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State Learning and Mixing in Entropy of Hidden
Markov Processes and the Gilbert—Elliott Channel

Bertrand M. HochwaldMember, IEEE and Predrag R. JelenkayiAssociate Member, IEEE

Abstract—Hidden Markov processes such as the Gilbert—Elliott b
channel have an infinite dependency structure. Therefore, entropy

and channel capacity calculations require knowledge of the infi-
nite past. In practice, such calculations are often approximated 1-b 1-g
with a finite past. It is commonly assumed that the approxima- .

tions require an unbounded amount of the past as the memory in
the underlying Markov chain increases. We show that this is not
necessarily true. We derive an exponentially decreasing upper

bound on the accuracy of the finite-past approximation that is 0 " 0 e _ 0
much tighter than existing upper bounds when the Markov chain . B,
mixes well. We also derive an exponentially decreasing upper : B
bound that applies when the Markov chain does not mix at all. G
l-pg

Our methods are demonstrated on the Gilbert—Elliott channel,

where we prove that a prescribed finite-past accuracy is quickly 1 1 1
reached, independently of the Markovian memory. We conclude

that the past can be used either to learn the channel state when Fig. 1. Hidden Markov model of Gilbert—Elliott channel. The binary- sym-
the memory is high, or wait until the states mix when the memory metric channel is either in the “good” state or “bad” state, and switches states
is low. Implications for computing and achieving capacity on the according to a Markov chain with the indicated transition probabilities.
Gilbert—Elliott channel are discussed.

Ino!ex Terms—Birkhoff c_ontraction coefficient, fading channel, 4, past ones, but even for the relatively simple two-state
function of a Markov chain, Markov-modulated random walk, . . . .
Markovian memory. Gilbert—Elliott ch_annel, this depend_ence is poorly understood.
We show how, in entropy calculations, hidden Markov pro-
cesses have dependence structures that are due to state “mix-
I. INTRODUCTION ing” and “learning.”

IDDEN Markov processes, or equivalently, Markov- Loosely speaking, mixing is the act of switching states,
modulated random walks, are used to model ma,w,hich the underlying Markov chain does with frequency
diverse systems ranging from image and speech recogniZ&al depends on the off-diagonal elements of its transition
[9] to communication channels with memory [6]. They havg'latl'ix. Markov chains that mix well are said to have low
the advantage of being flexible and simple. memory. We prove that when the chain has low memory, the
The Gilbert—Elliott channel shown in Fig. 1 is an example gfependence structure is weak and entropy approximations are
a hidden Markov process that is used to model a digital chan@&sily made. Conversely, when the memory is large, entropy
whose errors appear in bursts due to, for examp|e, a randaﬁprOXimationS are more difficult. We show, however, that the
fading process. In the “good” state, the channel causes err@fgcts of a large memory are limited because the underlying
with probabilityp,, while in the “bad” state the channel maked/1arkov chain tends to stay in any state for a long time, and
errors with probabilityp, > p,. In this model, the underlying this state can be learned from the observed process.
Markov chain state is hidden since we cannot necessarily tellA Markov-modulated random walk is defined as a process
the channel state by observing the error process. {(Sn, Zn), n =0, 1, ---} such that
Since its inception in [6], this model has been extend .
to models with n?ore statgs] and transitions between the stglfge@” =J» Zn = klSn—1, Znt, -+, So, Zo]
[4], [7], [11]. Of importance to achieving capacity on hid- =P[Sy =4, Zn = k|Sn1]

den Markov channels is the dependence of future €IS {(S., Zu), n > O} is a Markov chain with past depen-
Manuscript received November 20, 1997; revised July 2, 1998. The mate@i@nce on only the first coordinate. The transition probabilities
in this paper was presented in part at the 35th Allerton Conference g§r this chain are
Communication, Control, and Computing, Monticello, IL, October 1997.
B. M. Hochwald is with Bell Laboratories, Lucent Technologies, Murray ]P[S —i 7 = k|5 _ L] — gian
Hill, NJ 07974 USA (e-mail: hochwald@bell-labs.com). n = dn = Flon—1 = = 4k
P. R. Jelenkowi'was with Bell Laboratories, Lucent Technologies, Murray
Hill, NJ 07974 USA. He is now with the Department of Electrical Engiwhere
neering, Columbia University, New York, NY 10027 USA (e-mail: predrag

@ee.columbia.edu). gi; = P[S, = j|Sn—1 = 1]
Communicated by S. Shamai, Associate Editor for Shannon Theory. def
Publisher Item Identifier S 0018-9448(99)00050-4. a;p= P[Z, = k|Sy, = J, Sn_1 =] (1.1)

0018-9448/99$10.001 1999 IEEE



HOCHWALD AND JELENKOVIC: STATE LEARNING AND MIXING IN ENTROPY OF HIDDEN MARKOV PROCESSES 129

t,7 =1,---, K andk = 1, ---, D; the underlying state Then, the pair(X,,, Z,) form a Markov-modulated random
S, takes onK possible values, and,, takes onD possible walk with a;, =1 whenk = f(j), anda;, = 0 otherwise.
values. In this paper, we assume for simplicity that does Let Z, = f(X,,) be a function of a stationary Markov chain
not depend or and that the number of states is finite. Abusind(,,. The entropy of the sequencg, 71, - -- is defined as
notation, we refer toZ, as a Markov-modulated random def .. )

walk if the accompanying underlying Markov cha#f), is H(2)= ,}E,%o(l/”)H(Z )

self-understood.

