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Abstract

Consider a 
uid queue with a �nite bu�er B and capacity c fed by a superposition of N

independent On-O� processes. An On-O� process consists of a sequence of alternating indepen-

dent activity and silence periods. Successive activity, as well as silence, periods are identically

distributed. The process is active with probability p and during its activity period produces


uid at constant rate r. For this queueing system, under the assumption that the excess ac-

tivity periods are intermediately regularly varying, we derive explicit and asymptotically exact

formulas for approximating the stationary over
ow probability and loss rate. In the case of

homogeneous processes with excess activity periods equal in distribution to �e, the queue loss

rate is asymptotically, as B !1, equal to

�B = (r0 � c)

�
N

m

��
p P

�
�e >

B

r0 � c

��
m

(1 + o(1));

where m is the smallest integer greater than (c � N�)=(r � �), r0 = mr + (N �m)�, � = rp

and N� < c; the results require a mild technical assumption that (c � N�)=(r � �) is not

an integer. The analyzed queueing system represents a standard model of resource sharing in

telecommunication networks. The derived asymptotic formulas are shown to provide excellent

approximations to simulation experiments. Furthermore, the results o�er insight into qualita-

tive tradeo�s between the over
ow probability, o�ered traÆc load, available capacity and bu�er

space.
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1 Introduction

Increased utilization in communication networks is achieved through sharing of network resources,

e.g. link capacity and bu�er space, among di�erent user sessions. The bene�ts of sharing common

resources are counterbalanced with potential increase in congestion and degradation in Quality of

Service (QoS) perceived by individual sessions. Therefore, understanding the tradeo�s between

the o�ered traÆc load, perceived QoS measures, link capacity and bu�er space is essential for the

eÆcient design and provision of network switching elements.

The fundamental switching components used for sharing bandwidth and bu�er space are net-

work multiplexers. An established baseline model of a network multiplexer is a single server queue

with a constant capacity and �nite bu�er fed by a superposition of user sessions. Individual sessions

are modeled as On-O� processes, since a session can be either active, in which case it transmits

data at a speci�ed rate, or silent. The primary performance measures of this queueing system are

the stationary over
ow probability and loss rate. The analysis of a related in�nite bu�er queueing

system dates back to [32, 7, 2].

Most of the early work on the multiplexing problem focuses on On-O� processes with expo-

nentially distributed On and O� periods (e.g., see [2]). However, repeated empirical measurements

in modern telecommunications networks demonstrate the presence of heavy-tailed/subexponential

characteristics in network traÆc streams. Early discoveries of the self-similar nature of Ethernet

traÆc were reported in [23]. Long-range dependence and subexponential properties of VBR video

streams (e.g. MPEG) were explored in [16, 20, 22]. Evidence and possible causes of heavy-tailed

characteristics in World Wide Web traÆc were presented in [9]. In this paper, we provide an

additional con�rmation of the existence of heavy tails in network traÆc. We have measured the

distribution of �le sizes on �ve �le servers in COMET laboratory at Columbia University. The

empirical distribution of 350,000 surveyed �les is presented on a log = log scale in Figure 1. We �nd

that the tail of the measured distribution is well matched by a Pareto distribution with parameter

� = 1:44; see the dashed line in Figure 1. This suggests that the corresponding ftp (�le transfer

protocol) traÆc is heavy-tailed.

The analysis of queueing models with multiplexed heavy-tailed renewal arrival sequences, e.g.

On-O� processes, is diÆcult primarily due to the complex dependency structure in the aggregate

arrival process [14]. This stems from the fact that a superposition of renewal processes, in general,

is not a renewal process. An intermediate case of multiplexing a single long-tailed arrival sequence

with exponential processes was investigated in [4, 19, 1, 31]. An in�nite limit of On-O� processes,

the so-called M/G/1 process, represents an instance of an analytically tractable model. This is

because the M/G/1 processes have both a renewal and Poisson structure. Recent results and

additional references on both 
uid and discrete time queues with M/G/1 arrival processes can be

found in [4, 19, 28, 33, 10, 15, 30, 18, 25].

On the other hand, the understanding of multiplexing a �nite number of heavy-tailed On-O�

arrival processes is quite limited, for general bounds see [6, 11]. In this paper we derive explicit and

asymptotically exact results for the stationary over
ow probability and loss rate in a �nite bu�er

queue with heterogeneous heavy-tailed On-O� arrival processes. The starting point of our analysis

are the results from [17]. Very recently the complementary results for the in�nite bu�er model were

derived in [35].

The rest of the paper is organized as follows. In Section 2 we de�ne the 
uid model and introduce

the preliminary results. The main results of this paper, Theorems 3.1 and 3.2, are presented in
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Figure 1: Log/log plot of the empirical distribution of �le sizes on �ve �le servers in COMET

laboratory at Columbia University. The tail of the empirical distribution (solid line) is well matched

by a Pareto distribution cx�� with � = 1:44 (dashed line).

Section 3. In Section 4 we illustrate the accuracy of our results with simulation experiments.

Concluding remarks are stated in Section 5. The last section contains some of the more technical

proofs.

2 Preliminary Results

2.1 Fluid queue de�nition and sample path bounds

Consider a 
uid queue with a constant capacity c, �nite bu�er B and arrival process A(t). In-

formally, at time t, 
uid is arriving at rate A(t) and is leaving the system at rate c. When the

queue level reaches the bu�er limit B, 
uid arriving in excess of the draining rate c is lost. We use

QB(t) 2 [0; B] to denote the queue content at time t.
In this paper we only consider right continuous piece-wise constant processes A(t) with almost

surely (a.s.) increasing jump times fT0 = 0 < T1 < T2 < � � � g. Then, for any initial value QB(0)

the evolution of QB(t) is given by

QB(t) =
�
QB(Tn) + (t� Tn)(A(Tn)� c)

�+
^B; t 2 (Tn; Tn+1]; n � 0; (2.1)

where (x)+ = max(0; x) and x ^ y = min(x; y). When necessary, we use the notation QB;c

A
� QB

to mark the explicit dependence of QB(t) on A(t) and c.
In the case of A(t), i.e. f(Tn+1 � Tn); A(Tn)g, being stationary and ergodic, and EA(t) < c,

by using Loynes' construction [26], one can show that recursion (2.1) has a unique stationary and

ergodic solution. Furthermore, for all initial conditions QB(0), the distribution of QB(t) converges
to that stationary solution as t!1. Unless otherwise indicated, we assume throughout the paper

that all arrival processes are stationary, ergodic and that the corresponding queues are in their

stationary regimes. Let QB and A be random variables that are equal in distribution to QB(t) and
A(t), respectively.
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Our main objective in this paper is the asymptotic evaluation, as B ! 1, of the over
ow

probability P[QB
� B �K], for �nite K, and long time average loss rate �B given by

�B
, lim

t!1

1

t

Z
t

0

�B(u) du;

where �B(t) , (A(t)� c) 1fQB(t) = Bg indicates the rate at which the bu�er is over
owing at

time t. We de�ne the loss probability PB = �B=EA as the long time average fraction of 
uid that

is lost. Since there is a one to one correspondence between the loss rate and loss probability, we

use those two terms interchangeably. An equivalent representation of �B , which will be used for

computational purposes, is �B = E�B (t). Similarly, the notation �
B;c

A
� �B will be used to mark

the explicit dependence of �B on A(t) and c.
Next, we prove two useful sample path bounds. The �rst bound formalizes an intuitively

expected notion that multiplexing reduces the aggregate queueing workload. Let An(t) and cn,
1 � n � N , be arrival processes and service rates, respectively, with A(t) =

P
N

n=1An(t) and

c =
P

N

n=1 cn.

