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Abstract

For a given k ≥ 1, subintervals of a given interval [0, X] arrive at random and are
accepted (allocated) so long as they overlap fewer than k subintervals already accepted.
Subintervals not accepted are cleared, while accepted subintervals remain allocated
for random retention times before they are released and made available to subsequent
arrivals. Thus, the system operates as a generalized many-server queue under a loss
protocol. We study a discretized version of this model that appears in reference theories
for a number of applications, including communication networks, surface adsorption–
desorption processes, and reservation systems. Our primary interest is in steady-state
estimates of the vacant space, i.e. the total length of available subintervals kX − ∑

�i ,
where the �i are the lengths of the subintervals currently allocated. We obtain explicit
results for k = 1 and for general k with all subinterval lengths equal to 2, the classical
dimer case of chemical applications. Our focus is on the asymptotic regime of large
retention times.
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1. Introduction

The two subsections to follow define in abstract terms the Markov chain modeling space fill-
ing and depletion. The final subsection then maps this model into several important applications
in the engineering and physical sciences.

1.1. Configuration space

Consider the interval [0, X], X an integer, subdivided by the integers into slots of length 1.
Call this interval the span, and fix an integer k, to be interpreted as a number of resource units
or channels. An interval in this work is always composed of consecutive slots. A configuration
C of intervals is simply a finite set of intervals in the span. For given k, a packing of the
configuration C is a function on C with values in the set of k channels such that the intervals
mapped into the same channel do not overlap; they can have common endpoints but no common
interior points. We say that a configuration is admissible if there exists a packing of the
configuration, i.e. if the intervals of the configuration can be placed over k channels with no
overlapping.
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The counting function of configuration C counts the number of intervals containing a given
noninteger point in the span:

nC(x) = #{I ∈ C : x ∈ I }, x ∈ [0, X] \ N;

the counting function is not defined at integer points. Clearly, an admissible configuration C

satisfies

nC ≤ k on [0, X] \ N. (1)

Analysis of a simple greedy algorithm, e.g. one that processes intervals in order of increasing
left endpoint, shows that this condition is also sufficient.

Proposition 1. If the condition (1) is satisfied, the configuration C is admissible.

Denote the set of admissible configurations on the interval [0, X] by CX. The asymmetry
in parameters reflects the point of view here; specifically, for fixed k, the interest is in large X

asymptotics.

1.2. Dynamics

Consider now the following Markov chain on the configuration space CX. Assume that, for
any integer point i, intervals of length � with left endpoint i arrive at rate λ�; the arrivals of
intervals at different points and of different lengths are independent.

A newly arrived interval is included in the configuration if the resulting configuration is
admissible; otherwise the interval is rejected. As there is (almost surely) at most one candidate,
this definition of the filling process is unambiguous.

The depletion process, i.e. the departure of intervals from configurations, is independent of
the arrival process, and has a similar description: the flow of ‘killing’ signals for intervals of
length � arrive at each integer i at rate µ� and form independent Poisson point processes. If at
the time such a signal arrives there is at least one interval of length � with its left endpoint at i

in the configuration, then one of them leaves.
It is convenient to assume that the arrival rates λ� vanish for all but a finite number of lengths

�, say λ� > 0 when 1 ≤ � ≤ L and λ� = 0 otherwise.

1.3. Background

The above Markov chain finds diverse applications, although most of the known results are
restricted to the pure filling model with µi = 0 for all i. In Rényi’s classical pure filling model
[12], known variously as a model of the car-parking problem or random sequential adsorption,
all subintervals have unit length and their left endpoints are drawn independently from the
continuous uniform distribution on [0, X − 1]. Mackenzie [8] studied a discretized version,
which is just our model with unit length subintervals and µ1 = 0.

