian/Abelian theorems, i.e., to establish
relationship between the asymptotic behavior of a function at infinity and the asymptotic
behavior of its Laplace transform at zero.)



3. Analysis of the Aggregate Arrival Process

In this section we asymptotically characterize the aggregate arrival process functionals
that are relevant to further our queueing investigation. Our main result is given in Sub-
section 3.1. There, we derive the asymptotic behavior of the distribution of the server
overflow distribution during the arrival process activity period. This is achieved by ap-
plying Karamata’s theory. In Section 4, these results will be used to obtain the already
advertised asymptotic queueing results.

More formally, consider a sequence of i.i.d. random variables {7%// 70" n > 0}, 75 I =
79" = 0. Define a point process T/ o S (727 + 707), n > 0; this process will be
interpreted as representing the beginnings of Off periods in an On-Off source. Further,
define an On-Off source a; with rate r, as

ap =1 if T — 7" <t < T n>1,

and a; = 0, otherwise. For the rest of the paper, unless otherwise specified, we will assume
that 79// is exponentially distributed with parameter \, i.e., P[r2/f > t] = e ¢t > 0.
Also, 77" is assumed to have a finite mean. Steady state probabilities of this process are
given as my = limy_,oo Pla; = 0] = 1/(1 + AE7°") = 1 — 1y, where m; = limy_,oo Pla, = 7).
Let AN = "V a’, be an aggregate arrival process obtained by multiplexing N independent
and identical On-Off sources a’,1 < i < N.

Infinite number of sources. Now, we will investigate the Poisson type limit of the
aggregate arrival process. Let T,,,n > 0,7y = 0, be a Poisson process with rate A. Define
AP =32 r(T, <t <T,+71"),r >0. Then the following theorem holds.

Theorem 1 IfE7" < oo, and AN — A as N — oo, then

AV L A® as N — oo, (3)
where <% symbolizes convergence in distribution.
Proof: It is enough to prove that the beginnings of the On periods in the process AY con-
verge to a Poisson process with rate A. This follows from a classical result on multiplexing
a large number of renewal processes [15,10]. &
Lemma 1 The transient probability of the arrival process Ag° being silent is given by

t on

]P)[Atoo _ O] _ e—Afo P[r >u]du. (4)
Furthermore, if ET°" < 0o, then lim; o, P[A® = 0] = e AE7™",
Proof: Follows from Theorem 2.2 in [13]. &
Remark: Observe that P[A, = 0] = P[V, = 0], where V} is the workload process of
an M/GI/oco queue in which Vj = 0, the customer service requirement has the same

distribution as 7°", and the arrival rate is A. (For recent asymptotic results on M/G /oo
processes see [35].)



3.1. Total Server Overflow During the Activity Period
Let B,,n > 1, be a sequence of random variables representing the total amount of
fluid that is brought to the system during the nth activity period, i.e., B, = jfb” Apedt,

where % t¢ | represent the beginning, and the end of the nth activity period, respectively.

Further, define Dy, B, - cl?, 0 < ¢ < r;note that D,, = D¢, is a non-negative random
variable. If we imagine that A represents the rate at which the fluid is arriving to a fluid
queue, and that c is the constant rate at which the queue drains, then D,, represents the
queue increment (server overflow) during the nth activity period. Therefore, in order to
solve the queueing asymptotics, we first have to understand the asymptotic behavior of D,,.
Unfortunately, this is a much more difficult task than the investigation of the asymptotic
behavior of the activity period that was done in [23]. For that reason we are forced
to work under much more restrictive assumptions of distribution functions of regular
variation. The method of proof, for the following result, will be through Karamata’s
Tauberian/Abelian theorems.

Theorem 2 Assume that the distribution of On periods is reqularly varying P[t7" > z| =

l(x)/z* o > 1, where o is noninteger. Then,
on x

P[D¢ > x| ~ *E™"P |7o" > as T — 00. 5

Dn [ ~e T r+rAETo — ¢ * ()

Proof: Given in [21]. <&

Next, consider a stationary version of the arrival process A;"° =3 coo (T, <t <

T, +1°"), where T,, is a stationary Poisson process with rate A. Given that at time ¢ = 0,

the arrival process is active (A; > 0), denote with Dfo) the total queue increment since the

beginning of the last activity period till time zero, i.e., D, = fl%(Afo —co)dt,0 <c<r,
where t} represent the beginning of the activity period that is still active at t = 0.

Now, by Theorem 4.3, pp. 64, [3], it follows that process {T,, + 7", —oc0 < n < o0}
is also a stationary Poisson process with the same rate A. Therefore, process A;™° is
reversible. This implies that Df, is equal in distribution to fOtS(At‘X’ — c¢)dt, where t§
represents the end of the activity period that is active at t = 0. For simplicity we will
refer to both of these variables with Di)-

Conjecture 1 Assume that the distribution of On periods is reqularly varying P[To" >
x] =l(z)/x* o > 1, where a is noninteger. Then,

AMET" oo

P[Dg) > a] ~ P[r" > u]ldu as = — oo. (6)

eAET" ] z/(r+rAEron—c)

Heuristics: Due to space limitation this is given in [23]. &

4. Queueing Analysis

We start this section with a classical result on subexponential asymptotics of a GI/GI/1
queue. The result was obtained by Pakes 1975 (see also Veraverbeke for the random walk
approach to this problem). For extensions of this result to Markov-modulated M/G/1
queues see [4], and to Markov-modulated G/G/1 queues see [24].