Proposition 2.1 If QB;c

A
(t) �

P
N

n=1Q
B;cn

An
(t) for t = 0, then the inequality holds for all t � 0.

Proof: Let 0 = T0 < T1 < T2 � � � a.s. be the jump points in A(t). Then, by the assumption

and (2.1), the statement holds for any t 2 [0; T1]

QB;c

A
(t) �

 
NX
n=1

�
QB;cn

An
(0) + t(An(0)� cn)

�!+

^B

�

NX
n=1

�
QB;cn

An
(0) + t(An(0)� cn)

�+
^B =

NX
n=1

QB;cn

An
(t);

where the last inequality follows from 
NX
n=1

xn

!+

^B �

 
NX
n=1

x+n

!
^B �

NX
n=1

x+n ^B: (2.2)

Now, assume that the proposition holds for any t 2 [0; Tk], k � 1. Hence, by the inductive

assumption, (2.1) and (2.2), for any t 2 (Tk; Tk+1]

QB;c

A
(t) �

 
NX
n=1

�
QB;cn

An
(Tk) + (t� Tk)(An(Tk)� cn)

�!+

^B

�

NX
n=1

QB;cn

An
(t)

and, therefore, the result holds for all t � 0. 3

Next, we consider a stochastic process Q1;A
c (t) de�ned by the initial condition Q1;A

c (0) and

Q1;A

c (t) =
�
Q1;A

c (Tn) + (t� Tn)(c �A(Tn))
�+
; t 2 (Tn; Tn+1]: (2.3)
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Note that Q1;A
c (t) corresponds to an in�nite bu�er queueing process with constant arrival rate c

and service rate A(t). We use Q1;A
c (t) to upper bound the amount of free bu�er space, B�QB(t),

in the original system de�ned by (2.1).

Lemma 2.1 If B �QB;c

A
(t) � Q1;A

c (t) for t = 0, then the inequality holds for all t � 0.

Proof: The proof uses induction and is very similar to the proof of Proposition 2.1. From (2.1)

for all t 2 (Tn; Tn+1], n � 0

QB;c

A
(t) �

�
QB;c

A
(Tn) + (t� Tn)(A(Tn)� c)

�
^B;

and, therefore,

B �QB;c

A
(t) �

�
B �QB;c

A
(Tn) + (t� Tn)(c�A(Tn))

�+
:

The preceding inequality and the same arguments used in the proof of Proposition 2.1 imply the

statement of the lemma. 3

2.2 Fluid queue with a single On-O� arrival process

The results of this subsection characterize the asymptotic behavior of the �nite bu�er 
uid queue

fed by a single On-O� process A(t). These results will be used for deriving our main theorems in

the subsequent section.

A stationary On-O� process A(t) consists of a sequence of alternating independent On and

O� periods. During the corresponding On and O� periods the process is equal to A(t) = r and

A(t) = 0. Successive On as well as O� periods are identically distributed and equal in distribution

to � and �, respectively. Random variables � and � have �nite �rst moments and the process is

in On state with probability p = P[A(t) = r] = E�=(E � + E�). The average rate of the process is

� = rp. For a detailed construction of such a process see [11].

Excess (or residual) random variables play an important role in the analysis of renewal processes.

For a nonnegative random variable X with �nite mean EX, the excess distribution F e is de�ned

by F e(x) = (EX)�1
R
x

0
P[X > u] du, x � 0. A random variable Xe with distribution F e is called

the excess variable of X.

Throughout the paper, for any two real functions f(x) and g(x), we use the customary notation
f(x) � g(x) as x ! 1 to denote limx!1 f(x)=g(x) = 1. De�nitions of heavy-tailed distributions

L, S, IR and R� can be found in the appendix.

The following proposition provides the asymptotic characterization of the over
ow probability

when the excess On periods are subexponential.

Proposition 2.2 If r > c > � and � e 2 S, then as B !1

P[QB = B] � p P

�
� e >

B

r � c

�
:

Proof: In [17] it was shown that �B
� p(r � c)P[� e > B=(r � c)] as B ! 1. Since �B =

E [(r � c)1fQB = Bg] = (r � c)P[QB = B] the statement holds. 3

The next result characterizes the workload Q1
� Q1;c

A
in an in�nite bu�er system.
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Theorem 2.1 ([19]) If r > c > � and � e 2 S, then as B !1

P[Q1 > B] � (1� p)
�

c� �
P

�
� e >

B

r � c

�
:

Note that quantities P[QB = B] and P[Q1 > B] are asymptotically proportional. We use this

fact to obtain the following bound.

Proposition 2.3 If r > ci > �, i = 1; 2 and � e 2 IR, then for 1 > � > 0

limB!1

P[QB;c1

A
� (1� �)B]

P[QB;c2

A
� �B]

<1:

Proof: Using sample path arguments it is easy to show that QB;c

A
is stochastically dominated by

Q1;c

A
, and therefore

P[QB;c1

A
� (1� �)B]

P[QB;c2

A
� �B]

�
P[Q1;c1

A
� (1� �)B]

P[QB;c2

A
= B]

:

Next, Proposition 2.2 and Theorem 2.1 yield

limB!1

P[Q1;c1

A
� (1� �)B]

P[QB;c2

A
= B]

�
(1� p)�

(c� �)p
limB!1

P[� e > (1��)B
r�c

]

P[� e > B

r�c
]

<1;

where the last inequality is implied by Lemma A.4 of Appendix. 3

The last proposition is the main technical result of this section. In order to alleviate the reading

process we postpone the proof until Section 6.

Proposition 2.4 If r > c > � and � e 2 IR, then

lim
�"1

limB!1

P[QB
� �B]

P[QB = B]
= 1:

3 Main Results

This section contains the main results of this paper stated in Theorems 3.1 and 3.2. The theo-

rems describe the asymptotic behavior of a �nite bu�er 
uid queue fed by N independent On-O�

processes. Without loss of generality, assume that they belong to M � N di�erent classes with

class i containing ni statistically identical On-O� processes,
P

M

i=1 ni = N . The processes are

enumerated as Aij(t), 1 � i � M , 1 � j � ni and the aggregate arrival process is denoted by

A(t) =
P

M

i=1

P
ni

j=1Aij(t). Process Aij(t) is the jth process of class i with On periods equal in

distribution to �ij. Its peak rate, average rate and probability of being On are equal to ri, �i and
pi, respectively. Random variables f�ijg

ni
j=1 are equal in distribution to �i. For convenience we

de�ne vectors r = (r1; : : : ; rM ), � = (�1; : : : ; �M ) and n = (n1; : : : ; nM ). In order to distinguish

between scalar and vector quantities, vectors are denoted with bold letters.