In the physics and chemistry literature, we find applications to surface adsorption–desorption,
granular densification, and polymer chain processes [4], [14]. Evans [4] gave further applica-
tions and several hundred references. For example, in a recent application Talbot et al. [13]
investigated the kinetics of a microscopic model of hard rods on a linear substrate which are
thought to be similar to certain processes of compacting granular materials. One of their more
intriguing results is discussed at the end of Section 3 .

We note the special importance of the dimer case that we study in Section 4, a case that
has received much attention over the years [4]. Indeed, the origin of the vast literature on
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sequential adsorption and related problems is commonly traced to the work of Flory [6] on a
dimer problem in the 1930s. In prior work on models with desorption effects, Privman and
Nielaba [11] analyzed a random dimer model in which adsorption is coupled with diffusional
relaxation. See the review of Evans [4, p. 1320] for further details and additional references.
Note that our model with general k provides, in a limited sense, the flexibility of a second
dimension.

In his study of one-dimensional communication networks, Kelly [7] pointed out that the
Markov chain models bus-connected local area networks. In this application, intervals corre-
spond to the circuits connecting communicating parties and [0, X] represents the bus. Kelly also
mentioned similar applications in computer interconnection networks and database structures.

In operations research and engineering, applications to reservation systems have motivated
considerable research, especially for the pure filling case [2], [3]. In such models, intervals are
the times during which copies of a resource (e.g. hotel rooms, communication channels, etc.)
are reserved. The span is then the reservation book, and departures model the cancellation of
reservations.

To date, the best analytical results are those of Kelly, who studied a model very similar to
the one defined here, and of Ziedins [16], who studied the continuous relaxation of Kelly’s
model. For refinements and related problems, see also [5] and [15]. Kelly’s main results apply
to the case k = 1 and to the case of general k with interval lengths governed by a geometric
law. For k = 1, Kelly defined an alternating renewal process {ξj } on the integers with values in
{0, 1}; sequences of 1s between consecutive 0s represent accepted intervals. Explicit formulae
were derived for computing the parameters of {ξj }. The probability distributions describing
the finite process on [0, X] were proved to be just those of {ξj , 0 ≤ j ≤ X} conditioned on
ξ−1 = ξX+1 = 0. The vacant intervals of {ξj }, i.e. the strings of 0s separating consecutive 1s,
were shown to have a geometric distribution.

The focus here is on space utilization, so our results add to the earlier theory in two principal
ways. First, detailed calculations are worked out for expected vacant space when k = 1. Special
consideration is given to small-µ asymptotics, for behavior in this limit is quite different from
that seen in the ‘jamming’ limit (absorbing state) of Rényi’s pure filling model, where µ = 0;
we briefly discuss this phenomenon at the end of Section 3. Second, the important dimer case
of chemical applications [4], where all intervals have length 2, is worked out in detail.

As a final remark, we note that the approach of the analysis itself can be viewed in the context
of a new trend that uses multivariate generating functions in probabilistic asymptotic problems;
see e.g. [1], [10].

2. Analysis

Expected vacant space is calculated in general terms in this section. First, a generating
function Z is calculated. The expected vacant space is then expressed in terms of a logarithmic
derivative of Z and then studied by means of a singularity analysis.

2.1. Stationary distribution

Let q� = λ�/µ�, and note immediately that the Markov chain defined on CX is reversible.
Its stationary probabilities are given by

π(C) = Z−1
X

∏
�:q�>0

q
n�(C)
� ,
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where n�(C) is the number of intervals of length � in the configuration C, and ZX is the partition
function (normalizing constant)

ZX(q) =
∑

C∈CX

∏
�:q�>0

q
n�(C)
� =

∑
n

N(n)qn, (2)

where q = (q1, q2, . . . , qL), n ranges over the L-tuples (n1, n2, . . . , nL), qn = ∏
�:q�>0 q

n�(C)
� ,

and N(n) is the number of configurations having n1 intervals of length 1, n2 intervals of length 2,
. . . , and nL intervals of length L.