For example, the error process$, of the Gilbert—Elliott
channel is a Markov-modulated random walk. For notational AR/
convenience, we denote the event of a channel error at ti
n by Z,, = 2, and no error byZ,, = 1. Therefore,Z,, is two
with probability p, and one with probabilityt — p, when S,
is the good state, and is two with probabiljly and one with
probability 1 — p, when S, is the bad state. Letting the goo
state be denoted by a one and the bad state by a two, we obtain H(Z,|Z""™Y, Xo) < H(Z) < H(Z,|Z""™V) (1.5)
quu =1=b,q2=0,q21 =9, 22=1—9, a11 = 1 — pg,
ai2 = pg, 21 = 1 — py, andaze = py. Thus the underlying
Markov chain has transition matrix lim H(Z,|Z" ™V, Xo) = H(Z) = lim H(Z,|Z™ V).

n—oo n—oo

Q= <1 —b b ) (1.2) (1.6)

7 Lo The proof of these results can be found in [1] or [3, pp.
and has stationary probabilities, = g/(g +b) andm> = 9-71]. For numerical computation, one can use either
b/(g + b). The transition matrix for the (S,, Z,) pair for g(z [z, X,) or H(Z,|Z") for some finiten to
the stateg1, 1), (2, 1), (1, 2), and(2, 2) is shown in (1.3) at approximate H(Z). It is of practical importance to know
the bottom of this page. the error of either approximation, but rather than work with

Throughout this paper, we assume that the transition prqese quantities separately, we combine them and define the
abilities b and g are parameterized by € (0, 1] such that conditional mutual information

CH(Z,| 2" V)H(Z,|Z2" D, X)>0.

where 7, (good state) andr, (bad state) are the stationaryEquation (1.6) says that(Z,; Xo|Z™~ ") — 0 asn — oc;
probabilities for the underlying Markov chain matiix given that is, Z,, and X, become independent as— oo, condition-

in (1.2). The Markovian memory is defined as— b — g, ally on the (n — 1)th-order history. This paper is concerned
and because; + 2 = 1, the memory is zero whea = 1, primarily with the rate with which this happens.

whence the channel errot%,, 71, ---, are independent and In the case of a Markov-modulated random wafk =
identically distributed. Wherz = 0 the underlying chain is ¢(X,,), whereX,, = (S,, Z,) andg(-, -) is the function that
decomposable, but we assume that and 7, are always takes its second argument, we have

defined. For simplicity, we do not consider negative memory e n

e > 1, but our arguments can easily be generalized to include (Zy; XolZ2"D) = 1(Zw: 502 7Y)

(whenever this limit exists), where

Wr%ong other rolesH (%) is fundamental towards determining
the capacity of channels with hidden Markov structure [5].
This limit is generally difficult to compute and is often
Gapproximated by the following upper and lower bounds:

where

g=me, b=me, T, M2 >0, m+m=1 (L4) [(Z,; X,z D)

this case. for all n. It is commonly believed thaf(Z,; So|Z™ )

Let {X,,n > 0} be a stationary Markov chain with converges to zero with a rate that goes to zerq;agi # j)
transition probability” = {p;;} and finite state spac& = tends to zero (for example, as— 0 in the Gilbert—Elliott
{1, ---, A} If fis a function that mapss — {1, ---D}, channel and the underlying Markov chain becomes decompos-
then the proces$Zn‘l§ff(Xn), n > 0} is called afunction of able). Theorem 1, given in the next section and first derived
the Markov chainX,. in [1], strengthens this belief by finding an upper bound on

Functions of a Markov chain and Markov-modulated rank(Z,,; Xo|Z™~V) for functions of a Markov chain; when
dom walks are equivalent. That a Markov-modulated randoapplied to a Markov-modulated random walk, the theorem
walk is a function of a Markov chain follows immediatelyupper-bounds(Z,,; So|Z~)) with ¢"* for some( that, in
from the definition, sinceZ,, = ¢(S,, Z.), whereg(-, -) is general, approaches one @$ (¢ # j) tends to zero. Define
the function that takes the second argument. On the othetog¢ to be therate of the bound and define
hand, suppose that, is a function of a Markov chain; that is, . ) ) n—1
Z, = f(X,,) for some functionf(-) of the Markov chainX,,. ,}E{}o ~(1/n) log I(Zy; So|2 )

1 —(b)(l —)pg) ( b(l)z ) | (1= b)py ( bpb)
_ g(1 —pg 1-g)(1-p 9pg 1-g)p
P=laSna ey oi-p) (b, | (L3)
g(1 —py) 1-g)(1—p)  gp, (1-g9)m
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to be the trueconvergence ratdassuming that this exists). While exponential rates of convergence are often desirable,

Then Theorem 1 gives a convergence rate lower bound thia¢ rate—log ¢ in Theorem 1 is, in general, very small and

approaches zero ag; — 0 (i # 7). suggests that a very large history is needed. We demonstrate
However, in this paper we argue that Theorem 1 gives a vahjs with the Gilbert—Elliott channel.

loose bound and there are, instead, two exponential rates oin Section | this channel is described as the function

convergence, in general. One is due to mixing and dominatbat takes the second coordinate of the Markov chain with

wheng;; # 0(¢ # j), and the other is due to learning wherransition matrix given by (1.3). Since the second argument

¢;; = 0(i # j). Neither rate is zeroWe demonstrate our can be either one or tway; = N, = 2. Let the transition

arguments explicitly on the Gilbert—Elliott channel. probabilitiesh andg of the Markov chains,, be parameterized
There are three main theorems derived in this paper. &s in (1.4) [see (2.2) at the bottom of this page]. As+ 0

