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State Learning and Mixing in Entropy of Hidden
Markov Processes and the Gilbert–Elliott Channel

Bertrand M. Hochwald,Member, IEEE, and Predrag R. Jelenkovi´c, Associate Member, IEEE

Abstract—Hidden Markov processes such as the Gilbert–Elliott
channel have an infinite dependency structure. Therefore, entropy
and channel capacity calculations require knowledge of the infi-
nite past. In practice, such calculations are often approximated
with a finite past. It is commonly assumed that the approxima-
tions require an unbounded amount of the past as the memory in
the underlying Markov chain increases. We show that this is not
necessarily true. We derive an exponentially decreasing upper
bound on the accuracy of the finite-past approximation that is
much tighter than existing upper bounds when the Markov chain
mixes well. We also derive an exponentially decreasing upper
bound that applies when the Markov chain does not mix at all.
Our methods are demonstrated on the Gilbert–Elliott channel,
where we prove that a prescribed finite-past accuracy is quickly
reached, independently of the Markovian memory. We conclude
that the past can be used either to learn the channel state when
the memory is high, or wait until the states mix when the memory
is low. Implications for computing and achieving capacity on the
Gilbert–Elliott channel are discussed.

Index Terms—Birkhoff contraction coefficient, fading channel,
function of a Markov chain, Markov-modulated random walk,
Markovian memory.

I. INTRODUCTION

H IDDEN Markov processes, or equivalently, Markov-
modulated random walks, are used to model many

diverse systems ranging from image and speech recognizers
[9] to communication channels with memory [6]. They have
the advantage of being flexible and simple.

The Gilbert–Elliott channel shown in Fig. 1 is an example of
a hidden Markov process that is used to model a digital channel
whose errors appear in bursts due to, for example, a random
fading process. In the “good” state, the channel causes errors
with probability , while in the “bad” state the channel makes
errors with probability . In this model, the underlying
Markov chain state is hidden since we cannot necessarily tell
the channel state by observing the error process.

Since its inception in [6], this model has been extended
to models with more states and transitions between the states
[4], [7], [11]. Of importance to achieving capacity on hid-
den Markov channels is the dependence of future errors
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Fig. 1. Hidden Markov model of Gilbert–Elliott channel. The binary- sym-
metric channel is either in the “good” state or “bad” state, and switches states
according to a Markov chain with the indicated transition probabilities.

on past ones, but even for the relatively simple two-state
Gilbert–Elliott channel, this dependence is poorly understood.
We show how, in entropy calculations, hidden Markov pro-
cesses have dependence structures that are due to state “mix-
ing” and “learning.”

Loosely speaking, mixing is the act of switching states,
which the underlying Markov chain does with frequency
that depends on the off-diagonal elements of its transition
matrix. Markov chains that mix well are said to have low
memory. We prove that when the chain has low memory, the
dependence structure is weak and entropy approximations are
easily made. Conversely, when the memory is large, entropy
approximations are more difficult. We show, however, that the
effects of a large memory are limited because the underlying
Markov chain tends to stay in any state for a long time, and
this state can be learned from the observed process.

A Markov-modulated random walk is defined as a process
such that

i.e., is a Markov chain with past depen-
dence on only the first coordinate. The transition probabilities
for this chain are

where

(1.1)
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and ; the underlying state
takes on possible values, and takes on possible

values. In this paper, we assume for simplicity that does
not depend on and that the number of states is finite. Abusing
notation, we refer to as a Markov-modulated random
walk if the accompanying underlying Markov chain is
self-understood.

For example, the error process of the Gilbert–Elliott
channel is a Markov-modulated random walk. For notational
convenience, we denote the event of a channel error at time

by , and no error by . Therefore, is two
with probability and one with probability when
is the good state, and is two with probability and one with
probability when is the bad state. Letting the good
state be denoted by a one and the bad state by a two, we obtain

, , , , ,
, , and . Thus the underlying

Markov chain has transition matrix

(1.2)

and has stationary probabilities and
. The transition matrix for the pair for

the states and is shown in (1.3) at
the bottom of this page.