Let u(C) = ∑
� �n�(C) be the total used space and v(C) = kX − u(C) the total vacant

space in configuration C, and extend the partition function to the following polynomial in a
formal variable x:

ZX(x; q) =
∑

C∈CX

xv(C)
∏

�:q�>0

q
n�(C)
� . (3)

In words, ZX(x, q) is the generating polynomial for the vacant space in admissible configura-
tions on [0, X].

To wrap up all the data uniformly, form the generating function for all spans X,

Z(x, y; q) =
∑
X

ZX(x; q)yX.

Hereafter, we suppress the dependence on q in the generating function notation when there is
no need for it.

2.2. Vacant space

We find that the average vacant space over admissible configurations in a span [0, X] is given
by

〈v〉X = Z−1
X

∂ZX

∂x

∣∣∣∣
x=1

,

where ZX = ZX(x) is given by (3), and where the subscript in 〈v〉X denotes averaging over
the stationary probabilities of the Markov chain on CX. To find the two terms on the right-hand
side, we use the residue method. That is, we compute

ZX|x=1 = Res0y
−X−1Z(x, y; q)|x=1 (4)

and
∂ZX

∂x

∣∣∣∣
x=1

= Res0y
−X−1 ∂

∂x
Z(x, y; q)

∣∣∣∣
x=1

. (5)

We are interested chiefly in the asymptotic analysis of the expected vacant space for large X.
If the partition function is rational, Z = P/Q, then, in a standard way, we can use the residue
theorem to pinpoint the leading terms of the asymptotics. Indeed, fix x and let y1(x), . . . , yn(x)

be the roots of the polynomial Q (some of them can, of course, collide or escape to infinity as x

varies). For X � 1, the contour integral of (4) or (5) over circles of large radius tends to zero,
whence

ZX|x=1 = −
∑
m

Resym

y−X−1P

Q
(6)
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and
∂ZX

∂x

∣∣∣∣
x=1

= −
∑
m

Resymy−X−1 ∂

∂x

P

Q

∣∣∣∣
x=1

. (7)

It is readily seen that (6) and (7) are dominated by the residues at the roots closest to the
origin.

Further, if ym(x) is a root of Q of multiplicity α, then the contribution of the corresponding
residue to (6) is a polynomial in X of degree m − 1 with the leading coefficient being

y−X−α
m

P (ym)

Q̃(ym)
,

where we just write ym for ym(1) and Q̃ = (1/m!)Q(m).
Similarly, the leading coefficient for (7) is

y−X−α−1
m

d

dx
ym(x)

∣∣∣∣
x=1

P(ym)

Q̃(ym)
.

Therefore, we can deduce the following useful expression for (∂ZX/∂x)/ZX.

Proposition 2. Assume that there is a single root ym of Q with the least absolute value. Then
the ratio (∂ZX/∂x)/ZX is given by

Xy−1
m

dym

dx

∣∣∣∣
x=1

up to an O(X0) term.

3. Single channel case

We consider here k = 1, in which case the partition function Z(x, y; q) can be found easily.

3.1. Generating function

Proposition 3. We have

Z(x, y; q) = 1

1 − yx − ∑
� q�y�

. (8)

Proof. The proof is a standard exercise, as follows. For notational simplicity, let q� > 0 for
� = 1, . . . , L and q� = 0 otherwise. From (2) and (3),

Z(x, y; q) =
∞∑

v=0

∑
n

N(n1, n2, . . . , nL, v)xvyv+n1+2n2+···+LnL
∏

�:q�>0

q
n�

�

=
∞∑

v=0

∑
n

(
v + n1 + · · · + nL

v n1 . . . nL

)
(xy)v

∏
�:q�>0

q�y
�.

