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Abstract— Consider a network multiplexer with a finite buffer fed by
a superposition of independent heterogeneous On-Off sources. An On-Off
source consists of a sequence of alternating independent activity and silence
periods. During its activity period a source produces fluid with constant
rate. For this system, under the assumption that the residual activity peri-
ods are intermediately regularly varying, we derive explicit and asymptoti-
cally exact formulas for approximating the stationary overflow probability
and loss rate.

The derived asymptotic formulas, in addition to their analytical
tractability, exhibit excellent quantitative accuracy, which is illustrated by
a number of simulation experiments. We demonstrate through examples
how these results can be used for efficient computing of capacity regions for
network switching elements. Furthermore, the results provide important
insight into qualitative tradeoffs between the overflow probability, offered
traffic load, available capacity, and buffer space. Overall, they provide a
new set of tools for designing and provisioning of networks with heavy-
tailed traffic streams.

Keywords—Network multiplexer, Finite buffer fluid queue, On-Off pro-
cess, Heavy-tailed distributions, Subexponential distributions, Long-range
dependence

I. INTRODUCTION

Increased utilization in communication networks is achieved
through sharing of network resources, e.g. link capacity and
buffer space, among different user sessions. The benefits in
sharing of common resources are counterbalanced with potential
increases in congestion and degradation in Quality of Service
(QoS) perceived by individual sessions. Therefore, understand-
ing the tradeoffs between the offered traffic load, perceived QoS
measures, link capacity and buffer space is essential for efficient
design and provision of network switching elements.

The fundamental switching components used for sharing
bandwidth and buffer space are network multiplexers. An es-
tablished baseline model of a network multiplexer is a single
server queue with a constant capacity and finite buffer fed by
a superposition of many user sessions. Individual sessions are
modeled as On-Off processes, since a session can be either ac-
tive, in which case it transmits data at a specified rate, or silent.
The primary performance measures of this queueing system are
the stationary overflow probability and loss rate. The analysis of
a related infinite buffer queueing system dates back to [1], [2],
[3] (see also [4] for additional references).

Most of the early work on multiplexing focuses on On-
Off processes with exponentially distributed On and Off pe-
riods (e.g., see [3]). However, repeated empirical measure-
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ments in modern networks demonstrate the presence of heavy-
tailed/subexponential characteristics in network traffic streams.
Early discoveries of the presence of heavy-tails in Ethernet traf-
fic were reported in [5]. Long range dependence and subexpo-
nential characteristics of VBR video streams (e.g. MPEG) were
explored in [6], [7], [8]. Evidence and possible causes of heavy-
tailed characteristics in World Wide Web traffic were discussed
in [9]. In this paper, we supply additional confirmation of the
existence of heavy tails in network traffic. We have measured
the distribution of file sizes on five different file servers in the
COMET Lab at Columbia University. The empirical distribu-
tion of 350,000 surveyed files is presented on a log = log scale in
Figure 1. We find that the tail of the measured distribution is al-
most perfectly matched by a Pareto distribution with parameter
� = 1:44; see the dashed line in Figure 1. This suggests that the
corresponding ftp (file transfer protocol) traffic is heavy-tailed.
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Fig. 1. Log/log plot of the empirical distribution of file sizes on five file servers
in COMET laboratory at Columbia University. The tail of the empirical
distribution (solid line) is almost perfectly matched by a Pareto distribution
with parameter � = 1:44 (dashed line).

The analysis of queueing models with multiplexed heavy-
tailed renewal arrival sequences, e.g. On-Off processes, is dif-
ficult primarily due to the complex dependency structure in
the aggregate arrival process [10]. This stems from the well-
known fact that the superposition of renewal processes, in gen-
eral, is not a renewal process. An intermediate case of multi-
plexing a single heavy-tailed process with exponential streams
was investigated in [11], [4], [12]. In [4] it was discovered that
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these hybrid queueing systems are asymptotically equivalent to
the ones where exponential arrival sequences are replaced with
their mean rates. This phenomenon was greatly generalized and
termed reduced load equivalence in [13].

An infinite limit of On-Off processes, the so-called M/G/1
process, represents another instance of an analytically promising
model. This is because M/G/1 processes have both a renewal
and Poisson structure. Samples of recent results and additional
references on both fluid and discrete time queues with M/G/1
arrival processes can be found in [11], [4], [14], [15], [16], [17],
[18], [19], [20].

However, the understanding of multiplexing a finite number
of heavy-tailed On-Off arrival processes is quite limited. Gen-
eral bounds can be found in [21], [22]. In this paper we de-
rive explicit asymptotic results for approximating the stationary
overflow probability and loss rate in a finite buffer queue with
heterogeneous heavy-tailed On-Off arrival processes. The start-
ing point of our analysis are the results from [23] (see also [24]).
During the process of completing this paper we discovered that
the complementary results for the infinite buffer model are de-
rived in [25].

Informally, in the case of multiplexing N homogeneous fluid
On-Off sources with peak rate r, average rate � and probability
of being on pon into a queue of capacity c and buffer B our
result shows that the fraction of fluid lost is asymptotically, as
B !1, equal to

R0 � c

N�

�
N

k0

�
pk0
on
P
k0

�
�on
r

>
B

R0 � c

�
; (1)

where R0 = k0r+ (N�k0)�, �onr is the residual On period and
k0 is the smallest integer greater than (c�N�)=(r��). Qualita-
tively, when On periods have Pareto distribution, formula (1) re-
veals that the fraction of fluid lost decays polynomially in buffer
size B and exponentially in capacity c. This insight may prove
to be important in designing network switching elements.