Throughout this paper, we assume that the transition prob-
abilities and are parameterized by such that

(1.4)

where (good state) and (bad state) are the stationary
probabilities for the underlying Markov chain matrix given
in (1.2). The Markovian memory is defined as ,
and because , the memory is zero when ,
whence the channel errors are independent and
identically distributed. When the underlying chain is
decomposable, but we assume that and are always
defined. For simplicity, we do not consider negative memory

, but our arguments can easily be generalized to include
this case.

Let be a stationary Markov chain with
transition probability and finite state space

. If is a function that maps ,

then the process is called afunction of
the Markov chain .

Functions of a Markov chain and Markov-modulated ran-
dom walks are equivalent. That a Markov-modulated random
walk is a function of a Markov chain follows immediately
from the definition, since , where is
the function that takes the second argument. On the other
hand, suppose that is a function of a Markov chain; that is,

for some function of the Markov chain .

Then, the pair form a Markov-modulated random
walk with when , and otherwise.

Let be a function of a stationary Markov chain
. The entropy of the sequence is defined as

(whenever this limit exists), where

Among other roles, is fundamental towards determining
the capacity of channels with hidden Markov structure [5].
This limit is generally difficult to compute and is often
approximated by the following upper and lower bounds:

(1.5)

where

(1.6)

The proof of these results can be found in [1] or [3, pp.
69–71]. For numerical computation, one can use either

or for some finite to
approximate . It is of practical importance to know
the error of either approximation, but rather than work with
these quantities separately, we combine them and define the
conditional mutual information

Equation (1.6) says that as
that is, and become independent as , condition-
ally on the th-order history. This paper is concerned
primarily with the rate with which this happens.

In the case of a Markov-modulated random walk
, where and is the function that

takes its second argument, we have

for all . It is commonly believed that
converges to zero with a rate that goes to zero as
tends to zero (for example, as in the Gilbert–Elliott
channel and the underlying Markov chain becomes decompos-
able). Theorem 1, given in the next section and first derived
in [1], strengthens this belief by finding an upper bound on

for functions of a Markov chain; when
applied to a Markov-modulated random walk, the theorem
upper-bounds with for some that, in
general, approaches one as tends to zero. Define

to be therate of the bound and define

(1.3)
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to be the trueconvergence rate(assuming that this exists).
Then Theorem 1 gives a convergence rate lower bound that
approaches zero as .

However, in this paper we argue that Theorem 1 gives a very
loose bound and there are, instead, two exponential rates of
convergence, in general. One is due to mixing and dominates
when , and the other is due to learning when

. Neither rate is zero.We demonstrate our
arguments explicitly on the Gilbert–Elliott channel.

There are three main theorems derived in this paper. In
Theorem 2 we derive an upper bound on the exponential rate
of convergence that is much tighter than Theorem 1, especially
when are not too small or the underlying Markov
chain mixes well. When applied to the Gilbert–Elliott model,
Theorem 2 gives a rate that goes to infinity as , whereas
Theorem 1 gives a finite rate. (The actual rate does go to
infinity as because for all

.) The proof of Theorem 2 relies on a novel application to
conditional entropies of a Hilbert pseudometric and Birkhoff
contraction coefficient.

Theorem 2, although much tighter than Theorem 1, turns
out to be loose as in the Gilbert–Elliott channel. When
applied to this channel, Theorem 2 yields a convergence rate
lower bound that is , where as Theorem 1 yields . It
turns out that both are pessimistic and we show, in Theorem 3,
that there is a universal “mixing” rate that does not go to zero
as . Theorem 4 shows that there is a “learning” rate that
applies when ( in the Gilbert–Elliot
channel). We then show that this learning rate provides a
uniform bound for all .

II. BIBLIOGRAPHICAL NOTE ON THE CONVERGENCERATE

The best known bound on the rate of convergence of
for functions of a Markov chain is due

to Birch in 1962 [1].

Theorem 1: Let , be a Markov chain
with transition probabilities , and

. Then

(2.1)

where

and and are the minimum and maximum cardinalities
of the sets that are nonempty.