Reorganizing the sums, changing the double sum to
∑∞

r=0
∑

(v,n):v+n1+···+nL=r , we obtain

Z(x, y; q) =
∞∑

r=0

(
xy +

L∑
�=1

q�y
�

)r

and hence (8).
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3.2. Residues

By Proposition 3,

ZX|x=1 = Res0
y−X−1

1 − y − ∑
� q�y�

(9)

and
∂ZX

∂x

∣∣∣∣
x=1

= Res0
y−X

(1 − y − ∑
� q�y�)2 . (10)

Denote the denominator of (9) by Q(y) and let y1, . . . , yn be the roots of the polynomial Q.
For X ≥ 1, the contour integral of (9) or (10) over circles of large radius tends to zero, whence

ZX|x=1 = −
∑
m

Resym

y−X−1

1 − y − ∑
� q�y�

(11)

and
∂ZX

∂x

∣∣∣∣
x=1

= −
∑
m

Resym

y−X

(1 − y − ∑
� q�y�)2 . (12)

We are interested in the asymptotics of 〈v〉X/X as X → ∞. In this situation, it is readily
seen that (11) and (12) are dominated by the residues at the roots closest to the origin. We can
immediately check that the (single) real root (say y1) is the root of Q closest to the origin and
that this root is simple (i.e. the derivative of Q at y1 does not vanish), so the desired residues
are easy to compute. The results are

ZX|x=1 = y−X−1
1

1 + ∑
� �q�y

�−1
1

(1 + O(γ −X)),

where γ = maxm>1 |ym/y1| is the spectral gap, and

∂ZX

∂x

∣∣∣∣
x=1

= Xy−X−1
1

(1 + ∑
� �q�y

�−1
1 )2

+ O(1).

Summarizing, we get

〈v〉X
X

= 1

1 + ∑
� �q�y

�−1
1

+ O(1/X). (13)

This is, of course, in agreement with Proposition 2, which says that, if the generating function
in question is the ratio P/Q of two analytic functions, then the limiting asymptotic value of
〈v〉X/X is equal to

y−1
1

(
dy1

dx

)
,

where y1(x) is a local branch of the curve Q(x, y) = 0 corresponding to the root of Q(x, ·)
with the least absolute value, provided that this root is unique and that P does not vanish at this
root.
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3.3. Large qi asymptotics

The formula (13) gives the asymptotic value of the average vacant space per unit length for
long intervals X. Of interest to us is the behavior of this average vacant space as the rates qi

tend to ∞. We cannot expect any reasonable (nondegenerate) limiting behavior without further
assumptions. What we need is the following.

Assumption 1. Let ρ be the unique real root of the polynomial

∑
�

q�y
� − 1.

Then we assume that ρ → 0 and that the (nonzero) rescaled coefficients q�/ρ
� converge to

nonnegative coefficients c� = lim q�ρ
−�.

We notice that
∑

� c� = 1 and therefore 1 is the unique real root of the polynomial Q̃ =
1 − ∑

�c�y
�. It follows in particular that y1/ρ → 1. Further, easy calculations yield the

following asymptotic result.

Proposition 4. Under Assumption 1, the vacant-space rate scales as ρ. More precisely, as
ρ → 0,

ρ−1 〈v〉X
X

→ 1∑
� �c�

. (14)

We might interpret the denominator on the right-hand side of (14) as the average conditional
length in the rescaled interval flow.

Transient behavior for a version of our model has been studied by Talbot et al. in the article
[13] cited in Section 1.3. Their model is a direct generalization of Rényi’s space-filling model
(see Section 1.3). Through simulations, they describe convergence to statistical equilibrium
starting with an empty span as the departure rate µ tends to 0+. The process begins with an
initial, essentially pure filling phase in which vacant space reduces at an O(1/t) rate until
the span is filled to a fraction that is approximately equal to Rényi’s constant α = 0.748 . . . .
Thereafter, equilibrium behavior is approached in a very slow densification phase with vacant
space decreasing at an O(1/ log t) rate; as a typical event in this process, awkwardly placed
subintervals straddled by gaps summing to more than 1 eventually depart and are replaced by
two subintervals. Note particularly the singular perturbation point at µ = 0: the occupancy of
the span approaches 100% as µ → 0+, but in the model where µ = 0 the average occupancy
in the jamming state is α. A rigorous proof of the details of transient behavior appears to be a
challenging open problem.