Network switching elements can be abstracted by means of
capacity regions. Capacity region consists of all combinations of
arrival streams that, when fed into a multiplexer of specified ca-
pacity, produce required QoS. Let QB;c

n
;n = (n1; : : : ; nM ) be

the workload in a multiplexer with capacity c, buffer B and ar-
rival sequence which consists of nj(1 � j �M) traffic streams
from class j. If we choose the overflow probability as a perfor-
mance measure and require that this probability is not greater
than a specified QoS parameter Æ, then the capacity (i.e. admis-
sible) region is defined as

C � C(c; Æ;M) = f(n1; : : : ; nM ) : P[QB;c

n
= B] � Æg:

In the same way loss rate might be chosen to be the performance
measure. The obtained results allow for efficient computation of
capacity regions.

The rest of the paper is organized as follows. First, in Sec-
tion II, we present the model description, preliminary results,
and necessary extensions of results for a queueing system with
a single On-Off arrival process. The main result of this paper,
Theorem 2, is presented in Section III. In Section IV, we illus-
trate the accuracy of this result through simulation experiments.
We demonstrate how it can be utilized for efficient computation
of capacity regions in network multiplexers. The paper is con-
cluded in Section V.

II. PRELIMINARY RESULTS

Consider a fluid queue model with a constant capacity c, finite
buffer B and arrival process A(t). At time t, fluid arrives to this
queueing system at rate A(t) and is leaving the system at rate c.
When the queue level reaches the buffer limit B fluid arriving in
excess of the draining rate c is lost. We use QB(t) 2 [0; B] to
denote the queue content at time t.

In this paper we will only consider arrival processes A(t) that
are piece-wise constant and right continuous with almost surely
(a.s.) increasing jump times fT0 = 0 < T1 < T2 < � � � g. In
this case, for any initial valueQB(0) and t 2 (Tn; Tn+1]; n � 0,
the evolution of QB(t) is given by

QB(t) = (QB(Tn) + (t� Tn)(A(Tn)� c))+ ^ B; (2)

where (x)+ = max(0; x) and x ^ y = min(x; y). When neces-
sary, we will use the notation QB;c

A
� QB to mark the explicit

dependence of QB(t) on A(t) and c.
When A(t), i.e. f(Tn+1 � Tn); A(Tn)g, is stationary and

ergodic, and EA(t) < c, by using Loynes’ construction [26],
one can show that recursion (2) has a unique stationary and er-
godic solution. Furthermore, for all initial conditions QB(0),
the distribution of QB(t) converges to this stationary solution
as t ! 1. Unless otherwise indicated we assume throughout
the paper that all arrival processes are stationary, ergodic and
the corresponding queues are in their stationary regimes. Let
QB and A be random variables that are equal in distribution to
QB(t) and A(t), respectively.

Our main objective in this paper is the asymptotic computa-
tion, as B !1 of the overflow probability P[QB

�B�K], for
finite K, and long time average loss rate �B given by

�B
, lim

t!1

L(0; t)

t
;

where L(0; t) = famount of fluid lost in (0; t)g. We define the
loss probability PB

loss
as the long time average fraction of fluid

that is lost

PB

loss , lim
t!1

L(0; t)R t
0
A(u)du

=
�B

EA
:

The term loss probability stems from the fact that P B

loss
2 [0; 1].

Since there is a one to one correspondence between the loss rate
and loss probability, we use those two terms interchangeably in
the paper. An equivalent representation of �B, which will be
used for computational purposes, is

�B = E�(t); �B(t) , (A(t)� c)1fQB(t) = Bg;

�B(t) indicates the rate at which the buffer is overflowing at
time t. Similarly, the notation �

B;c

A
� �B will be used to mark

the explicit dependence of �B on c and A(t).
Next we prove two useful sample path bounds. The first

bound formalizes an intuitively expected notion that multiplex-
ing reduces the aggregate queueing workload.

Proposition 1: Let A(t) =
PN

n=1An(t) and c =
PN

n=1 cn.
If QB;c

A
(t) �

PN

n=1Q
B;cn

An
(t) for t = 0 then the inequality

holds for all t � 0.
Proof: Given in Appendix-B.
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Now, we consider a stochastic process ~Q(t) � ~Qc

A
(t) defined

for a right-continuous piece-wise constant arrival processesA(t)
with a.s. increasing jump times f0 = T0 < T1 < T2 : : :g by

~Q(t)=
�
~Q(Tn)+(t�Tn)(c�A(Tn))

�+
; t2(Tn; Tn+1]; (3)

and the initial condition ~Q(0). Note that ~Q(t) corresponds to an
infinite buffer queueing process with constant arrival rate c and
service rate A(t). We use ~Q to upper bound the amount of free
buffer space B �QB;c

A
(t) in the original system.

Proposition 2: If B � QB;c

A
(t) � ~Qc

A
(t) for t = 0, then the

inequality holds for all t � 0.
Proof: Given in Appendix-B.

At this point, we turn our attention to a fluid queue with a
single On-Off arrival source. The results obtained here will be
used for deriving our main theorem in the subsequent section.

First, let us construct an On-Off process. Consider two
independent i.i.d. sequences of positive random variables:
f�on; �on

n
; n � 1g, f�off ; �off

n
; n � 1g. Define a point pro-

cess T off
n =

P
n

i=1(�
on

i
+�off

i
), n � 1, T off

0 = 0; this process
represents the beginnings of Off periods in an On-Off process.
Next, an On-Off process A0(t) with rate r is defined as

A0(t) = r if t 2 [T off

n
� �on

n
; T off

n
); n � 1;

and A0(t) = 0, otherwise. We assume that E� on , E� off < 1,
and hence, by the Strong Law of Large Numbers, the probability
that the source is active in steady state is well defined:

pon , lim
t!1

P[A0(t) = r] =
E� on

E� on + E�off
:

Process A0(t) can be extended to a stationary process on the
whole real line [22]. We call that process A(t). Note that the
expected arrival rate � is equal to � , EA(t) = ponr.