While exponential rates of convergence are often desirable,
the rate in Theorem 1 is, in general, very small and
suggests that a very large history is needed. We demonstrate
this with the Gilbert–Elliott channel.

In Section I this channel is described as the function
that takes the second coordinate of the Markov chain with
transition matrix given by (1.3). Since the second argument
can be either one or two, . Let the transition
probabilities and of the Markov chain be parameterized
as in (1.4) [see (2.2) at the bottom of this page]. As
(implying that ), we therefore have and

where as . Hence, the rate is

which rapidly goes to zero as the Markovian memory in
rises. With its dependency on , this lower bound on the
convergence rate turns out to be extremely loose. In Section
IV, we show that the true convergence rate for smallis, in
fact, uniformly boundedfrom below.

At the other extreme, as the Markov chain states
and the channel errors become,

within themselves, independent and identically distributed
processes. Therefore, as for
every , and the true convergence rate should go to infinity.
However, in Theorem 1 does not go to zero ( does
not go to infinity) as , and thus the bound equation (2.1)
again becomes arbitrarily loose.

In the next section we derive a new much tighter bound
that is as widely applicable as Theorem 1. We show that the
rate of our new bound approaches infinity as in the
Gilbert–Elliott channel. The bound is derived with the help
of a contraction coefficient first considered by Birkhoff. Our
novel application of this contraction coefficient to conditional
entropy is, we believe, of independent interest.

III. H ILBERT’S PROJECTIVE METRIC AND

BIRKHOFF’S CONTRACTION COEFFICIENT

In order to state and prove our results we need to introduce
the notion of Hilbert’s pseudometric [10, p. 80] which
is defined for any two vectors

with positive elements as

(3.1)

This pseudometric has the property that if and
only if for some scalar . The metric turns out
to be ideally suited for analytical manipulations involving
conditional entropy.

(2.2)
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For any matrix with nonnegative elements, Birkhoff’s
contraction coefficient is defined as

In [10] it is shown that and, for any two
nonnegative matrices

An explicit formula for is given as

(3.2)

where

This is surprisingly tedious to prove [10]. It is clear that
if and only if has rank one.

A. Convergence Rate

To reduce the notational complexity, we consider the special
case where the function of the Markov chain partitions the
state space into sets all with the same cardinality ; i.e.,
we assume that the sets

all have elements, where (recall that takes
on distinct values). Without loss of generality, suppose
that the state space is labeled such that , for all

, i.e., .
Then we can partition the transition matrix into blocks

(3.3)

Let be the stationary probability vector for the transition
matrix , and let

(3.4)

be the subvectors corresponding to the subsets. Sim-
ilarly, let us break the th row of the matrix into
blocks

(3.5)

each of length .

Theorem 2: Let , be a Markov chain
with transition probabilities , and

where all
have the same cardinality. Then

(3.6)

where

and , , and are defined in (3.3)–(3.5).

Proof: We have that

(3.7)
We wish to uniformly upper-bound the argument of the log-
arithm. Observe that

where is a column vector of ones. Similarly,

To simplify the notation, let

Observe that is the product of matrices.
Then

(3.8)

where denotes the th element of the vector argument,
and the inequality follows from

(3.9)

with . By applying (3.9) once more to (3.8)
with , we obtain

(3.10)

and taking the logarithm of (3.10) yields

(3.11)

which follows because

is the product of matrices. Finally, using inequality
equations (3.11) in (3.7) concludes the proof.
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Suppose is a Markov-modulated
random walk with transition matrix that can be partitioned
into blocks

with positive and as defined in (1.1). Then from (3.2)
it follows that

(3.12)

The stationary probabilities for are
, where is the

stationary probability for the underlying Markov chain . In
particular

(3.13)

where is defined in (3.4). Next, observe that only the first
rows of the matrix are distinct, and that

(3.14)

where is defined in (3.5). Equations (3.13) and (3.14)
and the definition of Hilbert’s pseudometric equation (3.1)
therefore imply that

(3.15)

where is the th row of the matrix .
By combining (3.12) and (3.15) with Theorem 2, we arrive at
the following result.