Theorem 2 we derive an upper bound on the exponential réi@plying thatb, ¢ — 0), we therefore havé = 1—-0O(e*) and

of convergence that is much tighter than Theorem 1, especiall . e ”

wheng;; (i # j) are not too small or the underlying Markov ¥(Z"? S0l2" V) = 1(Zn; Xo|2"™Y) < B[1 - O(*)]

chain mixes well. When applied to the Gilbert-Elliott modelyhere B — ~ ase — 0. Hence, the rate is

Theorem 2 gives a rate that goes to infinitysas: 1, whereas

Theorem 1 gives a finite rate. (The actual rate does go to —log¢ = —log (1 - O(")) = O(*)

infinity as e — 1 becausel(Z,,; So|Z"~Y) — 0 for all : : .
n.) The proof of Theorem 2 relies on a novel application t\c')Vh'Ch rap|d|y goes to zero as the Markowan memorysin
) ses. With its dependency ost, this lower bound on the

conditional entropies of a Hilbert pseudometric and Birkho .
convergence rate turns out to be extremely loose. In Section

contraction coefficient. IV, we show that the true convergence rate for sraal, in
Theorem 2, although much tighter than Theorem 1, turli_]s’ ; 9 '
act, uniformly boundedrom below.

out to be loose as — 0 in the Gilbert—Elliott channel. When .

. ) . At the other extreme, as — 1 the Markov chain states
applied to this channel, Theorem 2 yields a convergence rate g and the channel errors.. 7 become
lower bound that i€)(¢), where as Theorem 1 yield3(¢*). It =9 =1 O b :

turns out that both are pessimistic and we show, in Theorem"@thln themselves, independent and identically distributed

. (n—1)
that there is a universal “mixing” rate that does not go to Zeporbcesses. Thereford(Z,; So| 2 ) — 0ase — 1 for_ .
everyn, and the true convergence rate should go to infinity.

ase — 0. Theorem 4 shows that there is a “learning” rate thﬂowever ¢ in Theorem 1 does not go to zere fog ¢ does

applies wheng;; = 0 (i # J) (e = 0n the G|Ibert—EII|.ot not go to infinity) as= — 1, and thus the bound equation (2.1)

channel). We then show that this learning rate provides a : L
i again becomes arbitrarily loose.

uniform bound for alle > 0. ) . .

In the next section we derive a new much tighter bound
that is as widely applicable as Theorem 1. We show that the
[I. BIBLIOGRAPHICAL NOTE ON THE CONVERGENCE RATE rate of our new bound approaches infinity as- 1 in the
g;filbert—EIIiott channel. The bound is derived with the help

The best known bound on the rate of convergence : o , > )
of a contraction coefficient first considered by Birkhoff. Our

I(Z,; Xo|Z™=1) for functions of a Markov chain is due

to Birch in 1962 [1]. novel application of this contraction coefficient to conditional
entropy is, we believe, of independent interest.
Theorem 1:Let X,,, n = 0,1, ---, be a Markov chain
with transition probabilitiesp;; > 0, 4, j = 1, ---, A, and . HILBERT'S PROJECTIVE METRIC AND

Zy = f(Xn) € {L,---, D}. Then BIRKHOFF'S CONTRACTION COEFFICIENT

I(Zyp; Xo|Z D) < B¢t (2.1) In order to state and prove our results we need to introduce

- the notion of Hilbert's pseudometric [10, p. 8@] which

where is defined for any two vectors = (z1, -, Zpn), ¥y =
(y1, - -, yn) With positive elements as
_ Ny . PikPin .

¢=1- (N3)? 1<, ko m, nsa <pijpjm d(z, y) = max log <@> (3.1)
% TiYi

B =(Nzlog C)/<N1 ISI?;I%APEJ) This pseudometric has the property tht:, ) = 0 if and

only if x = Ay for some scalar\. The metric turns out
and N; and IV, are the minimum and maximum cardinalitieso be ideally suited for analytical manipulations involving
of the setsf~1(1), ---, f~1(D) that are nonempty. conditional entropy.

(1 —mae)(1—pgy) mae(l —py) (1 — mae)py TP
p_ me(l —pg) (1 —me)(1 —py) T1EP, (1 —me)ps 2.2)
(1 —moe)(1—py) mae(1 — pp) (1 — moe)p, T2EDY ) '
me(l—p,) (1—me)(1l—ps) T1ED, (1—me)py
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For any matrixZ" with nonnegative elements, Birkhoff's Proof: We have that

contraction coefficient is defined as
PlZ.|Zn—1, -, Z1, X
d(aT, yT) [(Zn: Xo|Z0D) = I log L1ZnIZn 1 L Xo]
7(T) = sup “axL, yl) AR A
I,’;fo d(.’IZ’, y) (37)

We wish to uniformly upper-bound the argument of the log-
In [10] it is shown that0 < 7(7) < 1 and, for any two arithm. Observe that

nonnegative matrice%y, 75 P[Z, = in, Znot = in_1, -, Z1 = i1, Xo = io)

