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Abstract

We consider 8ood search on a line and show that no algorithm can achieve an average-case competitive ratio of less than
4 when compared to the optimal o+-line algorithm. We also demonstrate that the optimal scanning sequences are described
by simple recursive relationships that yield surprisingly complex behavior related to Hamiltonian chaos.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Since a major portion of tra?c in the Internet is at-
tributed to Ale swapping, overlay peer-to-peer (P2P)
networks are one of the most popular applications on
the Web. Since such networks are fully distributed,
the e?ciency of their operation highly depends on
one’s ability to locate information in them. Two
types of P2P networks have received considerable
attention: structured and unstructured. Structured net-
works form an overlay and conAgure information in
a speciAc way that allows clients to search e?ciently
(see e.g., [3,11,12]). For example, Ale xyz is always
stored in a part of the overlay having Ales with similar
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characteristics like the values of a distributed hash
function. Thus, when a client searches for xyz it only
needs to examine a small number of speciAc “places”.
Such an approach seems very reasonable when most
of the clients belong to the same entity and are willing
to cooperate, such would be the case when a client is
required to store xyz even if it has no interest in it.
However, most of the operational P2P networks (e.g.,
Gnutella, KaZaA) are formed by clients that have little
or no incentive to perform social functions at their
own expense. Hence, unstructured P2P networks, the
focus of this paper, are likely to remain popular.
E?cient search in unstructured P2P networks is a

challenging problem. With no speciAc knowledge as
to where the object might be located, or even whether
it exists, the only option that a client has is to query
other clients for the object until it is found. Usually,
when designing a search algorithm, two parameters
need to be balanced: (i) the time it takes to locate an
object, assuming that it exists, and (ii) the overhead
associated with the search, e.g., the total number of
query messages. The two methods developed in the
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literature are the expanding ring algorithm (used in
Gnutella) and the random-walkers approach [10].
Flood search, i.e., the expanding ring algorithm, is
a natural solution when one would like to complete
the search in a short period of time. Brie8y, this
algorithm can be described as follows. In the Arst
round, the client queries its neighbors, i.e., nodes that
are one hop away in the overlay. This is achieved by
setting the time-to-live (TTL) Aeld in the query to
one. If the object is not located, the client sets a new
value of TTL (e.g., TTL = 2) and forwards the re-
quests to its neighbors. The neighbors decrement the
value of TTL by one and forward the request to their
neighbors. This continues until the object has been
found or the TTL has been decremented to 0. In the
latter case, a new round of 8ooding with a larger TTL
begins; the process continues until the object is found
or it is decided that the object is not in the graph.
The total overhead is created by duplicate messages
within one round of 8ooding and by the duplication
caused by an inappropriate choice of TTL. When
searches on trees are considered, no duplicate queries
are generated within a round since there are no cycles.
This type of search problem has appeared in other

contexts, e.g. see [2,8,1,5–7]. Indeed, a result similar
to our Theorem 1 has used the same proof technique
[2], viz., reduction to a second-order di+erence equa-
tion. However, our speciAc problem is new and leads
to a di+erent competitive ratio (the competitive setting
is formally described in the next section). Moreover,
our average-case analysis of the continuous relaxation
brings out complex behavior that was not observed
before. We note that our problem bears some similar-
ity to the search problem described in [9], where the
authors examine the algorithmic issues in congestion
(Anding the optimal transmission rate based on partial
knowledge). Although both in [9] and here, “search”
is the key word, the problem setups are di+erent.

2. Model

An inAnite, ordered list L of items is to be searched
for a given item I whose position in L is not known
in advance. Searches are composed of scans, each be-
ginning at the Arst position and proceeding sequen-
tially to some given position number. The cost of a
scan to position x is simply x. Scan costs must be

paid in advance, so Anite search costs require that
an algorithm put a limit to each scan, and perform
larger and larger scans until I is found. In particu-
lar, we consider algorithms that are deAned by inte-
ger sequences 0¡x1¡x2¡ · · · and that operate by
scanning the Arst x1 positions of L, then the Arst x2
positions of L, and so on, until I is found; they are
called expanding scan algorithms. If I is in position
k, then the total search cost is deAned to be