In the analysis of renewal processes residual (or excess) ran-
dom variables and distribution functions play an important role.
For a nonnegative random variable X with distribution F and
finite mean EX , the residual distribution Fr is defined by

Fr(x) =
1

EX

Z
x

0

(1� F (u))du; x � 0:

A random variableXr with distribution function Fr is called the
residual variable of X .

Throughout the paper, for any two real functions f(x) and
g(x), we use the standard notation f(x) � g(x) as x ! 1

to denote limx!1 f(x)=g(x) = 1 or equivalently f(x) =
g(x)(1 + o(1)) as x!1.

With symbols S and IR we denote the classes of subexpo-
nential and itermediately regularly varying distributions, respec-
tively. See Appendix-A for the exact definitions.

Proposition 3: If r > c > � and � onr 2 S, then as B !1

P[QB = B] � ponP

�
�onr >

B

r � c

�
:

Proof: In [23] it was shown that as B !1

�B
�
E [� on (r � c)�B]+

E� on + E�off
: (4)

IfG(0; t) defines the amount of time the buffer is full andL(0; t)
is the amount of fluid lost in (0; t), then G(0; t)=L(0; t)=(r�c)
and by ergodicity of QB(t) and (4) as B !1

P[QB = B] = lim
t!1

L(0; t)

t(r � c)
� ponP

�
�on
r

>
B

r � c

�
:

The next result was established in [4]. It provides the asymp-
totic characterization of the workload in an infinite buffer sys-
tem.

Theorem 1: If r > c > � and � onr 2 S, then

P[Q1 > B] � (1� pon)
�

c� �
P

�
�onr >

B

r � c

�
:

Note that quantities P[QB = B] and P[Q1 > B] are asymp-
totically proportional. We use this fact to obtain the following
bound.

Proposition 4: If r > ci > �, i = 1; 2, �on
r

2 IR and
� 2 (0; 1), then for m > l � 0

lim
B!1

P
m[QB;c1 � (1� �)B]

Pl[QB;c2 � �B]
= 0:

Proof: Given in Appendix-B.
The proposition below is the main technical result of this sec-

tion. Due to space limitations the detailed proof is provided in
[27].

Proposition 5: If r > c > � and � onr 2 IR, then

lim
�"1

lim sup
B!1

P[QB
� �B]

P[QB = B]
= 1:

III. MAIN RESULTS

This section contains our main result stated in Theorem 2.
Consider N independent On-Off sources. Without loss of

generality, assume that they belong to M � N different classes
with class i containingni identically distributed On-Off sources,PM

i=1 ni = N . The sources are enumerated as A(i)
j
(t), 1 � i �

M , 1 � j � ni and the aggregate arrival process is denoted
by A(t) =

PM

i=1

Pni

j=1 A
(i)
j
(t). A(i)

j
(t) is the jth On-Off pro-

cess of class i with On periods equal in distribution to �
on;(i)
j

;
peak rate, average rate, and probability of the source being ac-
tive are equal to (ri, �i, pon;i), respectively. Random variables

�on;(i); f�
on;(i)

j
g
ni

j=1 are i.i.d..
Because of the probabilistic sample path techniques that we

use in the paper our proofs require the following minor technical
assumption. Similar assumptions can be found in [17], [28] and,
most recently, in [25].

Assumption 1: The capacity of the queueing system satisfies
the following

c 62

(
MX
i=1

[ki(ri � �i) + ni�i] : k 2

MO
i=1

[0; ni]

)
;

where k = (k1; : : : ; kM ) and
PM

i=1 niri > c.
Remark: If this assumption is not satisfied, by choosing an

arbitrarily larger or lower capacity one can obtain a lower or
upper bound on the queueing performance, respectively.
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Before starting and proving our main results we introduce a
preparatory lemma. The next lemma derives an asymptotic ex-
pression for the overflow probability in the special case when
all sources need to be active for a long period of time in order to
have a buffer overflow.

Lemma 1: Let R =
P

M

i=1 niri. If 0 < R � c < ri � �i for
all 1 � i �M , then for all B � 0 and 0 � � � 1

MY
i=1

pni
on;i

P
ni

�
�on;(i)
r

>
�B

R� c

�

� P[QB;c

A
� �B] �

MY
i=1

P
ni

�
QB;c�R+ri

A
(i)

1

� �B

�
:

If in addition � on;(i)r 2 S for 1 � i �M , then as B !1

P[QB;c

A
= B] �

MY
i=1

pni
on;i

P
ni

�
�on;(i)
r

>
B

R� c

�
:

Proof: Let ci , c�R+ ri. Assume that at time t = 0 all
considered queues are empty. For all 1 � i � M , 1 � j � n i,
Proposition 1 yields

QB;c

A
(t) � QB;ci

A
(i)

j

(t) +QB;c�ci

A�A
(i)

j

(t)

= QB;ci

A
(i)

j

(t); (5)

where the equality follows from the fact that QB;c�ci

A�A
(i)

j

(t) �

0; t � 0. Since (5) holds for all i; j, then

QB;c

A
(t) � min

i;j

QB;ci

A
(i)

j

(t);

which, by applying the operator P[� � �B], using independence

of A(i)
j

, and passing t!1, yields in stationarity

P[QB;c

A
� �B] �

MY
i=1

P
ni

�
QB;ci

A
(i)

1

� �B

�
:

Obtaining the lower bound is straightforward from evaluating
the system in stationarity at t = 0; for simplicity the time in-

dex is omitted. Let �(i)

j
=
n
A
(i)

j
= ri; �

on;(i)

j;r
> �B=(R� c)

o
,

then

P[QB;c

A
� �B] � P

2
4QB;c

A
� �B;

M\
i=1

ni\
j=1

�
(i)
j

3
5

=

MY
i=1

pni
on;i

P
ni

�
�on;(i)
r

>
�B

R� c

�
:

Setting � = 1 in the preceding upper and lower bounds and
combining it with Proposition 3 yields the second statement of
the proposition.