d(aZTlTQ, yTlTQ) < T(Tg)d(aZTl, yTl) < T(TQ)T(Tl)d(aZ, y) = ]‘/iopzé‘Piliz - -Pin—line
An explicit formula for 7(7’) is given as wheree is a column vector of ones. Similarly,
1— T —; - e —3
T(T) _ d)( ) (32) ]P[Zn tn, Zn—l tn—1, ’ Zl ‘ Ll]
1+ \V ¢(T) = I/ZIBliZ Tt Bn—line'
where To simplify the notation, let
_ e Gkt . def
(/)(T) _ig}l’gl % H(Zlv Tty Zk):BIiZ ”'Pik—lik'
This is surprisingly tedious to prove [10]. It is clear thaPbserve thall(iy, ---, i) is the product ofc — 1 matrices.
7(T) = 0 if and only if 7" has rank one. Then
]P[Zn = in|Zn—l = in—lv Tty Zl = ilv XO = LO]
A. Convergence Rate P[Z, =in|Zn—1 =tn-1, "+, Z1 = 1]
To reduce the notational complexity, we consider the special pZ;H(il, s dn)e ATI(iy, o Gy )e
case where the functiofi of the Markov chain partitions the ™ it T1(3;, -+, 4,,)e Pl (iy, -+, in_t)e
. . . . . ? )y ‘n o 1, )y tn—1
state spacer into sets all with the same cardinality; i.e., iy ) P ]
we assume that the sets < max <[pi°H(“’ s e G s e )e
—1,. def . . . . T 1KkSK [Viln(ila ) in—l)]kp;ln(ila ) in—l)e
Ez:fl(l):{yf(y)zl}v ZIlv"'vD ’

(3.8)
all have K elements, wherd{ D = A (recall thatX takes ]
on A distinct values). Without loss of generality, suppos‘é’hsrti[']’? deno;c_ctas fth”dwth e}lement of the vector argument,
that the state space is labeled such tfigf) = ¢, for all and the inequality Toflows from

] = (i—l)K—i—l, K ie B = {(i—l)K—i—l, ERIN LK} Zajxj
Then we can partition the transition mataX into blocks F;; ZJ: _— < maox %’ aj, 2, y; > 0 (3.9)

397 J
J

Py ={pu: k€ E;,l € E;}, i,j=1,---,D. (33)

Let » be the stationary probability vector for the transitiofVith @; = [Fi,_,i,cl;- By applying (3.9) once more to (3.8)
matrix P, and let with a; = 1, we obtain
PZ, =in|Zp-1 =tn-1, -, Z1 =11, Xo = 0]

V= (VK a1y - s ViK),s i=1,---, D 3.4
(Vi—1)K 41 K) (3.4) P, =il =iy 7y = 01]

be the D subvectors corresponding to the subsE}s Sim- [P TI(iL, -+, i )] (i, - i)
ilarly, let us break thejth row of the matrix P into D < max | -—2——"— ——
blocks Lk 1<K\ [Vall(iy, -y dp- )Pt TG, - -5 1))

4 (3.10)
P = (P, i—1)k+1, " 5 P ik ) i=1---,D (35) _ _ _
and taking the logarithm of (3.10) yields
]P[Zn = in|Zn—1 = in—la Tty Zl = ila SO = ZO]
Theorem 2:Let X,,, n = 0, 1, ---, be a Markov chain 10g< P[Zn = in|Zn1 = in_1, -+, Z1 = i1] )
with transition probabilitiesp;; > 0,4, 57 = 1, ---, A4, and T

each of lengthx’.

Zy = f(Xn) € {1, ---, D}, where f~1(1), ---, f~X(D) all < dlpglin, -y o), L, - i)
have the same cardinality. Then < (Ui, ooy dn—1))d(pg), V')
<piTiC (3.11)

I(Zn; Xo|Z0™ V) < Opn 2, n>2 (3.6)
which follows because

iy, <oy tp_1) =5

where
.. P

p= max 7(P;), C= max d(p, v*) ez tn—zin—t
1<d,j<D 1<j<A, 1D

is the product ofn — 2 matrices. Finally, using inequality
and P;;, 1/, andpj are defined in (3.3)—(3.5). equations (3.11) in (3.7) concludes the proof. O
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Suppose{(S,, Z,), n =0, 1, ---} is a Markov-modulated B. Application to Gilbert—Elliott Channel

random walk with transition matri¥’ that can be partitioned |, the Gilbert—Elliott channel, the underlying Markov chain

into blocks has transition matrix? given in (1.2). Applying Corollary 1
o and (3.2) to this matrix yields
Plk =--- IPDk :{qijajk:z,j = 1, Tty K},
k=1,---,D p=1= VO
=1, 118
b 1-0)(1-
with positiveg;; anda;; as defined in (1.1). Then from (3.2) ¢ = min <(1 — b)?l — ( l);( g)> (3.17)
it follows that g g
and
2 _ 2 _
(Pu) = 7(Q). (312 ¢ =logmax( L =D g M1-g))
g(l=0b)" v "Wl-g) ¢
The stationary probabilities fo¢S,, Z,) are v;_iyx.; = OPserve thap andC' do not depend o, or py.
IP[S, = j, Z, = i] = 7;a;;, wherer = (x, ---, n) is the Let us now compare the bounds (2.1) and (3.16) whand
stationary probability for the underlying Markov chaify. In ¢ are parameterized as in (1.4). As— 1, we already know
particular from Section Il that the true convergence rate goes to infinity

whereas the rate given by Theorem 1 remains bounded. From

V' = (maw, -+, TRAK) (3.13) (3.17), we obtain
14 L= 1
. . 3 . 1 T TLE2
wherer* is defined in (3.4). Next, observe that only the first o= 1o == p=—F—
K rows of the matrixP are distinct, and that T mme? 1+ 7‘_21;122 +1