Let X,,,n > 0, be a sequence of i.i.d. random variables that are driving a queueing
process (Lindley’s recursion)

Qni1 = (Qn+X,)*, n>0, (7)

where ¢* = max(0, ¢). According to the classical result of Loynes’ [31] under the stability
condition EX,, < 0 this recursion admits an unique stationary solution, and for all initial
conditions P[Q, < z] converges to the stationary distribution P[@Q < z]. For the rest
of this paper we will assume that all the queueing systems under consideration are in
their stationary regimes. Let G and Gy(z) & 1/EX, [®P[X, > u]du represent the

distribution and its integrated tail distribution for X, respectively.

Theorem 3 IfG e L, G1 €S, and EX,, <0, then

1 00
PlQ, > x] ~ IEX/t P[X,, > u]du as t — oo.

Remark: In [24] it was shown that exactly the same asymptotics holds for Markov-
modulated G/G/1 queues (equivalently random walks).

The rest of this section is organized in the following four subsections. In Subsection 4.1
we give some general results on the fluid flow queue. In order to develop some intuition
about the behavior of the fluid flow queue with subexponential arrivals, we present in
Subsection 4.2 a complete solution to a simple On-Off single server queue. Our main
queueing theoretical results are presented in Subsection 4.3. A practical approximation
technique based on the developed theoretical results is tested on simulation experiments
in Subsection 4.4.

4.1. Fluid Queue: Preliminaries

The physical interpretation for a fluid queue is that at any moment of time ¢, fluid is
arriving to the system with rate a;, and is leaving the system with rate ¢;. We term ay,
and ¢;, to be the arrival, and service processes, respectively. Then, the evolution of the
amount of fluid @y (also called queue length) evolves according to

th = (Clt — Ct)dt if Qt > O, or a; > ¢, (8)
and d@Q; = 0, otherwise. It is not very difficult to see that, starting from Qg = 0, the

solution Q¢,t > 0, to (8) is given by
t

Q; = sup [ (ay — c,)du. (9)

0<u<stJu
And, if a;, and ¢; are stationary, (); is equal in distribution to

PlQ; < z] =P[sup W, <z,

0<u<t
where W, def f_ot(au — ¢y)du,t > 0. Now, whenever the stability condition Ea; < Ec¢; is
satisfied (by Birkhoft’s Strong Law of Large Numbers), P[Q; < z] converges to a proper
probability distribution, i.e.,
PlQ < z] et tli)m PlQ: < x] =P[ sup W, <z].

0<u<oco



4.2. Fluid Queue with a Single On-Off Source

Consider a fluid queue with capacity ¢ and an On-Off arrival source with On arrival rate
7. In this section we assume that Off periods are also general (not necessarily exponential).
Then, if we observe the queue at the beginning of On periods, the queue length QF evolves
as follows (P stands for Palm probability [5]).

P =(QF + (r— o)t — et n>0. (10)
Recall that F' and F} denote the distribution and the integrated tail distribution of 7°".

Theorem 4 Ifr > ¢, (r — ¢)Er,, < cE7pf, F € L, and Fy € S, then

r—c o0
PQF > 2] ~ [ P> . 11
(@, > ] sy — (r — O)Eron Jajiro ks uldu as x — 00 (11)

Proof: Given in [21]. <&
The relationship between the palm probabilities and the time average probabilities is
presented in the following theorem.

Theorem 5 Ifr > ¢, (r — ¢)Ery, < cErypp, F € L and Fy € S, then

1 o]
P on
P[Qt > LL’] ~ ]P[Q > LL’] + ETOH——FET‘”L /x/(r_c) ]P[T > u]du (12)
~ K/jc() )IP[T"” > uldu as x — o0, (13)
where
— 1
K " (14)

- cErppp — (r — )ETon + Eroff 4+ Eron’

Remarks: (i) This theorem improves on known results in [36,9] which were obtained
under the assumptions of 7" being regularly varying; (ii) The same proof can be carried
out to establish the relationship between the Palm and time averages in much more general
settings like semi-Markov fluid queues.

Proof: Given in [21]. &

4.3. Subexponential M /G /oo Arrival Process

In this section we present our main queueing results. First we develop a general asymp-
totic queue distribution lower bound. Then, under more restrictive assumptions, we prove
that this bound is precise.

4.3.1. Lower Bound
For the lower bound we need the following definition.

Definition 4 A distribution function F is intermediate regular varying F € IR if
F(5t)

lim lim inf — .
511 t—oo F(t)




Remark: For recent results on distributions of intermediate regular variation we refer
the reader to [11]. Some basic properties of ZR are: R C IR C S.