Corollary 1: Let be a Markov-
modulated random walk whose underlying chain has a
transition matrix with stationary probability . Then

(3.16)

where

where denotes the th row of the matrix
.

The extension of Theorem 2 to functions that do not
partition the state space into sets with the same cardinality
is also possible but is omitted; see [10, p. 147] for comments
on the application of the contraction coefficient to nonsquare
matrices.

B. Application to Gilbert–Elliott Channel

In the Gilbert–Elliott channel, the underlying Markov chain
has transition matrix given in (1.2). Applying Corollary 1
and (3.2) to this matrix yields

(3.17)

and

Observe that and do not depend on or .
Let us now compare the bounds (2.1) and (3.16) whenand
are parameterized as in (1.4). As , we already know

from Section II that the true convergence rate goes to infinity
whereas the rate given by Theorem 1 remains bounded. From
(3.17), we obtain

As , we see that and hence .
Thus Theorem 2 gives a much tighter bound (that also happens
to be independent of and ) than Theorem 1.

As , we have and . Therefore,
the rate depends linearly on the Markovian
memory and the bound given in Theorem 2 is again much
tighter than the bound given in Theorem 1 (which behaves
as ). The linear dependence onalso seems intuitively
reasonable since the Markovian memory is .
However, as we now show, there exists a uniform bound on
the convergence rate that is independent ofand, therefore, the
bound in Theorem 2 also inevitably becomes loose as .

C. Explicit Analysis of Gilbert–Elliott Channel for

We consider the case since it is readily analyzed.
Define

(3.18)

It is readily seen that has the form

(3.19)

for some and , where and are the eigenvalues of
the upper left-hand submatrix of in (1.3)

Hence (see (3.20) at the bottom of this page) .
By analyzing in Appendix A, we prove the following
theorem.

(3.20)
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Theorem 3: Let and , and define and
as in (3.20). Then the conditional mutual information for the
Gilbert–Elliott channel obeys

as . The constant is given explicitly in (A.2).
Proof: See Appendix A.

Let and be parameterized as in (1.4). It is straightforward
to show that as . Hence, when

, or equivalently, when the underlying Markov chain
mixes, the convergence rate of is uniformly
bounded by , independently of the Markovian
memory.

Thus although always much tighter than Theorem 1, the
bound in Theorem 2 becomes loose as . We therefore
seek a bound that is tight whenis small by deriving a bound
that applies when .

IV. L EARNING BOUND

While Theorem 2 provides a tight bound when
are not too small ( not too small in Gilbert–Elliott channel),
we now show that the rate of convergenceis nonzeroeven
when . Roughly speaking, Theorem 2 captures
the rate due to state mixing, but when , the
convergence is instead due to state learning.

We assume that is a Markov-modulated random walk
such that for all , and

for all , where and are defined
in (1.1). That is, the underlying Markov chain does not mix,
and the state uniquely determines the distribution
of . For example, these requirements become (or

) and when applied to the Gilbert–Elliott
channel. We obtain an upper bound on by
using the relation

(4.1)

and finding an upper bound on .
To find the bound, we introduce the notion of a state

estimate. Because , the state of the underlying
Markov chain is fixed for all time, and standard parameter
estimation theory suggests that there exists an estimate of
from the sequence of observations
that converges exponentially quickly with some ratein
probability to the true state. Let be such
an estimate (we provide an example in Section IV-A for the
Gilbert–Elliott channel) and let be its
probability of error as a function of . By assumption

By Fano’s inequality [3, p. 39]

where

(4.2)

is the binary entropy function, and is the number of states
in the underlying Markov chain. It follows that

(4.3)

We, therefore, have the following theorem.

Theorem 4: Let be a Markov-modulated random walk
such that for all , and

for all . Let be
an estimate of that converges in probability exponentially
quickly to with some rate . Then

Remark: The estimate that gives the largest (fastest
learning) gives the tightest bound.