; As = — 1, we see thap = O(1 —¢) and hence-log p — oc.
pj = (gjnanis -5 K aKi) (314)  Thus Theorem 2 gives a much tighter bound (that also happens
‘ to be independent g, andp;) than Theorem 1.
where pj is defined in (3.5). Equations (3.13) and (3.14) Ase — 0, we havep = O(e2) andp = 1—O(e). Therefore,
and the definition of Hilbert's pseudometric equation (3.khe rate—logp = O(e) depends linearly on the Markovian

therefore imply that memory and the bound given in Theorem 2 is again much
o ' tighter than the bound given in Theorem 1 (which behaves
d(p;, v') = d(¢’, ) (3.15) asO(e*)). The linear dependence enalso seems intuitively
reasonable since the Markovian memoryish—g = 1-0O(e).
where¢’ = (g1, -+, g;jx) is the jth row of the matrixQ. However, as we now show, there exists a uniform bound on
By combining (3.12) and (3.15) with Theorem 2, we arrive dhe convergence rate that is independentafd, therefore, the
the following result. bound in Theorem 2 also inevitably becomes loose as 0.
Corollary 1: Let Z,, n = 0,1,---, be a Markov- C. Explici - - - _
’ P . Explicit Analysis of Gilbert—Elliott Channel fgr, = 0
modulated random walk whose underlying chaip has a P ) y ) o .cprg
transition matrix with stationary probabilityr. Then 5 \;\_/e consider the casg, = 0 since it is readily analyzed.
efine
I(Zn; So|l 2Dy < Cp™2,  n>2 (3.16) V) =P[So=i,Zi =1, -, Zu1 =1, Z, = 4],
i,7€{1,2}. (3.18)
where It is readily seen thakgf) has the form
p=7(Q), C= max d¢,m) et = e\ 4 d Ayt (3.19)
' ~ for somec;; andd;;, where); and A, are the eigenvalues of
whereg’ = (g;1, -+ -, ;i) denotes theth row of the matrix the upper left-han@ x 2 submatrix of P in (1.3)
@ poo—|1- b bay defy _
The extension of Theorem 2 to functions that do not U=l g (-9 =2 P

partition the state spack into sets with the same cardinality
is also possible but is omitted; see [10, p. 147] for comme
on the application of the contraction coefficient to nonsqua;
matrices.

Hence (see (3.20) at the bottom of this pa@e) A\; < Az < 1.
S . (n) . .
Y analyzmgxi;‘ in Appendix A, we prove the following
heorem.

1-b+a(l-9)FV/A-b+al-9)2—-401-b-g)g

AL,2 = 5

(3.20)
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Theorem 3: Let p, = 0 ande > 0, and definex; and A, is the binary entropy function, anfl is the number of states
as in (3.20). Then the conditional mutual information for than the underlying Markov chain. It follows that

Gilbert—Elliott channel obeys
log H(So|Z™1))

A2\ lim sup < -7 4.3
I(Zn; Sol| 2Dy ~ o(%) o n (43)
2
asn — oo. The constantC’ is given explicitly in (A.2). We, therefore, have the following thearem.
Proof: See Appendix A. O Theorem 4:Let Z,, be a Markov-modulated random walk

Letb andg be parameterized as in (1.4). Itis straightforwar?UCh thatg;; = 0 for ‘?" ¢ 7/é J, and (aﬂ'll"'zn“jg) 7
to show that(\1)2/As (1 — p)? ase \, 0. Hence, when (%’L: > ayp) for all j # j'. Let So = So(Z™") be
e > 0, or equivalently, when the underlying Markov Ch(,jlmam_est|mate o{S‘p that converges in probability exponentially
mixes, the convergence rate K{Z,; So|Z*~V) is uniformly ~ Auickly 10 So with some rater > 0. Then
bounded by—2log (1 — p;), independently of the Markovian . log I(Zn; So| 1)
memory. lim sup < —7r.

Thus although always much tighter than Theorem 1, the e "
bound in Theorem 2 becomes loosecas- 0. We therefore
seek a bound that is tight wheris small by deriving a bound Remark: The estimateS, that gives the largest (fastest
that applies where = 0. learning) gives the tightest bound.

IV. LEARNING BOUND A. Universal Learning Bound for Gilbert—Elliott Channel

While Theorem 2 provides a tight bound when(i # j)  The previous section argues th&tZ,.; So|Z™ 1)) decays
are not too smallg not too small in Gilbert—Elliott channel), exponentially even when the underlying Markov chain does
we now show that the rate of convergerisenonzeroeven not mix at all. The decay is due to the effects of state
wheng;; = 0(i # j). Roughly speaking, Theorem 2 capturefearning that are overlooked by Theorems 1 and 2. We
the rate due to state mixing, but whejy = 0 (i # j), the now apply the concept of learning to the Gilbert—Elliott
convergence is instead due to state learning. channel. We show that the learning bound for this channel

We assume that,, is a Markov-modulated random walkis asymptotically tight and bounds the rate of convergence
such thatg;; = 0 for all ¢ # j, and (a;1, -+, a;p) # of I(Z,; So|Z~V) for everye > 0. Thus we can bound
(aj1, -+, ayp) forall j # j', whereg;; anda;y are defined the speed with whicli(Z,,; So|Z*~1)) converges, uniformly
in (1.1). That is, the underlying Markov chain does not miXn ¢, implying that a fixed amount of history is needed

and the states,, = Sy uniquely determines the distributionig approximatel (Z,,; So|Z 1), no matter how large the
of Z,. For example, these requirements became 0 (or  Markovian memory (or how smah) is.

b = ¢ = 0) andp,; # p, when applied to the Gilbert—Elliott pefine
channel. We obtain an upper bound B(Z,,; So|Z™ 1) by

. . e 1-—

using the relation D(p1, pQ)d:fpl log by +(1—p1) log 1 P
p - P
1(Zy; So|Z27D) = H(S,| 2D — H(S,|2™) ’ ?
< H(So|2™=) (4.1) andlete =0, andp,, p, > 0. We now prove that

and finding an upper bound al (So|Z™~L). i 108 1(Zn; SolZ(n=Ly Div' Dy

To find the bound, we introduce the notion of a state m, n = D", pg) = D(p", pv)
estimate. Becausg; = 0 (i # j), the state of the underlying (4.4)