Our proofs require the following minor technical assumption. Similar assumptions can be found

in [15, 24] and, most recently, in [35]. For vectors x and y by x � y = x1y1 + � � � xMyM we denote

their scalar product.

6



Assumption 3.1 The capacity of the queueing system satis�es n � r > c > n � � and

c 62

(
m � r+ (n�m) � � : m 2

MO
i=1

[0; ni]

)
:

Remark 3.1 (i) The �rst part of the assumption states that the queue is stable and that over
ows

are possible. (ii) If the second part of the assumption is not satis�ed, by choosing an arbitrarily

larger or lower capacity one can obtain a lower or upper bound on the queueing performance,

respectively. The assumption ensures that the queue is not critically stable during periods of time

when some of the processes have long On periods.

Before stating and proving our main results we introduce two preparatory lemmas. The �rst

lemma derives an asymptotic expression for the over
ow probability in the case when all processes

need to be in the active state for a long period of time in order to have a bu�er over
ow. Throughout

the paper we use Pm[�] to denote (P[�])m.

Lemma 3.1 If n � r� ri + �i < c < n � r for all 1 � i �M , then for all B � 0 and 0 � � � 1

MY
i=1

pni
i
P
ni

�
� ei >

�B

n � r� c

�
� P[QB;c

A
� �B] �

MY
i=1

P
ni [QB;c�n�r+ri

Ai1
� �B]:

If in addition � e
i
2 S for 1 � i �M , then as B !1

P[QB;c

A
= B] �

MY
i=1

pni
i
P
ni

�
� ei >

B

n � r� c

�
:

Proof: Assume that at time t = 0 all the considered queues are empty. For all 1 � i � M ,

1 � j � ni, Proposition 2.1 yields

QB;c

A
(t) � QB;c�n�r+ri

Aij
(t) +QB;n�r�ri

A�Aij
(t)

= QB;c�n�r+ri
Aij

(t); (3.1)

where the equality follows from the fact that A(t) � Aij(t) � n � r � ri for all t and, therefore,

QB;n�r�ri

A�Aij
(t) � 0, t � 0. Since (3.1) holds for all i; j, then

QB;c

A
(t) �

^
i;j

QB;c�n�r+ri
Aij

(t);

which, by applying the operator P[� � �B], using the independence of Aij and passing t ! 1,

yields in stationarity

P[QB;c

A
� �B] �

MY
i=1

P
ni [QB;c�n�r+ri

Ai1
� �B]:

7



Obtaining the lower bound is straightforward from evaluating the system in stationarity at (say)

t = 0; for simplicity the time index is omitted

P[QB;c

A
� �B] � P

2
4QB;c

A
� �B;

M\
i=1

ni\
j=1

�
Aij = ri; �

e

ij >
�B

n � r� c

�35

= P

2
4M\
i=1

ni\
j=1

�
Aij = ri; �

e

ij >
�B

n � r� c

�35

=

MY
i=1

pni
i
P
ni

�
� ei >

�B

n � r� c

�
:

By setting � = 1 in the preceding upper and lower bounds and combining it with Proposition 2.2,

we obtain the second statement of the proposition. 3

In order to state our second preliminary lemma and the main results, we need to introduce some

additional notation. Let E =
N

M

i=1[0; ni] and E� =
N

M

i=1[0; 1]
ni . An element e 2 E� is of the form

e = (e1; : : : ; eM ), where ei = (ei1; : : : ; eini) 2 [0; 1]ni . Let jeij =
Pnj

j=1 eij and jej = (je1j; : : : ; jeM j).
Note that if e 2 E� then jej 2 E .

De�nition 3.1 The minimum over
ow set is de�ned as

O , fm 2 E : c <m � r+ (n�m) � � < c+ ri � �i; 8i : mi > 0g ;

and the detailed minimum over
ow set O� , fe 2 E� : jej 2 Og.

Remark 3.2 (i) Informally, the motivation behind this de�nition comes from the fact that only a

few On-O� processes with long On periods are causing the most likely bu�er over
ows, while the

remaining processes exhibit their average behavior. Hence, an element of O indicates how many

processes from each class need to have long On periods in order for a bu�er over
ow to occur.

Correspondingly, the detailed set O� contains binary vectors which denote particular over
ow

scenarios. (ii) The de�nition of O� is analogous to the de�nition of the minimal set in [11].

Similarly, we de�ne an under
ow set U of the combinations that do not cause an over
ow

U , fm 2 E : m � r+ (n�m) � � < cg

and the corresponding detailed under
ow set U� , fe 2 E� : jej 2 Ug.

Next, let fXijg be a set of independent random variables. The variables with the same �rst

subscript are equal in distribution. For every element e 2 E�, let us de�ne the following partial sum

Se ,

MX
i=1

niX
j=1

(1� eij)Xij :

At this point, we are ready to state our last preparatory lemma.

8



Lemma 3.2 If Xi1 2 IR for all 1 � i �M , then as x!1

P

" ^
e2O�[U�

Se > x

#
= o

 X
m2O

MY
i=1

P
mi [Xi1 > x]

!
:

Proof: De�ne Di(x) for 1 � i �M as the number of events fXij > x=Ng, i.e.,

Di(x) ,

niX
j=1

1
n
Xij >

x

N

o
:

Observe that for all m 2 O [ U(
M\
i=1

fDi(x) = mig

)\( ^
e2O�[U�

Se > x

)
= ;; (3.2)

since there exists e 2 O� [ U� with eij = 1fXij > x=Ng, i.e., jeij = mi, that, by the de�nition of

Se, yields for x � 0

Se �

MX
i=1

ni �mi

N
x � x:

Next, (3.2) implies

P

" ^
e2O�[U�

Se > x

#
� P

2
4 [
m62O[U

M\
i=1

fDi(x) = mig

3
5 ;

which in conjunction with

P[Di(x) � mi] = P

2
664 [
d2[0;1]ni

jdj=mi

\
j: dj=1

n
Xij >

x

N

o
3
775 �

�
ni
mi

�
P
mi

h
Xi1 >

x

N

i

yields

P

" ^
e2O�[U�

Se > x

#
�

X
m62O[U

MY
i=1

�
ni
mi

�
P
mi

h
Xi1 >

x

N

i
:

The lemma follows from the preceding inequality, Lemma A.4 of Appendix and the de�nitions of

O and U , which imply that for every m 62 O [ U there exists k 2 O such that mi � ki for all i and
mj > kj for at lest one j. 3