4. Dimer packing, k channels

Now we consider the k-channel situation. In general, the analysis seems to be quite involved,
but if we restrict ourselves to the case of dimer packing, where all intervals have length 2, an
essentially complete analysis is possible once the inductive structure of packings is discovered.
As above, we denote by Z(x, y; q) the generating (or partition) function. In our current situation
we have only one parameter q, the retention rate for the incoming intervals. We start with a
general analysis, and then center on the asymptotics as q → ∞. As a background note, we
mention that Page [9] analyzed random dimer filling for k = 1.
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4.1. Generating function

Let f
j
X[n] be the number of elements in the set C

j
X[n] of admissible configurations on

[0, X + 1] with exactly j dimers straddling X and n units of vacant space in [0, X]. Observe
that, for X > 1, each configuration in C

j
X[n] is, for some m with 0 ≤ m ≤ k−j , a configuration

in Cm
X−1[n − (k − m − j)] to which dimers have been inserted into the interval [X − 1, X + 1]

of exactly j channels. Then f
j
X[n] = ∑k−j

m=0 f m
X−1[n − (k − m − n)], and the generating

polynomial f
j
X(x) = ∑

n f
j
X[n]xn for vacant space satisfies

f
j
X =

k−j∑
m=0

xk−m−j f m
X−1, X > 1.

Now define fX(x) = (f k
X(x), . . . , f 0

X(x))
, form the generating (vector) function f (x, y) =∑
X fXyX, and find immediately that it solves

(E − yA(x))f (x, y) = f1(x),

where E is the (k + 1) × (k + 1) identity matrix, f1(x) = (1, x, x2, . . . , xk)
, and

A(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0 0 1
0 0 1 x
... . .

.
. .

.
x x2

0 0 . .
.

. .
. ...

...

0 1 x . . . xk−2 xk−1

1 x x2 . . . xk−1 xk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (15)

Notice that Z is just the component f 0 of f .
From (15) it follows that

Z = P(x, y)

det(E − yA(x))
,

in which the polynomial
Q(x, y) = det(E − yA(x))

is central to our analysis. Note that, for fixed (real) x, the zeros of Q are the reciprocal
eigenvalues of the symmetric matrix A(x), which is also real.

The following facts can be established by a direct if tedious analysis.

Lemma 1. (a) For odd k, k = 2i − 1, Q(0, y) = (y − 1)i(y + 1)i and for even k, k = 2i,
Q(0, y) = (y − 1)i+1(y + 1)i .

(b) In the local coordinates (ξ, η) near the points (0, 1) and (0, −1) in the (x, y) plane, the
polynomial Q has nondegenerate homogeneous components q+(ξ, η) and q−(ξ, η) respectively
of degree equal to the order of the zero of its restriction to the y-axis.

(c) The dehomogenizations of the polynomials q+ and q− (defined in (b)) given by

q̃+(c) = ξ− deg q+q+(ξ, cξ), q̃−(c) = ξ− deg q−q−(ξ, cξ)

can be expressed in terms of Chebyshev polynomials with all roots simple and real.
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Proof. Multiplying E − yA(x) from the right by the matrix

P(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −x 0 . . . 0 0

0 1 −x
. . .

...
...

0 0 1
. . . 0

...
... 0

. . . −x 0

0
. . . 1 −x

0 0 . . . . . . 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

antidiagonalizes A, so that

det(E − yA(x)) = det(P (x) − y
),

where 
 = (
i,j ) is the matrix with entries 
i,i−1 = 1 and 0s elsewhere (here we used the
fact that det(P ) = 1).