Markov chain is fixed for all time, and standard parametdyhere

estimation theory suggests that there exists an estimasg of log =P
from the sequence of observatio@s"” V) = Z,, ---, Z,_; o g Tp — Py <D° < po (4.5)
that converges exponentially quickly with some ratein log f,—z +log ﬁ

probability to the true state. Lefy = 5o(Z"~1) be such
an estimate (we provide an example in Section IV-A for the To show this, we first apply Theorem 4 to obtain an upper
Gilbert—Elliott channel) and leP"—! = IP(S, # So) be its bound onI(Z,; So|Z"~), and then derive an analytic
probability of error as a function of. By assumption lower bound that is asymptotically tight. We apply Theorem
4 to an estimate ofS, from the observationsZ(*—1 that
converges exponentially with rat®(p*, p,). The estimate
counts the number of twos (error indicators) in the sequence
Zy, -+, Zin_1, divides by n, and compares this value to a
H(So|Zz™Vy < h(PP1) 4+ PP~ log(K — 1) thresholdp. Clearly, anyp such thatp, < p < p; will yield
an estimate that converges in probability to the correct state
asn — oo. The convergence rate of the estimate is optimized
h(p)déf —plogp — (1 — p)log(l —p) (4.2) whenp = p* defined in (4.5).

limsup (log P~ 1) /n < —7.

n—0o00

By Fano’s inequality [3, p. 39]

where



134 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 1, JANUARY 1999

To see this, let. be the number of twos iy, - -+, Z,_1, Choosing the summané = [np*| in F,(71, 72, pg, pv)
and define the estimat§&, as gives
& = 1 (good state) if n./n<p Lo (m1, m2,0g, Db)
97 2 (bad state) if n./n > p.

> lnp" (1 — o yn—Lnp"]
e

() 1oy
71\ Pg 1- Pg

where |z| represents the integer part of By Stirling's
approximation,

Then the probability that the estimate fails is

IP[Sy # So] =IP[So = 2|Sp = 1]P[Sp = 1] log
+1P[So = 1|So = 2|IP[Sp = 2]
=mP[n. > np|So = 1]
+ molP[n. < np|So = 2].

If Sp =1, the random variable . has a binomial distribution nli_l)glo % = h(p")
with parameters. andp,; and if So = 2, n. is binomial with . _ . _ .
parameters, andp,. An application of Crarér's theorem in Whereh(-) is the binary entropy function defined in (4.2). The

large deviation theory (see, for example, [2] or [12]) yields choice ofp* ensures that

Lp” ] n—|np"]
. —log P[n. > np|So = 1] . <pb> <1—pb>
lim = D(p, lim | — =1.
oo n (p, pq) oo \ g 1-p,
lim og Pln. < nplSo ] =D(p, ps)- Hence
n—oo n
log F'
Therefore, li,{gicgf og (Wla;m Dy Db)
. —logP[So # So] . 2 h(p") +p* log py + (1 — p*) log(1 — py)
Jim . = min(D(p, py), D(p; pv))- — —D(p*, py). (4.12)

As functions ofp, D(p, p,) is monotonically increasing for Equation (4.8) now follows from (4.11) and (4.12), and the
p = p,, andD(p, py) is monotonically decreasing for< p,.  proof of (4.4) is concluded.

The convergence rate of the estimate to the correct answe
is therefore maximized by choosing so thatD(p, p,) =
D(p, py). Thusp = p* and the learning rate i®(p*, p,;) =
D(p*, py). By Theorem 4

Remark: When py = 0 (error-free good state) the expres-
sion for I(Z,; So|Z"—1)) is especially simple and we may
obtain its exact asymptotic form. In this case, we get

I(Z,; So|Z2~Y)

log I(Z,; So| 2"~V
lim sup 0g 1{Zn; S| ) < =D(p", pg)- (4.6)

1— 1— n—1
n—oo n — 7(1(1 _ pb)n 10g ( pb)(ﬂ'l( pb) + 71'2)

w1 (1 —py)"™ + 72
(1 —pp)" ' + o
L logI(Zy; o2 Y) N il =g
hrfriliif - > —D(p*, py). 4.7) s lon m(1—pp)" L 4
, 2708 w1 (1 —pp)™ + w2
From (4.3) and (4.1), we may prove (4.7) by showing that

It remains to prove the lower bound

+ (1 —p)" " py log

1
. ~ m1py log < )n(l —p)" L (4.13)
limin W > —D(p*, py). (4.8) Lo
noee " Hence the convergence rate 6(Z,,; So|Z" 1)) for ¢ =
Simple algebra yields pg = 0 is —log(l — py). This concurs with (4.4) since
D(p*, py) — —log(l —py) asp, — 0.
H(So|Z™) = Fy(ry, w2, pg, Pb) + Fulma, 71, Po; D) We show in Section III-B that the convergence rate of
(4.9)  1(Z,; So|Z=V) due to mixing whenp, = 0 is given by
where a quantity that approaches2log(1 — p;) ase — 0. From
n this, we might be tempted to infer that the convergence rate is
F.(z, y, u, v) f Z <Z> uf (1 — )"k exactly—2log (1 —p,) whene = 0. However, because there is
k=0 no state mixing, the analysis in Section IlI-B is invalid when

yronk[1—u\" " e = 0, and, in fact, (4.13) demonstrates that the convergence
1+ ;(a) <1 — u) - (410) rate is —log (1 — p,) rather than—2log (1 — p,). Clearly,
—log(1—py) < —2log (1 — py), and this slower rate is due
Thus to learning rather than mixing. Therefore log (1 — p,) is a
lower bound on the convergence rate, universally valid for all
H(S0|Z2"™) > F, (1, 72, Dy, Db)- (4.11) ¢ > 0.