In order to state our main result, we need to introduce
some additional notations. Let E =

NM

i=1[0; ni] and E
� =N

M

i=1[0; 1]
ni . An element e 2 E

� is of the form e =

(e1; : : : ; eM ), where ei = (e
(i)
1 ; : : : ; e

(i)
ni ) 2 [0; 1]ni , for all

i. In order to distinguish between scalar and vector quantities,
vectors are denoted with bold letters. Let jeij =

Pnj

j=1 e
(i)
j

and

rm =
PM

i=1[mi(ri � �i) + ni�i].
Definition 1: Define the minimum overflow set

O , fk 2 E : 0 < rk � c < rj � �j ;8j : kj > 0g

and the detailed minimum overflow set

O
�
, fe 2 E

� : (je1j; : : : ; jeM j) 2 Og :
Remarks: (i) Informally, the motivation behind this definition

comes from the fact that only a few On-Off processes with very
long On periods are causing the most likely buffer overflows,
while the remaining processes behave on average. Hence, an
element of O indicates the minimum number of processes from
each class that need to have very long On periods in order for a
buffer overflow to occur. Similarly, a more detailed set O � con-
tains binary vectors which denote particular overflow scenarios.
(ii) The definition of e 2 O

� is similar to the definition of the
minimal set in [22].

Finally, we are ready to state our main result that derives the
exact asymptotic characterization of the loss rate and the buffer
overflow probability. To simplify the exposition we define

P̂ (B) ,
X
m2O

MY
i=1

�
ni
mi

�
pmi

on;i
P
mi

�
�on;(i)
r

>
B

rm�c

�
:

Theorem 2: If
P

�ini < c and � on;(i)r 2 IR for 1 � i �M ,
then under Assumption 1 as B !1

�B
�

X
m2O

(rm�c)

MY
i=1

�
ni
mi

�
pmi

on;i
P
mi

�
�on;(i)r >

B

rm�c

�

and for any � > 0 there exists K� such that for all K � K�

1� �� lim inf
B!1

P[QB
�B�K]

P̂ (B)
� lim sup

B!1

P[QB
�B�K]

P̂ (B)
=1:

If, in addition, we assume that
P

M

i=1miri > c for all m 2 O,
then for any K � 0

P[QB;c

A
� B �K] � P[QB;c

A
= B] � P̂ (B) as B !1:

Remarks: (i) Recall that the loss probability is immediately
computable from P B

loss
= �B=EA.

(ii) Informally, for large K and B much larger than K

P[QB;c

A
� B �K] � P̂ (B):

Hence, the result states that the fraction of time during which the
buffer is effectively 100% full is asymptotically equal to P̂ (B).
(iii) The heuristic for this result can be easily explained by the
following simple example. Consider two i.i.d. On-Off processes
with On periods in IR and r < c < r+�; these assumptions
result in the overflow set being a single number m = 1. In this
case, the most probable way the buffer overflows is when one
of the processes (say the first one) has a very long On period
and the other behaves on average

R t
0
A
(1)
2 (u)du � �t. During

that long On period, the average amount of arriving fluid will be
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higher than the service rate r + � > c and the buffer will tend
to fill. After the buffer fills (QB(t) = B), its content will stay
close to the buffer boundary; when r < c, the queueing content
will make small excursions away from the boundary during the
Off periods in the second On-Off process, see Figure 2. In the
proof we show that these excursions are almost surely finite and
uniformly bounded for all B.

B−K

0

B

Q (t)
B

Fig. 2. Illustration for Remark (iii) after Theorem 2. The long On period is
shown with a dashed line.

(iv) In the last statement of the theorem the values of � i-s do
not affect the computation of the minimal overflow set. Hence,
during the most likely overflow event the arrival rate is always
higher than the capacity and, therefore, the buffer content QB

remains on the boundary B. This fact makes the asymptotic
computation of the probability that the buffer is full P[QB = B]
feasible. Also, due to the fluid nature of the model, P[QB = B]
represents the fraction of time that the fluid is being lost.
(v) With additional assumptions on the ratios of tails of � on;(i)r

the minimum overflow set O in the statement of the theorem
can be replaced by a smaller, most probable overflow set O0.
For example, if � on;(i) 2 R�i , then

O0 =

(
k 2 O :

MX
i=1

�iki = min
l2O

MX
i=1

�ili

)
;

with k = (k1; : : : ; kM ) and l = (l1; : : : ; lM ).
(vi) Complementary results for the infinite buffer model are re-
cently obtained in [25]. A related result for a discrete time finite
buffer queue loaded by a Pareto-like M/G/1 arrival process can
be found in [28]; in their proofs the authors exploit Poisson de-
composition property of the arrival processes, which does not
hold for the multiplexed On-Off processes. In addition, in [28]
it is assumed that the buffer overflows in a unique way, i.e., the
overflow set O contains a single element.

Before proving Theorem 2, we introduce a combinatorial
lemma that will be used in the proof of the main theorem. Let
fX

(i)
j
; 1 � j � nig

M
i=1 be a set of independent random vari-

ables. Random variables with the same superscript are equal in
distribution. For every element e 2 E �, let us define the follow-
ing quantity

Se ,
MX
i=1

niX
j=1

(1� e
(i)
j
)X

(i)
j
:

At this point, we are ready to state our last preparatory lemma.
For two vectors m and k we say m > k if mi � ki for all i and
mj > kj for at least one j.

Lemma 2: There exists a finite set O with a feature that for
each m 2 O exist k 2 O such that m > k, and

P

�
min
e2O�

Se > y

�
�

X
m2O

MY
i=1

�
ni
mi

�
P
mi

h
X

(i)
1 >

y

N

i
:

Proof: Here we prove the result for the case M = 1. An
inductive proof for general M is given in [27].

In this case N = n1 and, by Assumption 1, there exists an
integer k1 such that for all e 2 O

� we have
PN

j=1 ej = k1.