Rearranging the rows and columns of P(x) − y
 we obtain that det(P (x) − y
) is equal
(up to a sign which is immaterial as we are concerned with the zeros of the determinant only)
to the determinant of the matrix

Sk(x, y) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−y 1 0 0 . . . 0 0 0
1 −y −x 0 . . . 0 0 0
0 −x −y 1 0 0 0
0 0 1 −y

. . . 0 0 0
...

...
. . .

. . .
. . .

. . .
...

0 0 0 0
. . . −y 1 0

0 0 0 0
. . . 1 −y −x

0 0 0 0 . . . 0 −x 1 − y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

when the matrix size (k + 1) is odd and

Sk(x, y) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−y 1 0 0 . . . 0 0 0
1 −y −x 0 . . . 0 0 0
0 −x −y 1 0 0 0
0 0 1 −y

. . . 0 0 0
...

...
. . .

. . .
. . .

. . .
...

0 0 0 0
. . . −y −x 0

0 0 0 0
. . . −x −y 1

0 0 0 0 . . . 0 1 −x − y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

when k + 1 is even.
For a matrix M , denote by M ′ the matrix obtained from M by deleting the first column and

the first row. (Notice that (S′
n)

′ = Sn−2). We find immediately that

det(Sn) = −y det(S′
n) − det(Sn−2).

Further,
det(S′

n) = −y det(Sn−2) − x2 det(S′
n−2).



700 Y. BARYSHNIKOV ET AL.

Iterating and combining all equalities together, we arrive at the recursion

det(Sn) = (y2 − x2 − 1) det(Sn−2) − x2 det(Sn−4) (16)

for n ≥ 4.
We see that the polynomials sn(x, y) = det(Sn) split naturally into two series, for even and

for odd matrix sizes. One more splitting: we need to consider the polynomials s near two
points, (0, 1) and (0, −1).

Consider the polynomials q̃n,+(ξ, η) = sn(ξ, 1 + η) and q̃n,−(ξ, η) = sn(ξ, −1 + η). For
small n, the polynomials can be found manually:

q̃0,+ = 1, q̃0,− = 1,

q̃1,+ = −η, q̃1,− = 2 − η,

q̃2,+ = ξ + 2η + ξη + η2, q̃2,− = −ξ − 2η + ξη + η2,

q̃3,+ = −2η2 + ξ2 + ηξ2 − η3, q̃3,− = −4η − ξ2 + 4η2 + ξ2η − η3.

From these initial data and from (16) it follows that all monomials in q̃2m,+ and q̃2m,− have
degree m at least. Similarly, all monomials in q̃2m+1,+ have degree greater than m, and those
in q̃2m+1,− degree greater than or equal to m. Denote the homogeneous components of the
corresponding (minimal) degree as qn,+ and qn,−. Introduce the polarizations

Qe
m,+(c) = q2m,+(ξ, cξ)

cm
,

Qe
m,−(c) = q2m,−(ξ, cξ)

cm
,

Qo
m,+(c) = q2m+1,+(ξ, cξ)

cm+1 ,

Qo
m,−(c) = q2m+1,−(ξ, cξ)

cm
.

Then (16) again implies that these polynomials satisfy the recursions

Q
p
m,± = ±2cQ

p
m−1 − Q

p
m−2,

where p ∈ {o, e}. Together with the initial data, these recursions allow us to give explicit
formulae for the polarizations:

Qe
m,+ = U(2)

m + U
(2)
m−1,

Qe
m,− = (−1)mU(2)

m + U
(2)
m−1,

Qo
m,+ = −U

(1)
m+1,

Qo
m,− = (−1)m2U(2)

m .

Here U
(1)
m (c) = cos(m arccos(c)) and U

(2)
m (c) = sin((m + 1) arccos(c)/ sin(arccos(c))) are

Chebyshev polynomials of the first and of the second kind respectively.
It is easy to check that all the above polynomials have simple roots. Relevant for us are

the maximal roots of the polynomials Q
p
m,− and minimal roots of the polynomials Q

p
m,+ (they
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correspond to the branches with least absolute value of y(x)). They can be immediately found
to be

cos

(
2π

2m + 1

)
for Qe

m,−,

− cos

(
π

2m + 1

)
for Qe

m,+,

cos

(
π

2m

)
for Qo

m,−, m > 0,

− cos

(
π

2(m + 1)

)
for Qo

m,+.