∑
16i6j xi,

where xj−1¡k6 xj. Note that the scan of positions
1 through xj repeats, with no added beneAt, the scan
of positions 1 through xj−1. Also, the cost of the last
scan, say to xj, is deAned to be xj even though I may
have been found before the scan was complete.
Let E be the expected search cost of the algo-

rithm corresponding to a given sequence {xi} un-
der the distribution {pi} of I ’s position in L. An
o+-line algorithm knows I ’s position in advance, so
its expected search cost is simply the expected value
E0 :=

∑
i¿1 ipi which clearly satisAes E06E. For

any given algorithm, i.e., for any Axed sequence {xi},
an adversary chooses a distribution {pi} in order to
maximize the ratio E=E0. We prove that the adversary
can always make the worst-case ratio arbitrarily close
to 4. We also show that the constant 4 in this bound
is optimal in that there exists an algorithm whose
worst-case expected search cost is at most 4E0. We do
this by verifying that the bound applies to the “Cali-
fornia Split” algorithm; in this case, xi = 2i−1; i¿ 1
(in gambling terms, a gambler doubles the bet at every
loss).
In Section 4, we turn our attention to the average

case behavior of 8ood searches. It will be shown that
the scanning sequences that minimize the expected
search cost are described by simple recursive rela-
tionships that yield very complex behavior. More im-
portantly, the examples will reveal that the expected
performance of the California Split algorithm is close
to optimal.
Next, we brie8y outline the two points that relate

searches on a line to the corresponding ones on graphs:
(i) non-linear overhead and (ii) limits on how many
nodes can be visited in each step.
Firstly, with no cycles in the graph, the search cost

is linear, i.e., the number of messages is equal to the
number of distinct nodes visited. Our calculations in-
dicate that in large random (ErdTos–R/enyi) graphs the
total number of messages, as a function of the number
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Fig. 1. An example of mapping searches on a tree (top) to searches
on a line (bottom). Dashed arrows indicate the 8ood direction.
Search is initiated from the node 0. When considering the line,
scan points are restricted to 4 and 11.

x of distinct nodes visited, behaves roughly as x+cx2,
where c is a constant that depends on the parame-
ters of the graph. Hence, potentially one could replace
the linear cost of the one-dimensional problem with
a quadratic cost to examine search performance in
random graphs.
Secondly, tree searches can be transformed to

searches on a line by mapping the tree into a
breadth-Arst ordering of the nodes (see Fig. 1). How-
ever, the limitation of this case is that one cannot
query an arbitrary number of nodes in a given round.
In this regard, consider as an example a search on
a binary tree starting from the root. Here, the num-
ber xi of nodes that can be visited in the ith round
must be xi = 2TTL+1 − 1. Thus, taking the preceding
into account, we can conclude that the case exam-
ined in this paper gives in fact the best possible
search cost performance over all classes of connected
graphs. In other words, 8ood search on graphs will
exhibit worse performance than that obtained for the
one-dimensional case.

3. Expanding-scan bound

Our main result states that no expanding-scan al-
gorithm has a performance ratio E=E0 that is less
than 4 under a worst-case choice for the distribution
{pi}. This bound is achievable since there exists an
expanding-scan algorithm whose upper bound is as
small as 4 for all distributions {pi} with a Anite Arst
moment.

Theorem 1. The average-case competitive ratio
satis9es

inf
{xi}

sup
{pi} :E0¡∞

E=E0 = 4: (1)

Remark. It is worth noting that the upper bound,
which says that no algorithm achieves a ratio E=E0

less than 4, holds for arbitrary cost functions.

Proof. When considering supremums on the perfor-
mance ratio for Axed {xi}, it is useful to transform
{pi} into the distribution {p̂i}, where p̂i = 0 every-
where except at the positions following the strategy
boundaries, where

p̂xj+1 =
xj+1∑

i=xj+1

pi:

This transformation concentrates all of the probabil-
ity mass of the items in positions xj + 1 through xj+1
into the Arst item. It is easy to see that this can only
decrease the expected cost E0, and that it has no e+ect
on E, since the search costs of all items in positions
xj + 1 through xj+1 are the same. Thus, the transfor-
mation only increases the ratio E=E0.
The tails of {pi} and {p̂j} evaluated at xj are the

same and denoted byfj :=
∑

i¿xj pi. The tail of {p̂j}
remains constant throughout an interval [xj + 1; xj+1]
and thus we derive

E=
∑
i¿0

fixi+1; (2)