Define D � D(y) as the number of events fX (1)
j

> y=Ng:

D ,

n1X
j=1

1fX
(1)
j

> y=Ng:

Next, observe that

fD � k1g \

�
min
e2O�

Se > y

�
= ;

due to the fact that there is at least one e 2 O
� such that Se �

N�k1
N

y � y on fD � k1g. Thus,

P

�
min
e2O�

Se > y

�
� P[D � k1 + 1]

= P

2
664 [
d2[0;1]n1

jdj=k1+1

\
j : dj=1

n
X

(1)

j
>

y

N

o3775

�

�
N

k1 + 1

�
P
k1+1

h
X

(1)
1 >

y

N

i
;

where
�
N

k+1

�
� 0 if N < k + 1. Therefore, with the choice of

O=fk1+1g, the case M=1 is proven.
Below we present the proof of our main result, Theorem 2.

Proof of Theorem 2: Due to the space limitation we pro-
vide the proof only for the overflow probability. The proof for
the loss rate can be completed in the same spirit and is provided
in [27]. The proof consists of a lower and an upper bound.

Upper bound. Let ce , c �
P

M

i=1

P
ni

j=1(1 � e
(i)

j
)�i and

Ae ,
P

M

i=1

P
ni

j=1 e
(i)
j
A
(i)
j

. For Æ > 0 consider the queues

QB;ce�Æ

Ae
, e 2 O

�, QB;�i+Æ=N

A
(i)

j

; assume that these queues are

empty at time t = 0. For any e 2 O
� and sufficiently small

Æ > 0 such that all considered queues have their capacity greater
than the average arrival rate Proposition 1 yields (QB;c

A
� QB)

for t � 0

QB;c

A
(t) � QB;ce�Æ

Ae
(t) +

MX
i=1

niX
j=1

(1� e
(i)

j
)Q

B;�i+Æ=N

A
(i)

j

(t);

and, thus

QB;c

A
(t)�min

e2O�

0
@QB;ce�Æ

Ae
(t)+

MX
i=1

niX
j=1

(1� e
(i)
j
)Q

B;�i+
Æ

N

A
(i)

j

(t)

1
A :

Next, by applying the operator P[� � B�K] in the preceding
inequality and then passing t!1, we derive in stationarity

P[QB;c

A
� B �K] �

P

2
4min
e2O�

0
@QB;ce�Æ

Ae
+

MX
i=1

niX
j=1

(1�e
(i)
j
)Q

B;�i+Æ=N

A
(i)

j

1
A�B�K

3
5 :
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Therefore, the above inequality, union bound and Lemmas 1, 2
yield for any � 2 (0; 1)

P[QB;c

A
� B�K]

� P

" [
e2O�

fQB;ce�Æ

Ae
� �(B�K)g

#

+ P

2
4min
e2O�

MX
i=1

niX
j=1

(1� e
(i)
j
)Q

B;�i+
Æ

N

A
(i)

j

� (1� �)(B�K)

3
5

�

X
e2O�

P

h
QB;ce�Æ

Ae
� �(B�K)

i

+
X
m2O

MY
i=1

�
ni
mi

�
P
mi

�
Q
B;�i+

Æ

N

A
(i)

1

�
1� �

N
(B�K)

�

�

X
m2O

MY
i=1

�
ni
mi

�
P
mi

�
Q
B;c

i

m
�Æ

A
(i)

1

� �(B�K)

�

+
X
m2O

MY
i=1

�
ni
mi

�
P
mi

�
Q
B;�i+

Æ

N

A
(i)

1

�
1��

N
(B�K)

�
; (6)

where ci
m
, ce �

PM

j=1mjrj + ri. Now, (6), in conjunction
with Proposition 4 and Lemma 2, results in

lim sup
B!1

P[QB;c

A
� B�K]

P̂ (B)
�

lim sup
B!1

P
m2O

QM

i=1

�
ni

mi

�
P
mi

�
Q
B;c

i

m
�Æ

A
(i)

1

� �(B�K)

�
P

m2O

QM

i=1

�
ni

mi

�
pmi

on;i
Pmi

h
�
on;(i)
r > B

ri�c
i

m

i : (7)

Here, recall that Proposition 5 implies for all m and i

lim
Æ#0

lim
�"1

lim sup
B!1

P

�
Q
B;c

i

m
�Æ

A
(i)

1

� �(B�K)

�

P

�
Q
B;ci

m

A
(i)

1

= B

� = 1;

which, by Proposition 3 and Lemma 4, yields

lim
Æ#0

lim
�"1

lim sup
B!1

P
m2O

Q
M

i=1

�
ni

mi

�
P
mi

�
Q
B;c

i

m
�Æ

A
(i)

1

��(B�K)

�
P

m2O

QM

i=1

�
ni

mi

�
Pmi

�
Q
B;ci

m

A
(i)

1

=B

� =1:

Finally, by using the last limit and letting Æ # 0 and � " 1 in (7)
we derive the upper bound.

Lower bound. The lower bound is obtained by estimating
the queueing system in stationarity at (say) time t = 0. Let
re ,

P
M

i=1

P
ni

j=1[e
(i)
j
(ri � �i) + �i] and, for any � > 0, define

a family of events indicating that the jth process of type i is
active at time t = 0 and its On period has lasted for an amount
of time larger then te , B(1+�)=(re�c)

�
(i)
j
,

n
A
(i)
j
(0) = ri; infft > 0 : A

(i)
j
(�t) = 0g > te

o
;

with �
(i);c
j

being the complement of �(i)
j

. We point out that

inf
n
t > 0 : A

(i)

j
(�t) = 0

o
equals in distribution to �

on;(i)

j;r
on

event fA(i)

j
(0) = rig. Next,

P[QB;c

A
(0) � B �K]

�

X
e2O�

P

2
64QB;c

A
(0) � B �K;

