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We consider a set of fluid On-Off flows that share a common server of capacity c and
a finite buffer B. The server capacity is divided using Generalized Processor Sharing
scheduling discipline. Each flow has a minimum service rate guarantee that exceeds
its long term average demand ρi. The buffer sharing is unrestricted as long as there is
available space; if the buffer is full, the necessary amount of fluid from the most demanding
flows is discarded. When the On periods are heavy-tailed, we show that the loss rate of a
particular flow i is asymptotically equal to the loss rate in a reduced system with capacity
c − Σj �=iρj and buffer B, where this flow is served in isolation. In particular, each flow
perceives to have the whole buffer B to itself. This insight provides a new guideline for
efficiently engineering differentiated quality of service in integrated multimedia networks.

1. INTRODUCTION

Modern communication networks are engineered to carry a diverse spectrum of mul-
timedia services, ranging from real-time traffic, such as voice and video, to various data
and Web related applications. These services have different Quality of Service (QoS)
requirements, e.g., real-time services have stringent delay requirements, but can tolerate
relatively high losses. On the other hand, data related services typically could tolerate
larger delays, but need minimal or no losses. Providing the QoS differentiation in inte-
grated multimedia networks is usually achieved through priority scheduling mechanisms.
The most popular scheduling schemes, e.g. Weighted Fair Queueing, are based on Gen-
eralized Processor Sharing (GPS) algorithm. These algorithms offer the flexibility for
providing high degree of service differentiation, extracting statistical multiplexing gains
as well as protecting individual flows from the ones with high service demands.
Rigorous investigation of stochastic systems with GPS dates back to [9]; see also [9]

for some earlier references. This work was centered around the problem of time-shared
computer systems. Renewed interest in GPS stems from the previously mentioned net-
working application. Recent results for traffic models with exponential characteristics can
be found in [1,18,20,21]. However, comprehensive statistical measurements in currently
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deployed networks have found repeated evidence of the presence of high degree of sta-
tistical dependency and variability, often referred to as self-similarity, in network traffic
streams, e.g., see [16,10,15,7,19]. The most common approaches to modelling these intri-
cate statistical phenomena is through long-range dependent Gaussian processes, such as
Fractional Browninan Motion, and heavy-tailed semi-Markov type processes, e.g., On-Off
processes. In this paper we focus on the latter.
Motivated by these empirical findings, a series of research studies that develop new

analytical techniques for evaluating stochastic heavy-tailed queueing systems have ap-
peared. In particular, very recent investigations of the behavior of GPS in the presence
of heavy-tailed arrival streams can be found in [2–6]; the reader may consult the same
papers for additional references on processor sharing and heavy tails. These papers con-
sider a system with finite number of heavy-tailed sessions each of which is queued into an
infinite buffer queue; the content of the queues is served by a single server that is sched-
uled using GPS. When the GPS weights are appropriately chosen, these studies show that
each session experiences the same queueing behavior as if it were served in isolation with
an appropriate constant capacity. However, if the weights are not properly engineered,
the flows may experience induced burstiness [3,6]; these results stress the importance of
properly selecting the GPS weights.
In this paper we investigate a queueing system in which the heavy-tailed On-Off ses-

sions share a single finite buffer B. The buffer sharing is unrestricted as long as there is
available space; if the buffer is full, the necessary amount of fluid from the most demand-
ing flows is discarded. The flows share a common server according to GPS scheduling
discipline. A formal description of our model and some preliminary results are presented
in Sections 2 and 3, respectively. When each flow receives the minimum service rate guar-
antee that exceeds its long-term average demand ρi, our main result, stated in Theorem
4.1 of Section 4, shows that the loss rate of a particular flow i is asymptotically equal
to the loss rate in a reduced system with capacity c − ∑

j �=i ρj and buffer B, where this
flow is served in isolation. In other words, each flow perceives to have the entire buffer
to itself. This finding complements the result derived in [2]. The new qualitative insight
may prove useful in deciding on whether to engineer buffers at the periphery or in the
core of the network. Numerical validation of our main result is exemplified in Section 5.
It is worth observing that the derived asymptotic approximation yields accurate results
even for relatively large probabilities in the range of 10−2−10−3. Concluding remarks are
presented in Section 6.