At last, we arrive at our �rst main result.
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Theorem 3.1 Let � e
i
2 IR for 1 � i �M and

P̂ (B) ,
X
m2O

MY
i=1

�
ni
mi

�
pmi

i
P
mi

�
� ei >

B

m � r+ (n�m) � �� c

�
:

Then, under Assumption 3.1,

lim
K!1

limB!1

P[QB;c

A
� B �K]

P̂ (B)
= lim

K!1

limB!1

P[QB;c

A
� B �K]

P̂ (B)
= 1:

If, in addition, we assume m � r > c, for all m 2 O, then for any K � 0

P[QB;c

A
� B �K] � P[QB;c

A
= B] � P̂ (B) as B !1:

Remark 3.3 (i) Informally, the double limit implies that P[QB;c

A
� B �K] � P̂ (B) for large K

and B much larger than K. Hence, the result states that the fraction of time during which the

bu�er is e�ectively 100% full is asymptotically equal to P̂ (B). (ii) The heuristic for this result

can be easily explained by the following simple example. Consider two i.i.d. On-O� processes

with excess On periods in IR and r1 < c < r1 + �1. These assumptions result in the over
ow

set being a single number m = 1. In this case, the most probable way the bu�er over
ows is

when one of the processes (say the �rst one) has a very long On period and the other behaves

on average, i.e.,
R
t

0
A12(u) du � �1t. During that long On period, the average amount of arriving


uid will be higher than the service rate, r1 + �1 > c, and the bu�er will tend to �ll. After the

bu�er �lls, its content will stay close to the bu�er boundary. When r1 < c, the queueing content

will make small excursions away from the boundary during the O� periods in the second On-O�

process, see Figure 2. In the proof we show that these excursions are almost surely �nite and

uniformly bounded for all B. (iii) In the last statement of the theorem the values of �i-s do not

B−K

0

B

Q (t)
B

Figure 2: Illustration for Remark 3.3 (ii). The long On period is shown with a dashed line.

a�ect the computation of the minimal over
ow set. Hence, during the most likely over
ow event

the arrival rate is always higher than the capacity and, therefore, the bu�er content QB remains

on the boundary B. This fact makes the asymptotic computation of the probability that the bu�er

is full P[QB = B] feasible. Also, due to the 
uid nature of the model, P[QB = B] represents the
fraction of time that 
uid is being lost. (iv) With additional assumptions on the ratios of tails of � e

i

the minimum over
ow set O in the statement of the theorem can be replaced by a smaller over
ow

set O0, which asymptotically yields the same value for P̂ (B). For example, if � e
i
2 R�i

(see the

appendix), then O0 =
�
m 2 O : � �m =

V
l2O

� � l
	
. (v) Complementary results for the in�nite

bu�er model were recently obtained in [35].
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Proof: Upper bound. Let Ae, e 2 E�, denote the sum of arrival processes Aij such that eij = 0

Ae(t) ,

MX
i=1

niX
j=1

(1� eij)Aij(t) (3.3)

and for Æ > 0 consider queues QB;c�EAe�Æ

A�Ae
, Q

B;�i+Æ=N

Aij
assuming that they are empty at time t = 0.

For any e 2 O� [ U� Proposition 2.1 yields

QB;c

A
(t) � QB;c�EAe�Æ

A�Ae
(t) +

MX
i=1

niX
j=1

(1� eij)Q
B;�i+

Æ

N

Aij
(t);

and, thus

QB;c

A
(t) �

^
e2O�[U�

0
@QB;c�EAe�Æ

A�Ae
(t) +

MX
i=1

niX
j=1

(1� eij)Q
B;�i+

Æ

N

Aij
(t)

1
A : (3.4)

Next, by selecting suÆciently small Æ, such that all the queues in the preceding inequality have

their capacity greater than the average arrival rate, applying the operator P[� � B �K] in (3.4)

and then passing t!1, we derive in stationarity

P[QB;c

A
� B �K] � P

2
4 ^
e2O�[U�

0
@QB;c�EAe�Æ

A�Ae
+

MX
i=1

niX
j=1

(1� eij)Q
B;�i+

Æ

N

Aij

1
A � B �K

3
5 :

Now, let us select Æ <
V
e2U�

(c � jej � r � (n � jej) � �), such that QB;c�EAe�Æ

A�Ae
� 0 for all e 2 U�.

Then, the preceding inequality and union bound yield for 0 < � < 1

P[QB;c

A
� B �K] � P

" [
e2O�

n
QB;c�EAe�Æ

A�Ae
� � (B �K)

o#

+ P

2
4 ^
e2O�[U�

MX
i=1

niX
j=1

(1� eij)Q
B;�i+

Æ

N

Aij
� (1� �) (B �K)

3
5

�

X
e2O�

P

h
QB;c�EAe�Æ

A�Ae
� � (B �K)

i

+ P

2
4 ^
e2O�[U�

MX
i=1

niX
j=1

(1� eij)Q
B;�i+

Æ

N

Aij
� (1� �) (B �K)

3
5

� (1 + o(1))
X
m2O

MY
i=1

�
ni
mi

�
P
mi

h
QB;cm+ri�Æ
Ai1

� � (B �K)
i
; (3.5)

as B ! 1, where cm , c �m � r � (n�m) � � and the last inequality is due to Lemmas 3.1, 3.2

and Proposition 2.3. Here, by recalling that � e
i
2 IR, one obtains from Propositions 2.2 and 2.4

for all m 2 O and i, such that mi > 0

lim
Æ#0

lim
�"1

limB!1

P

h
QB;cm+ri�Æ
Ai1

� � (B �K)
i

P

h
QB;cm+ri
Ai1

= B
i = 1;
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which, by (3.5), Proposition 2.2 and Lemma A.6 of Appendix, yields for any K � 0

limB!1

P[QB;c

A
� B �K]

P̂ (B)
� 1:

Lower bound for the �rst statement. The lower bound is obtained by estimating the queueing

system in stationarity at (say) time t = 0. For any � > 0 and all e 2 O�, de�ne an event indicating

that all the processes Aij(t) with eij = 1 are in the active state at time t = 0 and their On periods

have lasted for an amount of time larger then te , (1 + �)B=(jej � r+ (n� jej) � �� c), i.e.,

	e ,

\
i;j: eij=1

fAij(0) = ri; infft > 0 : Aij(�t) = 0g > teg : (3.6)

We point out that inf ft > 0 : Aij(�t) = 0g is equal in distribution to � e
i
on event fAij(0) = rig.