\
i;j : e

(i)

j
=1

�
(i)

j
;

\
i;j : e

(i)

j
=0

�
(i);c

j

3
75

,
X
e2O�

Pe: (8)

For all arrival processes we define the following sample path
averages

A
(i)

j � A
(i)

j (�; B) ,
1

te

Z 0

�te

A
(i)
j
(u)du

and two collections of disjoint events

e(B) ,

8><
>:

\
i;j : e

(i)

j
=0

�
�
(i);c
j

; A
(i)

j >�i�
�(re�c)

N(1+�)

�9>=
>; ;

�e(B) ,

8><
>:

\
i;j : e

(i)

j
=1

�
(i)

j
; e(B)

9>=
>; : (9)

Then, Pe is bounded from below by

Pe � P

h
QB;c

A
(0) � B �K; �e(B)

i
: (10)

Next, we estimate the probability of event fQB;c

A
(0) � B�

K; �e(B)g. For notational purposes define ~ce , c�
P

M

i= rijeij,
~Ae , A�Ae and letQB;~ce

~Ae
(t), ~Q

~ce

~Ae
(t) be defined by recursions

(2), (3) and initial conditionsQB;~ce
~Ae

(�te) = 0, ~Q
~ce

~Ae
(�te) = B,

respectively. From (10) and inequality QB;c

A
(0) � QB;~ce

~Ae
(0) we

derive

Pe � P

h
B�QB;~ce

~Ae
(0)�K; �e(B)

i
� P

h
~Q
~ce

~Ae
(0) � K; �e(B)

i

= P

h
~Q
~ce

~Ae
(0) � K; e(B)

i MY
i=1

�
P[�

(i)
1 ]
�jeij

; (11)

where the second inequality follows from Proposition 2 and
the last equality from the independence of processes Ae and
~Ae = A � Ae. Using the standard queueing reflection map-

ping argument quantity ~Q
~ce

~Ae
(0) can be represented as

~Q
~ce

~Ae
(0) = sup

�te�s�0

�
~cejsj �

Z 0

s

~Aedu

�
_

�
B + ~cete �

Z 0

�te

~Aedu

�
:

By noting that B+~cete�
R 0
�te

~Aedu < 0 on event �e(B) and

~ce < E ~Ae we conclude that on �e(B)

~Q
~ce

~Ae
(0) � sup

s�0

�
~cejsj �

Z 0

s

~Aedu

�
d
= ~Q~ce

~Ae
(0) <1 a.s. (12)
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Next, the stationarity and ergodicity of the arrival processes and
the fact that the residual On periods are a.s. finite result in

lim
B!1

P [e(B)] = 1: (13)

Now, (8), in conjunction with (11), (12) and (13), leads to

lim inf
B!1

P[QB;c

A
� B �K]

P̂ (B)
�

min
e2O�

P[ ~Q~ce
~Ae
(0)�K] lim inf

B!1

P
e2O�

QM

i=1

�
P[�

(i)
1 (�; B)]

�jeij
P̂ (B)

:

At this point, by counting the number of identical elements in
the above sum, using the fact that � on;(i)r 2 IR, Lemma 4 and
passing � # 0 in the preceding inequality, we obtain

lim inf
B!1

P[QB;c

A
� B �K]

P̂ (B)
� min

e2O�
P[ ~Q~ce

~Ae
(0) � K]:

Finally, the last inequality and (12) yield the lower bound and
the statement of the theorem.

For the case of homogeneous sources (M = 1), the expres-
sions for the loss rate and overflow probability admit simpler
forms.

Corollary 1: Homogeneous sources (M = 1). Let r0 =
k0r + (N � k0)� and

P̂ (B) ,

�
N

k0

�
pk0onP

k0

�
�onr >

B

r0 � c

�
;

If �N < c < Nr, � on
r

2 IR, and there is an integer k0 such
that 0 < r0 � c < r � �, then as B !1

�B
� (r0 � c)P̂ (B)

and for any � > 0 there exists K� such that for all K � K�

1��� lim inf
B!1

P[QB;c

A
�B�K]

P̂ (B)
� lim sup

B!1

P[QB;c

A
�B�K]

P̂ (B)
=1:

If, in addition, k0r > c then P[QB;c

A
= B] � P̂ (B) as B !1.

Next, we allow for some of the multiplexed arrival processes
to have lighter then polynomial tails; we term these processes
subpolynomial. A stationary, ergodic and right-continuous with
left limits processA(t) is subpolynomial (A 2 SP) if for all c >
EA(t) and � > 0 the stationary workload of the corresponding
infinite buffer queue Q1;c

A
satisfies

lim
B!1

B�
P[Q1;c

A
� B] = 0:

The above condition is satisfied for a general class of exponen-
tially bounded arrival processes (see [29], [30]). It can be seen
that it also holds for some heavy-tailed processes, e.g., On-Off
processes with Weibull On periods, P[� on > x] = e�x

b

; 0 <
b < 1; x � 0 (see Theorem 1). Note that if A1; A2 2 SP then
A1 + A2 2 SP . This easily follows from the well known fact
that Q1;c1+c2

A1+A2
is stochastically dominated by Q1;c1

A1
+ Q1;c2

A2
,

ci < EAi (an infinite buffer equivalent of Proposition 1). Thus,

we will use ASP to denote the aggregate process of all arriving
subpolynomial processes. Assume that all considered queues
are stationary and ergodic; in case of ASP being piece-wise
constant this follows from the discussion in Section 2. The fol-
lowing corollary yields the reduce load equivalence results for
multiplexing subpolynomial and intermediately regularly vary-
ing processes.