A. Universal Learning Bound for Gilbert–Elliott Channel

The previous section argues that decays
exponentially even when the underlying Markov chain does
not mix at all. The decay is due to the effects of state
learning that are overlooked by Theorems 1 and 2. We
now apply the concept of learning to the Gilbert–Elliott
channel. We show that the learning bound for this channel
is asymptotically tight and bounds the rate of convergence
of for every . Thus we can bound
the speed with which converges, uniformly
in , implying that a fixed amount of history is needed
to approximate , no matter how large the
Markovian memory (or how small) is.

Define

and let , and . We now prove that

(4.4)
where

(4.5)

To show this, we first apply Theorem 4 to obtain an upper
bound on , and then derive an analytic
lower bound that is asymptotically tight. We apply Theorem
4 to an estimate of from the observations that
converges exponentially with rate . The estimate
counts the number of twos (error indicators) in the sequence

divides by and compares this value to a
threshold . Clearly, any such that will yield
an estimate that converges in probability to the correct state
as . The convergence rate of the estimate is optimized
when defined in (4.5).
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To see this, let be the number of twos in
and define the estimate as

(good state) if
(bad state) if

Then the probability that the estimate fails is

If , the random variable has a binomial distribution
with parameters and ; and if , is binomial with
parameters and . An application of Craḿer’s theorem in
large deviation theory (see, for example, [2] or [12]) yields

Therefore,

As functions of , is monotonically increasing for
, and is monotonically decreasing for .

The convergence rate of the estimate to the correct answer
is therefore maximized by choosing so that

. Thus and the learning rate is
. By Theorem 4

(4.6)

It remains to prove the lower bound

(4.7)

From (4.3) and (4.1), we may prove (4.7) by showing that

(4.8)

Simple algebra yields

(4.9)
where

(4.10)

Thus

(4.11)

Choosing the summand in
gives

where represents the integer part of. By Stirling’s
approximation,

where is the binary entropy function defined in (4.2). The
choice of ensures that

Hence

(4.12)

Equation (4.8) now follows from (4.11) and (4.12), and the
proof of (4.4) is concluded.

Remark: When (error-free good state) the expres-
sion for is especially simple and we may
obtain its exact asymptotic form. In this case, we get

(4.13)

Hence the convergence rate of for
is . This concurs with (4.4) since

as .
We show in Section III-B that the convergence rate of

due to mixing when is given by
a quantity that approaches as . From
this, we might be tempted to infer that the convergence rate is
exactly when . However, because there is
no state mixing, the analysis in Section III-B is invalid when

, and, in fact, (4.13) demonstrates that the convergence
rate is rather than . Clearly,

, and this slower rate is due
to learning rather than mixing. Therefore, is a
lower bound on the convergence rate, universally valid for all

.
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Fig. 2. Graph oflog
10 I(Zn; S0jZ(n�1)) versusn for pg = 0. Solid lines representI(Zn; S0jZ(n�1)) for pb = 0:5; g = 5 � 10�k; b = 10�k for

k = 2, 6, and10. Long-dashed line is" = 0 asymptote (learning rate� log (1� pb) given by (4.4)), while short-dashed lines are given by Theorem 3.

Fig. 3. Graph oflog10 I(Zn; S0jZ(n�1)) versusn for pg = 0:01. Solid lines representI(Zn; S0jZ(n�1)) for pb = 0:5; g = 5 � 10�k; b = 10�k

for k = 2, 3, and 5. Long-dashed line is" = 0 asymptote (learning rateD(p�; pg) = D(p�; pb) given by (4.4)).

V. IMPLICATIONS FOR GILBERT–ELLIOTT CHANNEL

The capacity of the Gilbert–Elliott channel is often com-
puted by using (1.5) to approximate to some prescribed
accuracy. Suppose that we wish to estimate how largeneeds
to be so that . A large estimate
for would be discouraging since the computational complex-
ity of either or grows as

. Let the Gilbert–Elliott parameters be, for example, ,
, , and . Then and
in Theorem 1, and thus the estimate according to this

theorem is for . This means
that, according to Theorem 1, approximately floating-
point operations are needed, seemingly putting an accurate
estimate of well beyond our reach. Furthermore, observe
that this estimate of goes to infinity as because

.