In a similar way, we de�ne a corresponding event �e indicating that processes Aij(t) with eij = 0

do not have long On periods at time t = 0, i.e.,

�e ,

\
i;j: eij=0

fAij(0) = ri; infft > 0 : Aij(�t) = 0g > teg:

Now, QB;c

A
(�te) � 0 and Proposition 2.1 imply QB;c

A
(0) � Q

B;c�jej�r

Ae
(0) on event 	e, where

Q
B;c�jej�r

Ae
(�te) = 0 and Ae is de�ned by (3.3). Then, since for all di�erent e 2 O� events f	e\�eg

are disjoint, by Lemma 2.1 one obtains

P[QB;c

A
(0) � B �K] �

X
e2O�

P[QB;c

A
(0) � B �K; �e; 	e]

�

X
e2O�

P[Q1;Ae

c�jej�r
(0) � K; �e; 	e]

�

 ^
e2O�

P[Q1;Ae

c�jej�r
(0) � K; �e]

! X
e2O�

P[	e]; (3.7)

where Q1;Ae

c�jej�r
is de�ned by recursion (2.3) and the initial condition Q1;Ae

c�jej�r
(�te) = B; the last

inequality follows from the independence of Ae and A�Ae. The preceding inequality and P[�e]! 1

as B !1 lead to

limB!1

P[QB;c

A
� B �K]

P̂ (B)
� limB!1

^
e2O�

P[Q1;Ae

c�jej�r
(0) � K] limB!1

P
e2O�

P[	e]

P̂ (B)
:

At this point, by recalling the de�nition of 	e, counting the number of identical elements in the

above sum, using the fact that � e
i
2 IR, Lemma A.6 and passing � # 0 in the preceding inequality,

we obtain

limB!1

P[QB;c

A
� B �K]

P̂ (B)
� lim �#0 limB!1

^
e2O�

P[Q1;Ae

c�jej�r
(0) � K]: (3.8)

Finally, using the standard queueing re
ection mapping argument, quantity Q1;Ae

c�jej�r
(0) can be

represented as

Q1;Ae

c�jej�r
(0) = sup

�te�s�0

�
(c� jej � r)jsj �

Z 0

s

Ae(u) du

�_�
B + (c� jej � r)te �

Z 0

�te

Ae(u) du

�
;

12



where _ denotes the maximum. Then, the stationarity leads to

P[Q1;Ae

c�jej�r
(0) � K] � P

�
sup
s�0

�
(c� jej � r)jsj �

Z 0

s

Ae(u) du

�
� K

�

� P

�
t�1
e

Z
te

0

Ae(u) du� EAe � �
�

1 + �
(c� jej � r+ (n� jej) � �)

�
(3.9)

and by the facts that the supremum in the �rst term is equal to the workload in a stable queue

and that process Ae is stationary and ergodic one obtains

limK!1 lim �#0 limB!1P[Q
1;Ae

c�jej�r
(0) � K] = 1: (3.10)

The preceding limit and (3.8) yield the lower bound for the �rst statement.

Lower bound for the second statement. Note that in this case 	e � fQB;c

A
(0) = Bg and,

therefore, (3.7) simpli�es to

P[QB;c

A
(0) = B] �

X
e2O�

P[	e]:

By dividing the preceding inequality with P̂ (B), taking lim as B ! 1, recalling (3.6), using

� e
i
2 IR and letting � # 0 we obtain the lower bound for the second statement and conclude the

proof of the theorem. 3

Our second primary result characterizes the asymptotic behavior of the average loss rate.

Theorem 3.2 Let rm =m �r+(n�m) ��. If � e
i
2 IR for 1 � i �M , then under Assumption 3.1

as B !1

�B
� �̂(B) ,

X
m2O

(rm � c)
MY
i=1

�
ni
mi

��
pi P

�
� ei >

B

rm � c

��mi

:

Remark 3.4 (i) Recall that the loss probability is computable from PB = �B=EA. (ii) A related

result for a discrete time �nite bu�er queue loaded by a Pareto-like M/G/1 arrival process can

be found in [24]. In their proofs the authors exploit the Poisson decomposition property of the

arrival processes, which does not hold for the multiplexed On-O� processes. In addition, in [24] it

is assumed that the bu�er over
ows in a unique way.

Proof: Since the proof is very similar to the proof of Theorem 3.1, we omit some details.

Upper bound. Let Æ > 0 be suÆciently small, such that the queues QB;c�EAe�Æ

A�Ae
, e 2 O� [ U�,

Q
B;�i+Æ=N
Aij

have their service rates greater than the mean arrival rates, and QB;c�EAe�Æ

A�Ae
� 0 for all

e 2 U�. Then, recalling the de�nition of cm = c�m � r� (n�m) � �, (3.4) yields for 0 < � < 1

�B = E [(A � c)1fQB;c

A
= Bg]

�

X
e2O�

E

h
(A� c)1fQB;c�EAe�Æ

A�Ae
� �Bg

i
+ (n � r� c)P

" ^
e2O�[U�

QB;EAe+Æ
Ae

� (1� �)B

#

� (1 + o(1))
X
m2O

(m � r+ (n�m) � �� c)

MY
i=1

�
ni
mi

�
P
mi

h
QB;cm+ri�Æ
Ai1

� �B
i
;

13



where the last inequality follows from the independence of arrival processes, Lemmas 3.1, 3.2 and

Proposition 2.3. By dividing both sides of the preceding expression with �̂(B), taking lim as

B !1, and then passing � " 1 and Æ # 0, we obtain the upper bound.

Lower bound. Assume that all processes are in their stationary regimes. Note that for all T > 0

�B = E�B (0) = T�1
E

Z
T

0

�B(u) du

and recall the de�nitions of events 	e, �e and initial condition for Q1;Ae

c�jej�r
from the proof of the

lower bound in Theorem 3.1. Then, by using B �QB;c

A
(0) � Q1;Ae

c�jej�r
(0) on event 	e, we derive

�B
� T�1

X
e2O�

E

�Z
T

0

�B(u) du 1fQB;c

A
(0) � B �K; �e; 	eg

�

� T�1
X
e2O�

E

��
�K +

Z
T

0

A(u) du � cT

�
1
n
Q1;Ae

c�jej�r
(0) � K; �e; 	e

o�

,

X
e2O�

Le: (3.11)

Next, let �e , ^eij=1 infft > 0 : Aij(t) = 0g, i.e., �e is the �rst time after t = 0 that one of the

processes with a large On period is equal to zero. By the independence of Ae and A�Ae we lower

bound Le for every e 2 O� as follows

Le � �(KT�1 + c)P[Q1;Ae

c�jej�r
(0) � K; �e] P[	e]

+ T�1
E

�Z
T

0

Ae(u) du 1fQ
1;Ae

c�jej�r
(0) � K; �eg

�
P[	e]

+ jej � r T�1
E [(T ^ �e)1f	eg]P[Q

1;Ae

c�jej�r
(0) � K; �e]; (3.12)

where in the last term we used
R
T

0
(A(u) �Ae(u))du � (T ^ �e)jej � r. Now, for all �nite T , due to

� e
i
2 IR � L for all i and the independence of arrival processes, it follows that

limB!1

E [(T ^ �e)1f	eg]

P[	e]
� T limB!1P[T < �ej	e] = T:

Inequality (3.12), together with the preceding limit and P[�e]! 1 as B !1 implies

limB!1

Le
P[	e]

�
�
�KT�1

� c+ jej � r+ (n� jej) � �
�
limB!1P[Q

1;Ae

c�jej�r
(0) � K]

�n � r limB!1P[Q
1;Ae

c�jej�r
(0) > K]:

Hence, by setting T = K2, in view of (3.9), for any Æ > 0 there exist a large enough K and BÆ,

such that uniformly for all B � BÆ and e 2 O�

Le � (1� Æ)P[Q1;Ae

c�jej�r
(0) � K](r

jej
� c)P[	e];
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which, when replaced in (3.11), yields

�B
� (1� Æ)

 ^
e2O�

P[Q1;Ae

c�jej�r
(0) � K]

! X
e2O�

(r
jej
� c)P[	e]:

By dividing the preceding equation with �̂(B) and taking lim as B !1 we derive

limB!1

�B

�̂(B)
� (1� Æ) limB!1

 ^
e2O�

P[Q1;Ae

c�jej�r
(0) � K]

!
limB!1

P
e2O�

(r
jej
� c)P[	e]

�̂(B)
;

which after passing � # 0 and using Lemma A.6 results in

limB!1

�B

�̂(B)
� (1� Æ) lim �#0 limB!1

 ^
e2O�

P[Q1;Ae

c�jej�r
(0) � K]

!
:

Finally, by setting �rst Æ # 0, recalling (3.10) and then setting K ! 1 the lower bound follows.

This concludes the proof of the theorem. 3

For the case of homogeneous arrival processes (M = 1), the expressions for the loss rate and

over
ow probability admit the following simple forms.

Corollary 3.1 Homogeneous sources (M = 1). Let

P̂ (B) ,

�
N

m

��
p P

�
� e >

B

mr + (N �m)�� c

��m
:

If �N < c < rN , � e 2 IR and there is an integer m � 1 such that 0 < mr+ (N �m)�� c < r� �,
then

lim
K!1

limB!1

P[QB;c

A
� B �K]

P̂ (B)
= lim

K!1

limB!1

P[QB;c

A
� B �K]

P̂ (B)
= 1;

and as B !1

�B
� (mr + (N �m)�� c)P̂ (B):

If in addition mr > c, then P[QB;c

A
� B �K] � P[QB;c

A
= B] � P̂ (B) as B !1 for all K � 0.

Next, we allow for some of the multiplexed arrival processes to have lighter then polynomial

tails; we term these processes subpolynomial. A stationary, ergodic and right-continuous process

A(t) is subpolynomial (A 2 SP) if for all c > EA(t) and � > 0 the stationary workload of the

corresponding in�nite bu�er queue Q1;c

A
satis�es

lim
B!1

B�
P[Q1;c

A
� B] = 0:

This is satis�ed for a general class of exponentially bounded arrival processes (see [12, 34]). It also

holds for some heavy-tailed processes, e.g., On-O� processes with Weibull On periods, P[� > x] =

e�x
b

, 0 < b < 1, x � 0 (see Theorem 2.1). Note that if A1; A2 2 SP then A1 + A2 2 SP . This

easily follows from the well known fact that Q1;c1+c2
A1+A2

is stochastically dominated by Q1;c1

A1
+Q1;c2

A2
,

ci > EAi (an in�nite bu�er equivalent of Proposition 2.1). Thus, we will use ASP to denote

the aggregate process of all arriving subpolynomial processes. The following corollary yields the

reduce load equivalence results for multiplexing subpolynomial and intermediately regularly varying

processes.
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Corollary 3.2 Suppose that ASP 2 SP and Assumption 3.1 is satis�ed with (c� EASP ) in place

of c. If � e
i
2 IR for 1 � i �M , then

lim
K!1

limB!1

P[QB;c

A+ASP
� B �K]

P[QB;c�EASP

A
� B �K]

= lim
K!1

limB!1

P[QB;c

A+ASP
� B �K]

P[QB;c�EASP

A
� B �K]

= 1;

and, if for some Æ > 0, EA1+Æ
SP

<1, then as B !1

�
B;c

A+ASP
� �

B;c�EASP

A
:

Proof: First, by stochastic dominance, for any c > EASP , P[Q
1;c

ASP
� B�K] � P[QB;c

ASP
� B�K],

and therefore, for any � > 0

lim
B!1

B�
P[QB;c

ASP
� B �K] = 0: (3.13)

Then, by Proposition 2.1, for any 0 < Æ < c� EASP and 0 < � < 1

P[QB;c

A+ASP
� B �K] � P[QB;c�EASP�Æ

A
� �(B �K)] + P[QB;EASP+Æ

ASP
� (1� �)(B �K)]: (3.14)

Next, recall the de�nition of P̂ (B) � P̂ (B; c0), c0 = c � EASP from Theorem 3.1. Clearly, P̂ (B)
belongs to IR, and thus, there exists a �nite � such that for all suÆciently large B

P̂ (B) �
1

B�
; (3.15)

see equation (1.6) of [29]. Now, by dividing (3.14) with P̂ (B), taking lim as B ! 1, using

Theorem 3.1, (3.13) and (3.15), and then passing � " 1, Æ # 0 we complete the proof of the upper

bound.

The upper bound for the loss rate is obtained by using the same approach and, instead of (3.14),

�
B;c

A+ASP
= E [(A +ASP � c)1fQB;c

A+ASP
= Bg]

� E [(A +ASP � c)1fQB;c�EASP�Æ

A
� �Bg] + E [(A +ASP � c)1fQB;EASP+Æ

ASP
� (1� �)Bg]

� E [(A + EASP � c)1fQB;c�EASP�Æ

A
� �Bg]

+ (EA � c)P[QB;EASP+Æ
ASP

� (1� �)B] +
�
EA1+Æ

SP

� 1

1+Æ
�
P[QB;EASP+Æ

ASP
� (1� �)B]

� Æ

1+Æ

;

where the last inequality follows from the independence of A and ASP , and H�older's inequality.

The proofs of the lower bounds can be done in the same spirit as in Theorems 3.1 and 3.2.

These proofs only require that ASP satis�es the Strong Law of Large Numbers, which follows from

the stationarity and ergodicity. To avoid repetition we omit the details. 3

4 Numerical Experiments

In this section we illustrate through simulation experiments the precision of Theorems 3.1 and 3.2,

or more precisely Corollary 3.1, in approximating the over
ow probabilities and loss rates for �nite

bu�er sizes. Since the asymptotic results are insensitive to the distribution of O� periods we choose
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their distribution to be exponential P[� > x] = e��x; x � 0; On periods are selected from Pareto

family P[� > x] = x��, x � 1, � > 1. We select � in the range of recently measured �le sizes

(� = 1:44, see Figure 1). The asymptotic approximation from Corollary 3.1 computes explicitly to

P̂ (B) =

�
N

m

�h p

�B��1
(mr + (N �m)�� c)��1

im
; (4.1)

where p = ��=(�� + � � 1) and � = rp. To ensure an increased accuracy of our simulation

experiments we select the length of the simulated sample path to be t = 1010.