Corollary 2: Suppose that ASP 2 SP and Assumption 1 is
satisfied with (c � EASP ) in place of c. If

PM

i=1 ni�i < c �

EASP and � on;(i)r 2 IR for 1 � i �M , then as for any � > 0
there exists K� such that for all K � K�

1� � � lim inf
B!1

P

h
QB;c

A+ASP
� B �K

i
P

h
QB;c�EASP

A
� B �K

i

� lim sup
B!1

P

h
QB;c

A+ASP
� B �K

i
P

h
QB;c�EASP
A

� B �K
i � 1 + �

and, if for some Æ > 0, EA1+Æ
SP

<1,

�
B;c

A+ASP
� �

B;c�EASP

A
as B !1:

Proof: Provided in [27].
Remarks on the discrete time model: Here, we show that our

results extend to the discrete time model as well. In fact, the dis-
crete time and fluid models are asymptotically equivalent. Of-
ten, discrete time models appear convenient for simulation ex-
periments and numerical computations and are commonly used
in the telecommunication literature (e.g., see [28], [14], [15]).

Consider a nonnegative discrete time arrival process a[T ],
T 2 N0 with a bounded peak rate rmax. Let qB [T ] be the work-
load at time T in a discrete time queue with capacity c, buffer
size B and arrival process a[T ]. The evolution of the process
qB [T ] is governed by

qB [T + 1] = (qB [T ] + a[T + 1]� c)+ ^ B;

with qB [0] = 0. Now, define a right-continuous process ~a(t) ,
a[btc+1], where btc denotes the integer part of t, and the corre-
sponding fluid queue process QB(t) � QB;c

~a (t). Then, simple
sample path arguments yield for all t � 0

qB [btc]� c � QB(t) � qB [btc] + rmax:

Thus, from the preceding inequality and long-tailed nature of
QB(t) the extension of Theorem 2 to the discrete time model is
immediate.

IV. NUMERICAL EXAMPLES

In this section we illustrate, through simulation experiments,
the precision of our asymptotic results in approximating the
overflow probabilities for finite buffers sizes. Then, we demon-
strate how these results can be used for real time computation
of capacity regions in network multiplexing elements. Efficient
and accurate estimation of the available capacity is of outmost
importance both for network provisioning and admission con-
trol.

The first example demonstrate the accuracy of Theorem 2, or
more precisely Corollary 1.
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Example 1: Consider a multiplexer with buffer size B and an
output link with speed c = 35 kbits/s. Let N = 10 users with
access speed r = 20 kbits/s share the system. The users are
sending data files to the buffer. The probability that a particular
user has something to send at a given moment is pon = 0:1.
The distribution of file sizes is chosen to be the one reported
in Section I. Since the asymptotic results are insensitive to the
distribution of Off periods we choose the distribution of time
between two file transfers to be exponential P[� off > x] =
e��x; x � 0 for all users. Now, the asymptotic approximation
from Corollary 1 computes explicitly to

P̂ (B) = 4:5 10�5 (1� Fr(3B))
2
;

where Fr is the residual distribution of file sizes and B is in
bytes. To ensure an increased accuracy of our experiment we
selected the length of the simulated sample path to be t = 1012 s.
The experiment took approximately six hours on a Pentium III
PC.

We simulated the overflow probability and loss rate for buffer
sizes B = 0:5 � i Mbytes, i = 1; : : : ; 10. The results of the
simulation are presented in Figure 3 and Figure 4 with symbols
“+” for the overflow probability and loss rate, respectively. The
approximations are plotted on the same figures with solid lines.
Its striking accuracy is apparent. It is interesting to note that
on average 2 kbits/s is sent to the buffer and that the buffer is
overflowing at an average rate between 0.5-5 bits/s for the given
range of buffer sizes (see Figure 4).

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

8
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−4
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O
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w
 p

ro
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bi
lit

y

Fig. 3. Illustration for Example 1: Overflow probability

Next, we describe how our result can be used for efficient
computation of capacity regions for network multiplexers. For
our simulation experiments we choose two traffic classesM = 2
of On-Off sources. The sources are of the same type as de-
scribed in the previous two examples; they are completely char-
acterized by triples (�j ; �j ; rj); j = 1; 2. The approximation
P̂ (B) � P̂ , as defined in Theorem 2, is easily computable. Our
implementation in Matlab produced real-time answers. Here,
we provide two simulation studies in which we check the cor-
rectness of the asymptotic method in computing capacity region
C defined in Section I. These simulation studies were much
lengthier than in the preceding examples and, therefore, we had

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Buffer size, MBytes

Lo
ss

 r
at

e,
 b

its
/s

Fig. 4. Illustration for Example 1: Loss rate

to optimize the simulation time; our measurements of the over-
flow probabilities had sufficiently low variance for simulation
runs equal to 107 time units.

Example 2: We set the triplets (�i; �i; ri) to be (0.041,1.9,13)
for class I and (0.176,1.7,5) for class II. This results in p on;1 =
0:08, pon;2 = 0:3, and �1 = 1:04, �1 = 1:5. The simula-
tion experiment was conducted for the choice of c = 23:02 and
B = 600. The capacity of the system is chosen in such a way
that Assumption 1 is satisfied a priori for all possible choices of
n1 and n2. The QoS parameter Æ is set to 10�5. The outcome of
the experiment is presented on Figure 5 with “+” symbols. The
experiment took seven hours on a Pentium III PC. On the same
figure with symbols “o” we indicated the approximation of C
obtained with Theorem 2. Both the simulation and the analyti-
cal approximation produced the same capacity region. In order
to provide the reader with the information on system utilization
we plotted with a dashed line the border of the stability region
defined by n1�1 + n2�2 < c.
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Capacity Region