-log
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-10}+

log{In)

-12.5¢

-15F

-17.5¢

0 10 20 30 40 50 60
Fig. 2. Graph oflogy I(Zs; So|Z("—1)) versusn for p, = 0. Solid lines represenk(Z,,; So|Z™~1)) for p, = 0.5, ¢ = 5% 107, b = 10~* for
k =2, 6, and10. Long-dashed line is = 0 asymptote (learning rate log (1 — p;) given by (4.4)), while short-dashed lines are given by Theorem 3.

log(In)

0 2 4 6 8 10 12 14
n

Fig. 3. Graph oflog,o I(Zn; So|Z™~1)) versusn for p; = 0.01. Solid lines represenk(Z,,; So|Z™—1)) for p, = 0.5, g = 5% 107%, b = 10~*
for k = 2, 3, and5. Long-dashed line is = 0 asymptote (learning rat®(p*, py) = D(p*, py) given by (4.4)).

V. IMPLICATIONS FOR GILBERT—ELLIOTT CHANNEL However, our bound in Theorem 2 (Corollary 1) yields

. n—1 < rn—2 _
The capacity of the Gilbert—Elliott channel is often com‘—T(Z"’ S_0|Z( ff‘)) = ‘_)l_ﬁgoo h mdependentl;:);)pg. IThe;i
puted by using (1.5) to approximat&(7) to some prescribed ore,n___9 sullices. This much more reasonable value
. . well within our computational ability!
accuracy. Suppose that we wish to estimate how largeeds . . .
0 be s0 tha (Z,| 2"~} — H(Z) < 0.01. A large estimate Fig. 2 demonstrates the mixing and learning ratespfot=

. . . - 0. For smalln, these curves have decay rates that are dom-
forn WQUId be d|sco%r3%ng since the c(:rc])_ml?utatlonal Complef(ﬁated by learning and are well approximated by the- 0
ity of either H(Z"|Z ) ) or H(Z,|Z"", So) grows as learning asymptote (given by long-dashed line and (4.4)),
2", Let the Gilbert—Elliott parameters be, for examples 0.1, while for largern, I(Zn; So|Z™=1) decays at the mixing
g = 0.5, py = 0.01, andp, = 0.5. Then B ~ 289 and¢ ~ 4t given in Theorem 3. Observe the rather abrupt change in
1—-107%in Theorem 1, and thus the estimate according to thjigte (knees in the curves) asincreases. From the figure, we
theorem isn = 10° for 1(Z,; So|Z~")) ~ 0.01. This means see that the mutual information is always bounded by thed
that, according to Theorem 1, approximatelf floating- learning asymptote. Therefore, far= 20, I(Z,; So|Z"*~1)
point operations are needed, seemingly putting an accurgiepproximatelyl0—?, independently ot.
estimate oft/ (Z) well beyond our reach. Furthermore, observe Fig. 3 demonstrates the mixing and learning ratespfpe
that this estimate ofi goes to infinity asp, — 0 because 0.01. Again, these curves have decay rates that are dominated
¢ — 1. by thee = 0 learning asymptote (given by long-dashed line
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Fig. 4. Graph of the learning rat®(p*, py) = D(p*, ps) as a function ofp, for p, = 0.5. The curve is very steep neap = 0.

and (4.4)). Unlike thep, = 0 case, we have not been able talecays exponentially quickly and with a minimum rate that is
explicitly identify the mixing rate. independent ofh and ¢ when p, = 0. Numerical evidence

The learning rates in Fig. @, = 0) and Fig. 3(p, = 0.01) suggests that this is also true whep > 0. Therefore,
are quite different, even though they only differ slightly in theifd (Z,;|Z¢—) must approachH (%) exponentially quickly
value ofp,. We plot in Fig. 4 the learning rat®(p*, p,) = with at least the minimum rate. We may conclude tha if
D(p*, py) as a function ofp, for p, = 0.5. We see, in fact, is chosen large enough to ensure that- b — g)” is small,
that D changes very rapidly witlp, in the neighborhood of then ./ will generally also be large enough to ensure that the
pg = 0. Hence, learning rapidly becomes more difficultzgs capacity of the construction in [8] will be very close to the
increases. Gilbert—Elliott channel capacity.

To achieve capacity on the Gilbert—Elliott channel, Mushkin
and Bar-David in [8] propose a scheme involving/ax N
dimensional interleaver and similar deinterleaver (whére VI. CONCLUSION
represents depth, anl length) and a metric calculator that We have argued that, in generdl(Z,; 50|Z<n*1>) de-
effectively convert the Gilbert—Elliott channel into a singleereases exponentially with and therefordd (Z,,|Z 1)) and
input J-output essentially memoryless channel with the sanig(Z,,|Z(*~1, S;) both approach the limiting entrop§f (%)
channel capacity. At the transmitter, the interleaver is fillegkponentially quickly. We identified mixing and learning rates
by row and transmitted by column, and at the receiver ther functions of a Markov chain and showed that the worst-
deinterleaver is filled by column and read by row. Generallgase convergence for the Gilbert-Elliott channel with= 0
J is chosen large enough so th@t — b — g)’ is small was given by the explicitly identified learning rate. Learn-
and the channel errors within each row consequently happag rates for other functions of Markov chains can also be

approximately independently of one another. computed using the techniques we have outlined. These rates
Mushkin and Bar-David prove that the capacity achievabige generally nonzero as long as the observed process has a
on thejth output of theJ-output channel is given by distribution that is uniquely determined by the underlying state.
) ) Based on the evidence we have given, we conjecture that,
CYW =1—H(Z;|z97Y), J=1000 in general, the worst case convergencel 6%,,; So|Z™~1)

is the learning rate obtained whep;, = 0 (¢ # j). Hence
The capacity of the Gilbert-Elliott channel itself is given bythe worst case convergence is still exponential, but at the
de . learning rate. The amount of past needed to obtain a prescribed
¢ = lim cw. accuracy in (1.5) can thus be chosen independently; of
T Proving (or disproving) this conjecture will probably require