Example 1 Here, we select N = 10 i.i.d. On-O� processes with parameters � = 0:012; � = 1:3
and r = 2, which yield p = 0:05 and � = 0:1. For the choice of capacity c = 5 we simulated the

over
ow probabilities for bu�er sizes B = 100i, i = 1; : : : ; 10. The results of the simulation are

presented in Figure 3 with \+" symbols. The selected parameters render m = 3 for the asymptotic

approximation P̂ (B), as de�ned in (4.1). Note that mr > c and, therefore, we can use the last

statement of Corollary 3.1 to approximate P[QB = B]. The accuracy of the approximation, plotted
on the same �gure with dashed lines, is apparent.
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Figure 3: Illustration for Example 1

Example 2 In this example we choose N = 50, � = 3:37 10�3, � = 1:5, r = 3, which imply

p = 0:01 and � = 0:03. Now, for the same capacity c = 5, we readily compute m = 2, the

asymptotic formula �̂(B) = (mr + (N �m)�� c)P̂ (B) and repeat the same simulation procedure

as in Example 1. The results of the simulation and approximation are plotted with "+" symbols

and dashed lines, respectively. Again, the approximation matches well the simulated estimates even

for relatively high probabilities.

Additional experimental validation of our asymptotic results can be found in [21].

17



0 100 200 300 400 500 600 700 800 900 1000
10

−4

10
−3

10
−2

10
−1

Buffer size, B

Lo
ss

 r
at

e

Figure 4: Illustration for Example 2

5 Concluding Remarks

We considered a �nite bu�er 
uid queue fed by a superposition of heterogeneous heavy-tailed

On-O� processes. Explicit and asymptotically exact formulas were derived for approximating the

over
ow probability and loss rate in the case when excess On periods are intermediately regularly

varying. The potential of using the obtained asymptotic formulas in the non-limiting regime was

demonstrated with simulation experiments. The results provide important insight into qualitative

tradeo�s between the over
ow probability, o�ered traÆc load, available capacity and bu�er space.

6 Proofs

This section contains the proof of Proposition 2.4. The proof is based on the subsequent three

lemmas which derive preliminary results on a discrete time �nite bu�er queue, de�ned as follows.

Consider two i.i.d. sequences of positive random variables fX;Xng and fY; Yng; n 2 N. LetWB
0 = 0

and

WB

n+1 =
�
(WB

n +Xn+1) ^B � Yn+1

�+
: (6.1)

Assuming that P[Xn = Yn] < 1, in Chapter III.5 of [8] it was shown that WB
n has a unique

stationary distribution, and that for any initial condition WB
0 , WB

n converges to that stationary

distribution. Let WB be a random variable that is equal in distribution to WB
n in stationarity.

Lemma 6.1 If Xe
2 IR and EX < EY , then

lim
Æ"1

limB!1

P[WB
� ÆB]

P[Xe � B]
= 0:

Proof: Instead of proving the statement for WB directly, we will consider an easier to analyze

queueing process V B that stochastically upper bounds WB. Let fV B
n g

1

n=0 be de�ned by V B
0 = 0

and

V B

n+1 = (V B

n +Xn+1 � Yn+1)
+
^B:
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The above recursion is similar to (6.1) and under the non-triviality condition P[Xn = Yn] < 1, V B
n

converges to a stationary distribution (see Chapter III.4 of [8]); again, let V B be a random variable

that is equal in distribution to V B
n in stationarity. Now, we show that WB

n � V B
n for all n � 0.

Clearly, this is implied by WB
0 = V B

0 = 0 and the next inductive step

WB

n+1 =
�
(WB

n +Xn+1) ^B � Yn+1

�+
� (V B

n +Xn+1 � Yn+1)
+
^B = V B

n+1;

where the inequality follows from

(x ^B � y)+ � (x ^B � y ^B)+ � (x� y)+ ^B;

for x; y � 0. Therefore, it will be enough to prove the statement of the lemma with WB being

replaced by V B .

First, we restrict our attention to the case of fXng
1

n=1, fYng
1

n=1 being lattice valued and Y
bounded. Without loss of generality we assume that Xn and Yn are integer valued. Let qB

i
,

P[V B = i] and �B
i
, qB

i
=qB0 for 0 � i � B �1, B 2 N (B =1 represents the in�nite bu�er case).

Lemma 1 from [17] yields for all B � 0

P[V B
� ÆB] �

BX
i=bÆBc

qB0 �
B

i �

BX
i=bÆBc

�Bi

�

BX
i=bÆBc

�
�1i +K2P[V

B +X � Y > B]�B�i
�
;

where K2 is a positive constant, � < 1 if P[Yn = 0] + P[Yn = 1] < 1, and � = 0, otherwise. Next,

the preceding inequality and Lemma 2 from [17] imply

P[V B
� ÆB] �

1

q10
P[ÆB � V1

� B] + 1f� 6= 0g
K2

1� �
o (P[Xe > B]) :

Thus,

limB!1

P[V B
� ÆB]

P[Xe � B]
�

1

q10

�
limB!1

P[V1
� ÆB]

P[Xe � B]
� limB!1

P[V1
� B]

P[Xe � B]

�
:

which, by Pakes' theorem [27] and Xe
2 IR results in

lim
Æ"1

limB!1

P[V B
� ÆB]

P[Xe � B]
= 0:

This proves the result for lattice valued X and Y , with Y being bounded. Next, we use the

technique from [17, pp.98-99] to extend the result to the general case of non-lattice valued X, Y
with Y unbounded.

If Y is unbounded we can always choose a truncated service variable Y d
n = Yn ^ d, with d being

suÆciently large to satisfy the stability condition EXn < EY d
n . Let WB;d

n be a process satisfying

recursion (6.1) with the process Y d
n in place of Yn. It is clear that the stationary workload for this

queue WB;d is stochastically larger than the original workload WB, i.e., P[WB
� ÆB] � P[WB;d

�
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ÆB]. Therefore, since the lemma holds for process WB;d, it is true for WB as well. When X and

Y are non lattice, we can approximate them with lattice valued random variables X 0 and Y 0. For

any � > 0 such that EY � EX + 2� < 0, de�ne distribution functions for Y 0 and X 0 as

P[Y 0 = i�] = P[i� � Y < (i+ 1)�]; i � 0;

P[X 0 = i�] = P[(i � 1)� � X < i�]; i � 1:

>From these de�nitions it follows that for all x � 0

P[Y > x+�] � P[Y 0 > x] � P[Y > x];

P[X > x] � P[X 0 > x] � P[X > x��];

which implies that X 0
� Y 0 is stochastically larger that X � Y , EX 0

� EX +� < EY �� � EY 0,

and Z
1

B

P[X 0 > u] du �

Z
1

B

P[X > u] du as B !1: (6.2)