E0¿f0 +
∑
i¿1

fi(xi − xi−1); (3)

where we deAne x0 = 0, which implies f0 = 1.
We Arst verify that supE∗6 4E0, where E∗ is the

expected search cost under the California Split rule:
xi = 2i−1, i¿ 1. Indeed, (2) can be rendered in this
case as

E∗ =
∑
i¿0

fi2i (4)

and (3) as

E∗
0¿f0 + f1 +

∑
i¿2

fi2i−2

which together imply E∗6 4E∗
0 − 3f0 − 2f1¡ 4E∗

0 .
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It remains to prove that sup{fi} E=E0¿ 4 for any
given strategy {xi}. To this end, we let an adversary
try to And a sequence f0 = 1¿f1¿f2¿ · · · that
maximizes E=E0. Assume that, for some positive con-
stants C¡ 4 and A, and for some sequence {xi}, we
have E ≤ CE0 + A, no matter what fi’s are cho-
sen by the adversary. This would imply in particular
that this inequality is true for the singular probabil-
ity measure concentrated at point xk + 1, that is, for
the tail-probability sequence {fi(k)} with fi(k) :=
1{i6 k}; i¿ 0. Substituting the fi(k) into (2) and
(3), this implies that, for any k ∈Z+,

k+1∑
i=1

xi6C

(
1 +

k∑
i=1

(xi − xi−1)

)
+ A= Cxk + B

with B being some positive constant. Introducing
ỹ k :=

∑k
i=0 xi into this inequality, we obtain the

second-order di+erence inequality ỹ k+1 − Cỹ k +
Cỹ k−16B for any k ∈Z+. Clearly, the sequence
ỹ increases without bound, and so for some N¿ 0
one has ỹ N+1¿B. DeAne the new, positive and in-
creasing sequence yk := ỹ N+k − B which apparently
satisAes the di+erence inequality

yk+1 − Cyk + Cyk−16 0: (5)

We show that this inequality cannot hold if C¡ 4.
Accordingly, deAne a sequence : : : ; �−1; �0 = 0; �1 =
1; �2; : : : satisfying the recurrence �‘−1−C�‘+C�‘+1=
0 (which is adjoint to the corresponding operator on
the yk ’s). This sequence is uniquely determined by
its values �0 = 0; �1 = 1. Further, C¿ 1 must hold
(E¿E0), and the roots of the characteristic equation
1 − C� + C�2 = 0 are complex conjugates, since the
condition C¡ 4 implies C2−4C¡ 0. Thus, the gen-
eral solution has an oscillatory component yielding,
for some M¿ 1,

�i ¿ 0; 0¡i6M; �M+16 0: (6)

Also, �−1 = C�0 − C�1 =−C¡ 0. Next, (5) and (6)
directly imply that the following sum is nonpositive

M∑
i=1

(yi+2 − Cyi+1 + Cyi)�i6 0: (7)

Next, using elementary algebra, this sum can be ren-
dered as

M+1∑
i=1

yi(�i−2−C�i−1+C�i)

+[−CyM+1�M+1−y1�−1 + yM+2�M ]:

However, the preceding expression can be shown to be
positive since the Arst sum vanishes by the deAnition
of �i and the second term is positive by yi ¿ 0; i ¿ 0,
�M+16 0, �−1¡ 0 and �M ¿ 0. Hence, (7) is contra-
dicted, proving that C¡ 4 is impossible.

4. Average-case performance

In what follows we examine the average-case be-
havior of the search algorithms. Recall that pi is
the probability of the item being in position i. With
the distribution {pi} Axed, we would like to deter-
mine the 8ood strategy that minimizes the expected
search cost, as given by (2). The optimal solution in
full generality appears to be out of reach, so we resort
to a continuous relaxation, i.e., the position of the
item and the scanning points take values on the posi-
tive reals. The examples we discuss reveal that, even
when considering only the continuous relaxation, the
solution has an intriguing and extremely complex
structure. Throughout this section, we denote by X
the position of the object.
Firstly, we consider the easiest case when the item’s

position is uniformly distributed on (0; 1]. It is straight-
forward to verify that any strategy that scans the whole
interval in not more than two steps (0¡x16 1; x2 =
1) achieves the search-cost ratio E=E0 = 2:

E

E0
=

x1P[X 6 x1] + (x1 + 1)P[X ¿x1]
1=2

= 2:

Furthermore, using (2) it can be shown that strategies
employing more than 2 scans result in a competitive
ratio greater than 2. Thus an optimal strategy must
have at most two scans. Observe that the California
Split algorithm achieves the same minimum for the
choices x1 = 0:5 and 1.
Next, we let the position of the item be exponen-

tially distributed with parameter 1, i.e., P[X ¿x] =
e−x. Then, the optimal sequence of xi’s satisAes (by
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Fig. 2. Values of �n for n= 4; 5 : : : 10 as a function of the initial
scanning point x1. The interval in which at least one �n ¡ 0 has
no isolated points. The position of the object is exponentially
distributed with mean 1.

di+erentiating E)

e−xi−1 − xi+1e−xi = 0

and therefore

xi = exi−1−xi−2 ; i ¿ 2

with x2 = ex1 . Hence, the optimal sequence is deAned
by the choice of x1. However, not all choices of x1
lead to increasing sequences. In particular, empirical
evidence suggests that the sequence is not increasing
for x1 in the interval (0:20 : : : ; 0:74 : : :). Thus, it is of
interest to examine the feasible values of x1. To deter-
mine a set of such values, we deAne �n ≡ �n(x1) :=
xn+1−xn for n¿ 1. Then a given x1 generates a mono-
tonic sequence only if �n¿ 0 for all n¿ 1. In Fig. 2,
we plot �n(x1) for n= 4; : : : ; 10; the Arst three �n are
positive for all x1¿ 0. As can be seen from the Ag-
ure, the interval of non-monotonicity appears not to
contain isolated points.
The expected search cost assuming an increasing

sequence can be represented as

E= 1 + x1 +
∞∑
i=1

e−xi ;

which is plotted in Fig. 3 for di+erent values of x1. We
observe that the optimal choice of x1 is at the boundary
of the region in which the sequence is increasing. It is
interesting to see that by approaching points 0:20 : : :

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
2

2.5

3

3.5

x
1

E
/E

0

Fig. 3. The search cost as a function of the Arst scanning point
for the optimal (solid line) and California Split (dashed line)
strategies. The position of the object is exponentially distributed
with mean 1.

and 0:74 : : : (see the Agure) from the left and right,
respectively, the sequence of scans {xi} increases less
and less rapidly. In the same Agure, we plot with a
dashed line the expected cost under the California Split
rule (xi = 2i−1x1). The two algorithms di+er by less
than 3% for the optimal choices of x1.
Under Zipf’s law, P[X ¿x] = (x + 1)−�, x¿ 0,

�¿ 0, it easily follows that

−�xi+1(xi + 1)−�−1 + (xi−1 + 1)−� = 0

or equivalently

xi =
1
�

(
xi−1 + 1
xi−2 + 1

)�
(xi−1 + 1)

with x2 = �−1(x1 + 1)�+1. We assume that �¿ 1 in
order to ensure a Anite mean distance to the object.
Next, we note that

fixi+1 =
xi+1

(xi + 1)�
=

1
�
fi−1xi +

1
�

1
(xi−1 + 1)�

;

which leads to

(�− 1)E= 1 + �x1 +
∑
i¿1

(1 + xi)−�:

On the other hand, E0 = (� − 1)−1, and so the ra-
tio of the search cost to the optimal cost is given by
(� − 1)E. Numerical evaluation for � = 2 yields a
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Fig. 4. The ratio of search costs as a function of the Arst point
for the optimal (solid line) and California Split (dashed line)
strategies. The position of the object has Zipf’s law with � = 2.

structure surprisingly similar to the one in the case of
the exponential distribution. For x1 in a Anite interval,
the sequence {xi} is not monotonic and the increase in
the competitive ratio for the California Split strategy
is less than 4%.

4.1. Why gaps?

In this subsection we make an informal attempt to
explain the appearance of gaps between the best start-
ing points for scans as shown in Figs. 3 and 4. It turns
out that these gaps are by no means incidental, but
rather re8ect some general features pertaining to the
extremes of the inAnite sums

F(x0; x1; : : :) =
∑
i

g(xi; xi+1):

A variational principle states that the extremal point
(or rather sequence) x0; x1; : : : is characterized by van-
ishing partial derivatives @F=@xi=0, i=0; 1; : : : : This
deAnes a mapping on the plane

(x; y) �→ (y; z); (8)

where z= z(x; y) solves g2(x; y)=−g1(y; z) (here, gi
is the partial derivative of g with respect to i-th ar-
gument). The mapping in (8) preserves the area form
g12(x; y) dx∧dy (g12 is the mixed second derivative of
g) and is therefore Hamiltonian. Generically, one ex-
pects a two-dimensional Hamiltonian map to exhibit