However, our bound in Theorem 2 (Corollary 1) yields
independently of . There-

fore, suffices. This much more reasonable value ofis
well within our computational ability!

Fig. 2 demonstrates the mixing and learning rates for
. For small , these curves have decay rates that are dom-

inated by learning and are well approximated by the
learning asymptote (given by long-dashed line and (4.4)),
while for larger decays at the mixing
rate given in Theorem 3. Observe the rather abrupt change in
rate (knees in the curves) asincreases. From the figure, we
see that the mutual information is always bounded by the
learning asymptote. Therefore, for
is approximately , independently of .

Fig. 3 demonstrates the mixing and learning rates for
. Again, these curves have decay rates that are dominated

by the learning asymptote (given by long-dashed line
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Fig. 4. Graph of the learning rateD(p�; pg) = D(p�; pb) as a function ofpg for pb = 0:5. The curve is very steep nearpg = 0.

and (4.4)). Unlike the case, we have not been able to
explicitly identify the mixing rate.

The learning rates in Fig. 2 and Fig. 3
are quite different, even though they only differ slightly in their
value of . We plot in Fig. 4 the learning rate

as a function of for . We see, in fact,
that changes very rapidly with in the neighborhood of

. Hence, learning rapidly becomes more difficult as
increases.

To achieve capacity on the Gilbert–Elliott channel, Mushkin
and Bar-David in [8] propose a scheme involving a
dimensional interleaver and similar deinterleaver (where
represents depth, and length) and a metric calculator that
effectively convert the Gilbert–Elliott channel into a single-
input -output essentially memoryless channel with the same
channel capacity. At the transmitter, the interleaver is filled
by row and transmitted by column, and at the receiver the
deinterleaver is filled by column and read by row. Generally,

is chosen large enough so that is small
and the channel errors within each row consequently happen
approximately independently of one another.

Mushkin and Bar-David prove that the capacity achievable
on the th output of the -output channel is given by

The capacity of the Gilbert–Elliott channel itself is given by

Hence, if is chosen sufficiently large, the capacity of the
-output channel is the same as the original Gilbert–Elliott

channel. In [8] it is empirically observed that generally
approaches quickly with increasing . Our theoretical
results explain this observation and show thatdoes not need
to be large for to be close to . We have shown that

decays exponentially quickly and with a minimum rate that is
independent of and when . Numerical evidence
suggests that this is also true when . Therefore,

must approach exponentially quickly
with at least the minimum rate. We may conclude that if
is chosen large enough to ensure that is small,
then will generally also be large enough to ensure that the
capacity of the construction in [8] will be very close to the
Gilbert–Elliott channel capacity.

VI. CONCLUSION

We have argued that, in general, de-
creases exponentially withand therefore and

both approach the limiting entropy
exponentially quickly. We identified mixing and learning rates
for functions of a Markov chain and showed that the worst-
case convergence for the Gilbert–Elliott channel with
was given by the explicitly identified learning rate. Learn-
ing rates for other functions of Markov chains can also be
computed using the techniques we have outlined. These rates
are generally nonzero as long as the observed process has a
distribution that is uniquely determined by the underlying state.

Based on the evidence we have given, we conjecture that,
in general, the worst case convergence of
is the learning rate obtained when . Hence
the worst case convergence is still exponential, but at the
learning rate. The amount of past needed to obtain a prescribed
accuracy in (1.5) can thus be chosen independently of.
Proving (or disproving) this conjecture will probably require
a detailed analysis of the behavior of as a
function of .

APPENDIX

PROOF OF THEOREM 3

Define . By
evaluating (3.19) for , after some straightforward
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algebra, one finds that

The Markov property states that is independent of
, given for any . Since , given

that (a channel error has occurred) we are also given
that (the underlying chain is in the “bad” state). Hence

and it follows that comprises terms only of
the form defined in (3.18)

(A.1)

By using the identities

the first summand can be written as

If we repeat the preceding representation for each of the
summands in (A.1), expand all of the logarithms using

as , and use the identity

the theorem is proven with

(A.2)
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