Next, let fX 0

ng
1

n=1 and fY
0

ng
1

n=1 be two independent i.i.d. sequences with probability distributions

equal to distributions of X 0 and Y 0, respectively. Consider a queue W 0B with bu�er B that

corresponds to sequences fX 0

ng
1

n=1 and fY
0

ng
1

n=1. Then, the newly constructed queueing process,

W 0B, dominates the original queueing process in distribution

P[WB
� ÆB] � P[W 0B

� ÆB]:

Finally, the preceding inequality and (6.2) imply

limB!1

P[WB
� ÆB]

P[Xe � B]
� limB!1

P[W 0B
� ÆB]

P[X 0e � B]
;

which, by using the already proved lattice case and letting Æ " 1 yields the desired result. This

concludes the proof. 3

Lemma 6.2 If Xe
is independent of WB

, Xe
2 IR and EX < EY , then

lim
�"1

limB!1

P[Xe +WB
� �B]

P[Xe � B]
= 1:

Proof: Let � 2 (0; 1). For all Æ 2 (0; �=2) a simple argument leads to

P[Xe +WB
� �B] � P[Xe

� (�� Æ)B] + P[Xe +WB
� �B;Xe < (�� Æ)B]

� P[Xe
� (�� Æ)B] +

1

EX

Z (��Æ)B

0

P[WB
� �B � x]P[X � x] dx: (6.3)

Next, we bound the second term in (6.3) as follows

Z
ÆB

0

P[WB
� �B � x]P[X � x] dx � EXP[WB

� (�� Æ)B];
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and Z (��Æ)B

ÆB

P[WB
� �B � x]P[X � x] dx � P[WB

� ÆB](�� 2Æ)BP[X � ÆB];

which together with Lemma A.5 results in

limB!1

R (��Æ)B

0
P[WB

� �B � x]P[X � x] dx

P[Xe � B]
� EX limB!1

P[WB
� (�� Æ)B]

P[Xe � B]
: (6.4)

By dividing (6.3) with P[Xe
� B], taking lim with respect to B, and using (6.4) we obtain

limB!1

P[Xe +WB
� �B]

P[Xe � B]
� limB!1

P[Xe
� (�� Æ)B] + P[WB

� (�� Æ)B]

P[Xe � B]
:

Hence, by letting Æ # 0, � " 1 and invoking Lemma 6.1 in the preceding inequality the desired

statement follows

1 � lim
�"1

limB!1

P[Xe +WB
� �B]

P[Xe � B]
� 1:

3

Lemma 6.3 Let X, Y e
and WB

be mutually independent. If Xe
2 IR and EX < EY , then

lim
�"1

limB!1

P[(WB +X) ^B � Y e
� �B]

P[Xe � B]
= 0:

Proof: Let � 2 (0; 1). For all Æ 2 (0; �) we write

P[(WB +X) ^B � Y e
� �B] � P[WB +X � �B]

� P[WB
� (�� Æ)B] + P[X � ÆB];

which, jointly with Lemmas A.5 and 6.1, leads to

lim
�"1

limB!1

P[Xe +WB
� �B]

P[Xe � B]
� lim

�"1
lim
Æ#0

limB!1

P[X � ÆB] + P[WB
� (�� Æ)B]

P[Xe � B]
= 0:

3

At this point we are able to provide a proof of Proposition 2.4.

Proof of Proposition 2.4: Let Xn+1 = (r�c)�n+1, Yn+1 = c�n+1 in (6.1) and assume thatW
B
n is

in its stationary regime. Then, WB
n represents the amount of 
uid in a queue with a single On-O�

arrival process observed at the beginnings of On periods. Thus, by evaluating QB(t) in stationarity
at time (say) t = 0 we derive (for simplicity of notation we leave out the time index)

P[QB
� �B] = P[A = 0; (WB + (r � c)�) ^B � c�e � �B] + P[A = r; WB + (r � c)� e � �B]

= (1� p)P[(WB + (r � c)�) ^B � c�e � �B] + pP[WB + (r � c)� e � �B]:

Then, by dividing the preceding equality with P[(r � c)� e � B], applying the operator
lim�"1 limB!1, and using Lemmas 6.2, 6.3 and Proposition 2.2 we complete the proof. 3
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Appendix: Heavy-Tailed Distributions

This appendix contains a brief introduction to heavy-tailed and subexponential distributions.

First, we introduce a family of long-tailed distribution functions. This is the largest operational

class of heavy-tailed distributions. Let X be a random variable with distribution function F .

De�nition A.1 A nonnegative r.v. X is called long-tailed, X 2 L, if

lim
x!1

1� F (x� y)

1� F (x)
= 1; 8y 2 R:

The following class of heavy-tailed distributions was introduced by Chistyakov [5].

De�nition A.2 A nonnegative r.v. X is called subexponential, X 2 S, if

lim
x!1

1� F 2�(x)

1� F (x)
= 2;

where F 2�
denotes the 2-fold convolution of F with itself, i.e., F 2�(x) =

R
1

0
F (x� y)F (dy).

It is well known that S � L [3]. A survey on subexponential distributions can be found in [13].

The class of intermediately regularly varying distributions IR is a subclass of S.

De�nition A.3 A nonnegative r.v. X is called intermediately regularly varying, X 2 IR, if

lim
�"1

lim x!1

1� F (�x)

1� F (x)
= 1:

Regularly varying distributions R�, which contain Pareto distribution, are the best known

examples from IR (R� � IR).

De�nition A.4 A nonnegative r.v. X is called regularly varying with index �, X 2 R�, if

F (x) = 1�
l(x)

x�
; � � 0;

where l(x) : R+ ! R+ is a function of slow variation, i.e., limx!1 l(�x)=l(x) = 1; � > 1.

We conclude the appendix with three basic lemmas on IR distributions.

Lemma A.4 Let X 2 IR and � 2 (0; 1), then

sup
x2[0;1)

1� F (�x)

1� F (x)
<1:

Proof: Follows immediately from the de�nition. 3

Lemma A.5 If Xe
2 IR, then

lim x!1

xP[X � x]

P[Xe � x]
<1:
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Proof: For any Æ 2 (0; 1) by de�nition of F e

xP[X � x]

P[Xe � x]
�

P[Xe
� Æx]

P[Xe � x]

xP[X � x]EXR
x

Æx
P[X � u] du

�
P[Xe

� Æx]

P[Xe � x]

EX

1� Æ
:

Hence, the result follows by Lemma A.4

lim x!1

xP[X � x]

P[Xe � x]
�

EX

1� Æ
lim x!1

P[Xe
� Æx]

P[Xe � x]
<1:

3

For any bounded nondecreasing function F we say that F 2 IR if it satis�es De�nition A.3.

Then, the following lemma follows directly from the de�nition.

Lemma A.6 If F1; F2 2 IR, then

(i) F1F2 2 IR,

(ii) w1F1 + w2F2 2 IR, for w1; w2 > 0.
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