Here, we obtain a tight lower bound for the fluid queue asymptotics with M/G /oo
arrivals. For this fluid queue we denote its queue content process as Q5°.

Theorem 6 Let p & EAY™ = ArEr" < c. If r(1+ AE7T") > ¢, and 7" € IR, then
Pl A
lim inf — @ > 1] > 2

v=oe [ PlT > uldu T c—p

Proof: Given in [21]. &

4.3.2. Precise Queue Asymptotics
Let Q2> be the queue size observed at the beginning of the nth activity period of the
M/G /oo arrival process.

Theorem 7 Let p = EA}™ = ArEr" < ¢. If ¢ < r, and 7" is reqularly varying with
noninteger exponent o > 1, then

P,00
lim — @ > 2] :A< r —1).

1700 [ pir_ey P70 > uldu c—p

Proof: Let I°// be the length of the nth off period in the arrival process A;>. Then,

the proof follows directly from Theorem 3, and Theorem 2, by taking X, o D¢ — cI%Y,
observing that P[X,, > z] ~ P[D¢ > 2], as ¥ — o0, and EX,, = (A7ET — ¢)/AerE. <&

Theorem 8 Let p = EAY™ = ArEr" < c. If Conjecture 1 holds, ¢ < r, and 7°" is
reqularly varying with noninteger exponent o > 1, then

PR >
lim — @i il A
2200 [ pir—c) Plrom > uldu c—p

Proof: This theorem follows from Theorem 8, Conjecture 1, and exactly the same argu-
ments as in the proof of Theorem 5. We skip the details. &
Remark: The asymptotic result in this theorem is the same as the lower bound obtained
in Theorem 6.

4.4. Finite Number of Subexponential On-Off Sources: M /G /oo Approxima-
tion
Based on Theorems 6, 7, and 8, we suggest that the queueing probabilities obtained by
multiplexing N long-tailed On-Off sources a!,1 < i < N, are approximated as
ANy oo
PIQY > 2] ~ — P[r > u]du, (15)

NV z/(r—cN)

where ¢V ¥ ¢ — NEa!, and AY ¥ NEa!/(rEr™"). We term this approximation an
M/G /oo approximation. This approximation is to be used when the queue is stable and

r+ (N — 1)Ea; > c is satisfied.



For simulation purposes we consider a discrete time “fluid” queue. Correspondingly, we
replace exponential Off periods, with geometrically distributed random variables P[r°// =

t] = p(1 —p)=t,t =1,2,3,.... For On periods we consider the Pareto family P[r°" >
t]=1/t*t=1,2,... ,a > 0. Here, for the discrete Pareto case we use
ANy ol —a
P[Q) =] = C—N(T —cN)etae (16)

where ¢V, and AV are as defined earlier.

The efficacy of approximation (16) is tested on numerous simulation experiments. For
all experiments we fix p = 0.05. In each experiment, the number of simulated On-Off
intervals was at least 10%, or equivalently, the length of the simulated aggregated process
was ~ 2 x 10°. This was necessary to ensure the desired precision of the simulation
outcomes. Unfortunately, due to the space limitations we present only one simulation
example. For more examples please check [21].

Experiment 1 Choose a = 3,7 = 2,¢ = 3. This gives Er°" = 1.202, and Ea! = 0.113.
Then, for N = 20,25, sources, the approximations are given by (/23,5 = 4.14,48.04,
respectively. The desirable closeness between the simulation results and the approxima-
tions is represented in Figure 1. (It is interesting to observe that in this case the peak
rate of each individual source is smaller than the capacity of the server.)
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Figure 1. Tllustration for Experiment 1.

Notice that in the experiment the probabilities are very small (=~ 1078). Hence, in order
to achieve reasonable simulation accuracy, we had to choose a very large number (10%)
of simulated On-Off intervals. This means that the aggregate process was approximately
2 x 10'° samples long. The simulation of these case took 77 hours!!! on a modern (200
MIPS) IBM workstation. On the other hand, it is needless to say that the evaluation of
(16), or (15), takes negligible time!
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5. Conclusion

In this paper, for the limiting M /G /oo arrivals (e.g., large number of subexponential On-
Off sources) with regularly varying On periods (with noninteger exponents) we obtained a
precise queue asymptotics observed at the beginning of the arrival process activity periods.
This showed that the asymptotic (time average) queue lower bound that was derived in
[23] (under more general assumptions of intermediately varying On periods) is tight.

Based on these asymptotic results, a computationally efficient approximation was sug-
gested for the large buffer probabilities of finitely many subexponential On-Off sources.
The accuracy of this approximation was verified using extensive simulation experiments.

The results in this paper brought us closer to understanding the subexponential queue-
ing asymptotics of multiplexed long-tailed sources. From a mathematical perspective, the
elegance of the obtained results shows that long-tailed and subexponential distributions
provide a proper framework for modeling and analysis of heavily dependent traffic streams.
Finally, the precision and negligible computational complexity of the M/G /oo approxi-
mation is expected to have a practical engineering impact on improving the efficacy of
ATM admission controllers.
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