Hence, if J is chosen sufficiently large, the capacity of th@ detailed analysis of the behavior £Z,; So|Z*~1)) as a
J-output channel is the same as the original Gilbert—Elliotgnction of @.
channel. In [8] it is empirically observed th&t) generally
approachesC* quickly with increasingj. Our theoretical
results explain this observation and show thhatoes not need
to be large forC(”) to be close taC*. We have shown that

APPENDIX
PrROOF OF THEOREM 3

' ' ' Definea = /(1 —b+q(1—g))2—4(1—b—g)g. By
I(Z;; So|ZzY9=Y) = H(2;)1zV~Y) — H(2;)ZY~Y, Sy)  evaluating (3.19) forn = 1, 2, after some straightforward
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algebra, one finds that c11 <)\1>"1
Nlog [ 1+ 2222
bl-b+g(lep—2)— @+ di1 \ A2
c11 =\ 20(b+ g) n—1
- 9 +log 1+011+612+621+622 <ﬁ>
di1 =X (b-1-9e-2+a+q) di1 + dio +dor 4 do2 \ Ao
20(b+ g) i
gb—1+q(l—g—2b)+ ) o |14 GLT AL
c21 = A o - d d A
2a(b + g) 11+ di2 \ A2
d21I)\Qg(l_b_%(l_g_2b)+a) —log 1—1——6114_621 ﬁ "
2a(b + g) s di1 +dor \ A2 '
byl —1)(b— 14+ (g — gy + )
€22 = 20(b + g) If we repeat the preceding representation for each of the
“bg(ay — 1)1 — b+ a(1 - g) + @) summands in (A.1), expand all of the logarithms uding(1+
dooy = 220+ g) x) = x4+ o(z) asxz — 0, and use the identity
. -1+ g)+(g—D)(A + (9-Dgp + ) 0=dy, <c£ c11 + c12 + ca1 + a2
e 20(b+ g) dii  di+diz+dor +da
W —1)(=(b(1+9) + (g—1)(-1+ q(l—g) + o)) crtear citen )
di2 = . - -
2a(b + g) din+diz  dit+dan
The Markov property states th&} is independent of,,, n > +diy <c£ 4 cut et ot en
1, given Sy, for anyk = 1, ---, n — 1. Sincep, = 0, given dip  dyy +diz +doy + dao
that Z;, = 2 (a channel error has occurred) we are also given €11 +C12  Ci2+ ¢

thatS;, = 2 (the underlying chain is in the “bad” state). Hence
I(Zy; SolZy =iy, -+, Zpey = ip—1, Zi = 2,

Zyt1 =tkg1, s Lyl =fpn—1) =0
and it follows thatl(Z,,; So|Z("~*)) comprises terms only of
the formz{"” defined in (3.18)

1(Zn; Sol2™ V)

0y, | Bt ety )+ ahy)
R () (0 (0 (n)
(z11 + x5 +x37")

)5y

137

+d21<
+d22<

Cdiy+dia dig+dy

C21

= 4+

d21

c11 + ¢o1

)

11 + C12 + €21 + C22
di1 +dig +dar +doo

Cdi4doy doy 4 doo

C22

d22

C12 + Coa2

Co1 + €22 )

€11 + c12 + 21 + C22

J’_
dir +dio + dor + dao

B di2 + da2 B do1 + da2

Co1 + Co2 )

the theorem is proven with

o [ 22l o) el
22 208 (n) (n)y,. () (n) ; ci1 |, ci1+cr2+co + e
(z31” + 2390 @39 +21y") C=cul| —
s NN 0 S O G dir  din +diz +doa +da
+ {3 log Ty (1) 31y T F 25 ) _citeor ot )
(3753) + 371(5))(37%) + 37%)) diit +die do +di
L) ) G G0y cls 11+ cia + Con o+ Can
| 2 (@11 21y + By +25y) T 82 4 G2
+ " log = = — — . (AL 12 7 p d y 7
(3751) _i_ng))(xgl) +$§1)) 12 11 T @12 + do1 + da2

By using the identities
_du(diy +dio +day + d22)
~ (di1 +di2)(dor +di1)
_doy(dy1 + di2 + doy + da2)
~ (day + do2)(doa + dy2)
_dia(di1 4 dia 4 doy + daa)
~ (du1 + di2)(da2 + di2)
_don(diy + dio + day + da2)
~ (da1 + da2)(da1 + di1)

+C21<
+622<

GE! + ¢c12 G2 + 22
dip +diz diz+da

C21

)

c11 + 12 + co1 + Co2

d?l

dir +dio + doy + doo

Co1 + Co2

_ Cx + c11 B )
dor +di1 do +da

C22

d22

C11 + €12 + o1 + €22
di1 +dio +doy +da

Ca2 + Co1

Co2 + C12
— — . A.2
doo +dio  dos + d21> (A2)

the first summand can be written as
oV + 2y + a2 + 2y

(@) + 28 +217)
= (et AP Hdi AT

z log
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