Fig. 5. Illustration for Example 2

Example 3: Consider the previous example with overflow
probability requirement Æ = 10�6. Let the queue parameters
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be c = 95:105 and B = 1000. The reason for not making the
parameter c a round number is the fact that Assumption 1 needs
to be satisfied. Class I and II On-Off sources are determined
by triplets (0.158,1.9,20) and (0.349,2.1,10), respectively. This
yields pon;1 = 0:25, pon;2 = 0:4, and �1 = 5, �1 = 4. The
capacity region for this case is presented in Figure 6. Symbols
“+” indicate the results of the simulation experiment and sym-
bols “o” denote our analytic approximation. On the same graph
the border of the stability region is plotted with a dashed line.
The experiment took two days to complete. It is evident from
the figure that the capacity regions computed by lengthy simu-
lation and readily computable analytic approximation are almost
the same. This exemplifies the importance of having analytical
tools for computing these regions.
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Fig. 6. Illustration for Example 3

V. CONCLUSION

In this paper we considered a finite buffer fluid queue with
a superposition of heterogeneous heavy-tailed On-Off sources.
Explicit and asymptotically exact formulas were derived for
overflow probability and loss rate in the case when residual on
periods are intermediately regularly varying. The formulas were
further validated with simulation experiments. Their accuracy
and low computational complexity makes them valuable tools
for efficient computation of capacity regions. In addition, the re-
sults provide important insight into qualitative tradeoffs between
the overflow probability, offered traffic load, available capacity
and buffer space. Overall, they render a new set of tools for
designing and provisioning of networks that will carry heavy-
tailed traffic streams.

APPENDICES

A. Heavy-tailed distributions

The appendix contains a brief introduction to heavy-tailed and
subexponential distributions.

First, we introduce a family of long-tailed distribution func-
tions. This is the largest operational class of heavy-tailed distri-
butions. Let X be a random variable with distribution function
(d.f.) F .

Definition 2: A nonnegative random variableX (or d.f. F ) is
called long-tailed X 2 L (F 2 L) if

lim
x!1

1� F (x� y)

1� F (x)
= 1; 8y 2 R:

The following class of heavy-tailed distributions was intro-
duced by Chistyakov [31].

Definition 3: A nonnegative random variableX (or d.f. F ) is
called subexponentialX 2 S (F 2 S) if

lim
x!1

1� F 2�(x)

1� F (x)
= 2;

where F 2� denotes the 2-nd convolution of F with itself, i.e.,
F 2�(x) =

R
[0;1)

F (x� y)F (dy).
It is well known that S � L [32]. A recent survey on subex-

ponential distributions can be found in [33]. The class of in-
termediately regularly varying distributions IR is a subclass of
S.

Definition 4: A nonnegative random variableX (or d.f. F ) is
called intermediately regularly varying X 2 IR (F 2 IR) if

lim
�"1

lim sup
x!1

1� F (�x)

1� F (x)
= 1:

Regularly varying distributionsR�, which contain Pareto dis-
tribution, are the best known examples from IR (R� � IR).

Definition 5: A nonnegative random variable X (or its d.f.
F ) is called regularly varying with index �, X 2 R� (F 2 R�)
if

F (x) = 1�
l(x)

x�
; � � 0;

where l(x) : R+ ! R+ is a function of slow variation, i.e.,
limx!1 l(�x)=l(x) = 1; � > 1.

The following two basic lemmas on IR distributions are use-
ful for analysis.

Lemma 3: Let F 2 IR and � 2 (0; 1), then

sup
x2(0;1]

1� F (�x)

1� F (x)
<1:

For any bounded nondecreasing function F we say that F 2

IR if it satisfies Definition 4. Then, the following lemma fol-
lows directly from the definition.

Lemma 4: If F1; F2 2 IR, then
(i) F1F2 2 IR,

(ii) w1F1 + w2F2 2 IR, for w1; w2 > 0.

B. Proofs

Proof of Proposition 1: Let 0 = T0 < T1 < T2 � � � <
Tm < Tm+1 � � � (a.s.) be the jump points in A(t). Then, by
assumption on the initial conditions and (2), the statement holds
for any t 2 [0; T1]

QB;c

A
(t)�

 
NX
n=1

QB;cn

An
(0) + t(An(0)� cn)

!+

^B

�

NX
n=1

�
QB;cn

An

(0)+t(An(0)�cn)
�+
^B =

NX
n=1

QB;c

An

(t);
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where the last inequality follows from

 
NX
n=1

xn

!+

^ B �

 
NX
n=1

x+
n

!
^B �

NX
n=1

x+
n
^ B: (14)

Now, assume that the proposition holds for any t 2 [0; Tm];m �

1. Hence, by this inductive assumption, (2) and (14), for any
t 2 (Tm; Tm+1]

QB;c

A
(t)�

 
NX
n=1

�
QB;cn

An
(Tm)+(t�Tm)(An(Tm)�cn)

�!+

^ B

�

NX
n=1

QB;cn

An
(t)

and, therefore, it holds for all t. This concludes the proof.
Proof of Proposition 2: The proof is by induction and

very similar to the proof of Proposition 1. ¿From (2) for all
t 2 (Tn; Tn+1]

QB;c

A
(t) � min

��
QB;c

A
(Tn) + (t� Tn)(A(Tn)� c)

�
; B
�
;

and, therefore,

B �QB;c

A
(t) �

�
B �QB;c

A
(Tn) + (t� Tn)(c�A(Tn))

�+
:

Hence, the preceding inequality and the same arguments as in
the proof of Proposition 1 imply the statement of the lemma.

Proof of Proposition 4: Using sample path arguments it
is easy to show that QB;c is stochastically dominated by Q1;c,
and therefore

0 �
P
m[QB;c1 � (1� �)B]

Pl[QB;c2 � �B]
�
P
m[Q1;c1 � (1� �)B]

Pl[QB;c2 = B]
:

Next, Proposition 3 and Theorem 1 yield

lim sup
B!1

P
m[Q1;c1�(1��)B]

Pl[QB;c2 =B]
� lim sup

B!1

Km
P
m[�on

r
> (1��)B

r�c
]

pl
on
Pl[�on

r
> B

r�c
]

�M lim sup
B!1

P
m�l [�onr >B]=0;

where M <1; the last inequality is implied by Lemma 3.
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