Fig. 5. Several trajectories of the mapping (x; y) �→ (y; ey−x).
Fixed point (1; 1) is the center of an integrable region surrounded
by chaos.

the so called Hamiltonian chaos: a complex structure
composed of Axed points, closed orbits and chaotic re-
gions between them, where points wander with dense
orbits; the so-called strange attractors are typically
present as well. Instead of giving a detailed descrip-
tion of these complex phenomena, we refer the inter-
ested reader to any of many texts, e.g., [13]. Here, we
just show a plot in Fig. 5 of several orbits of the map

(x; y) �→ (y; ey−x)

corresponding to g(x; y)=ye−x, i.e., to the exponen-
tial distribution of the position of the object sought.
One can see integrable regions near the Axed point
(1; 1), several periodic orbits and chaotic regions.
Starting points of interest to us are those wandering
o+ to inAnity in a monotonically increasing fashion.
They form an open set complemented by the gap (see
Fig. 3).

5. Concluding remarks

We conclude the paper with brief discussions of two
possible extensions of the model.
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5.1. In9nite number of items

We focus on an inAnite number of items since this
assumption is more tractable and can approximate the
case when the number of items is large. Consider a
linear network of nodes enumerated by the nonnega-
tive integers with searches being originated at the zero
node. Sets of objects stored at di+erent nodes are in-
dependent and identically distributed. This formula-
tion of the problem is a one-dimensional version of
the 8ood search problem in unstructured peer-to-peer
networks. We use Y to denote the distance to an ob-
ject and assume that searches follow the expanding
ring algorithm. In addition, di+erent objects may have
di+erent popularity. There are two sources of random-
ness in Y : (i) the object being searched for and (ii) the
distance from the origin to that object. Let qi be the
relative popularity of item i, i.e., item i is being sought
with probability qi. Since the content of each node is
independent of the contents of other nodes, the dis-
tance to the nearest object i is a geometric random vari-
able with a parameter that depends on the replication
strategy. Adopting the natural replication strategy, un-
der which a node has item i with probability qi, would
not reveal much about 8ood-search performance. In
that case the Arst moment of Y would be inAnite

E0 = EY =
∑
i¿1

qi
1
qi
=∞

as would the mean cost of any 8ood search algorithm.
Instead, we assume that items are distributed accord-
ing to the square-root rule, the optimality of which
is shown in [4]. Under this rule a node stores item i
with probability

√
qi. Then, in analogy with (2), the

expected search cost satisAes

E=
∑
i¿0

xi+1P[Y ¿xi] :=
∑
i¿0

gixi+1; (9)

where

gi ≡ g(xi) :=
∑
j¿1

qj(1−√
qj)xi :

From (9) and (2) one readily concludes that there ex-
ists a mapping of the problem with multiple items to
the case of a single object; the solution of the former
is equivalent to the solution of the latter with the item
being distributed according to g(·).

5.2. Adaptive California Split

In the model described in the previous subsection
every item is geometrically distributed with a param-
eter that depends on its popularity. In general, the
value of this parameter may be unknown in advance
which makes the performance optimization of Califor-
nia Split impossible (the optimization of the Arst scan-
ning point). Thus, it is of interest to have an adaptive
version of the algorithm. This can be achieved by ex-
ploring the temporal locality in the request sequence.
Namely, the popularity of two consecutive requests is
assumed to be “close”.
We consider the following algorithm. Let X be the

position of the item that was found during the lat-
est search. Then the Arst scanning point of the Cal-
ifornia Split in the next search is chosen to be "X ,
"¿ 0. When the position of objects is exponentially
distributed, P[X ¿x] = e−�x, a continuous relaxation
of the geometric distribution with unknown popularity
parameter �, (2) yields

E=E0 = E
[
"X +

∑
i¿1

2i"X e−2i"�X

]

= " + "
∑
i¿1

2i

(1 + "2i−1)2
:

As seen in Fig. 6, the optimal choice of " is around
0.61 which achieves E=E0=2:631. On the other hand,
with exact knowledge of � we have E=E0=2:429 (see
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Fig. 6. Ratio E=E0 as a function of " for adaptive California Split.
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Fig. 3). Hence, at the expense of a small increase of
E=E0 the new algorithm is adaptive, i.e., one does not
need to know � in advance.
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