4.2. Asymptotics of vacant space

These calculations allow us to determine the asymptotics of 〈v〉X/X as q → ∞.

Theorem 1. As q → ∞, the average vacant space per unit length scales as q−1/2:

〈v〉X
X

q1/2 → cos

(
π

k + 2

)
.

Proof. According to the scaling argument, to find the average fraction of vacant space for
general q, we just have to multiply x by q−1/2, y by qk/2, and apply the logarithmic derivative
formula of Proposition 2. As the logarithmic derivative is homogeneous of degree 0 in y and of
degree −1 in x, it implies that the limit of the fraction of vacant space, as X → ∞, multiplied
by q1/2 converges to the slope of the branch of {Q = 0} passing through the y-axis and closest
to the x-axis, for small x. Those have been found above and result in the claimed asymptotics.

This proves the theorem.

An interesting observation is that the scaling of the fraction of vacant space for large q

is independent of k, that is, the holes sitting near the surface do not ‘feel’ the depth of the
k-channel substrate below. This can be understood as an indication that the vacant slots do
not form typically deep wells and are just sparsely scattered isolated singletons which travel
along the surface until they meet pairwise, to form a vacant space of size 2, which can be filled
immediately by a dimer. The existing dependence on k is very weak.
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[3] Coffman, E. G., Jr., Flatto, L., Jelenković, P. and Poonen, B. (1998). Packing random intervals on-line.
Algorithmica 22, 448–476.

[4] Evans, J. W. (1993). Random and cooperative sequential adsorption. Rev. Mod. Phys. 65, 1281–1329.
[5] Ferrari, P. and Garcia, N. L. (1998). One-dimensional loss networks and conditioned M/G/∞ queues. J. Appl.

Prob. 35, 963–975.
[6] Flory, P. J. (1939). Intramolecular reaction between neighboring substituents of vinyl polymers. J. Amer. Chem.

Soc. 61, 1518–1521.
[7] Kelly, F. P. (1987). One-dimensional circuit-switched networks. Ann. Prob. 15, 1166–1179.
[8] Mackenzie, J. K. (1962). Sequential filling of a line by intervals placed at random and its application to linear

adsorption. J. Chem. Phys. 37, 723–728.
[9] Page, E. S. (1959). The distribution of vacancies on a line. J. R. Statist. Soc. B 21, 364–374.



702 Y. BARYSHNIKOV ET AL.

[10] Pemantle, R. and Wilson, M. C. (2002). Asymptotics of multivariate sequences. I. Smooth points of the
singular variety. Combin. Theory Ser. A 97, 129–161.

[11] Privman, V. and Nielaba, P. (1992). Diffusional relaxation in dimer deposition. Europhys. Lett. 18, 673.
[12] Rényi, A. (1958). On a one-dimensional problem concerning random space filling. Magyar Tud. Akak. Mat.

Kutató Int. Közl. 3, 109–127 (in Hungarian).
[13] Talbot, J., Tarjus, G. and Viot, P. (2000).Adsorption–desorption model and its application to vibrated granular

materials. Phys. Rev. E 61, 5429–5438.
[14] Talbot, J., Tarjus, G., Van Tassel, P. R. and Viot, P. (2000). From car parking to protein adsorption: an

overview of sequential adsorption processes. Colloids Surfaces A 165, 287–324.
[15] Zachary, S. and Ziedins, I. (1999). Loss networks and Markov random fields. J. Appl. Prob. 36, 403–414.
[16] Ziedins, I. (1987). Quasi-stationary distributions and one-dimensional circuit-switched networks. J. Appl. Prob.

24, 965–977.