2. MODEL DESCRIPTION

Consider N independent On-Off flows Ai(t), 1 ≤ i ≤ N . An On-Off flow consists of
an alternating sequence of independent activity and silence periods. Activity and silence
periods of the ith flow are equal in distribution to τ on

i and τ off
i , respectively. Assume that

τ on
i and τ off

i are almost surely (a.s.) positive and that their expectations Eτ on
i and Eτ off

i

are finite. During an activity period flow i generates fluid at constant rate Ai(t) = ri and
for a period of silence Ai(t) = 0. Suppose that Ai(t) is right-continuous and stationary;
for a precise construction see [11]. Then, the stationary probability that flow i is active
and its long term average rate are equal to pon,i = P[Ai(t)=ri] = Eτ on

i /(Eτ on
i +Eτ off

i ) and
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ρi = EAi(t) = pon,iri, respectively.
These On-Off flows share a common server of capacity c and a buffer space of size B.

Let Wi(t) be the unfinished work of flow i at time t,
∑

Wi(t) ≤ B. The server capacity
is split among flows according to GPS scheme. Each flow i is assigned a weight φi > 0
such that

∑N
i=1 φi = 1. Weight φi represents the guaranteed share of the server capacity

for flow i. Available excess capacity is redistributed among flows according to the GPS
weights φi. Service rates ci(t) for each flow i at time t can be computed by using a
recursive algorithm described in [8, pp. 4-5]. Let E(t) be the set of flows with Wi(t) = 0,
which are receiving service at rate ci(t) = Ai(t), i.e. E(t) � {i : Wi(t)=0, ci(t)=Ai(t)}.
We would like to observe that E(t) = {i : Wi(t)=0} almost everywhere (a.e.) Lebesgue.
Therefore, using this property and the characteristics of GPS for any flow i �∈ E(t), rate
ci(t) satisfies

ci(t) =
φi

(
c− ∑

j:Wj(t)=0 Aj(t)
)

∑
j:Wj(t)>0 φj

≥ cφi a.e. (2.1)

Buffer sharing is unrestricted as long as there is available space, i.e., the workloads
evolve as if they were in the infinite buffer system. When the buffer fills up, the flows
with the maximum amount of fluid Wi(t) in the buffer are subject to penalty. They will
experience the minimum necessary loss of fluid such that the flows with smaller workloads
can be accommodated. Possible extensions to more general buffer sharing policies will be
briefly discussed at the end of Section 4.
More formally, following the approach from [8], the evolution of Wi-s can be described

with a set of differential equations. In order to account for the finiteness of the buffer
space we define

D(t) =

{
i : Wi(t) = max

1≤j≤N
Wj(t),

N∑
j=1

Wj(t) = B

}

with |D(t)| denoting the cardinality of D(t); note that D(t) is nonempty only if the buffer
is full. The elements of D(t) are flows that could potentially experience losses at time t.
Let M(t) be the largest subset of D(t) such that for all i ∈ M(t) the following inequality
holds

Ai(t)−ci(t) > −|M(t)|−1
∑

j �∈M(t)

(Aj(t)− cj(t)).

The workloads of the flows in M(t) will be reduced according to

Ẇi(t) = −|M(t)|−1
∑

j �∈M(t)

(Aj(t)− cj(t)) ;

this reduction is necessary to ensure
∑

Wi = B. Next, it is not very difficult to see that
M(t) = D(t) a.e. (Lebesgue). Thus, the evolution of the individual workloads is a.e.
described by the following set of differential equations

Ẇi(t) =



0 if i ∈ E(t),

−|D(t)|−1
∑

j �∈D(t) (Aj(t)− cj(t)) if i ∈ D(t),

Ai(t)− ci(t) otherwise.

(2.2)
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The functions Wi(t) are absolutely continuous and therefore sets of Lebesgue measure
zero can be ignored for purpose of their characterization [8]. Hence, the system of equa-
tions (2.2) completely defines the behavior of the system.
We assume that this system of equations has a unique stationary solution and, unless

otherwise specified, Wi(t) will be used to denote this solution. Let Ai, ci , Wi be random
variables equal in distribution to Ai(t), ci(t), Wi(t) in stationarity, respectively.
The main objective of this paper is the asymptotic computation of the long-term average

loss rate for a given flow as the buffer size grows to infinity. We say that flow i is overflowing
at time t if Ai(t)−ci(t) > Ẇi(t). The instantaneous loss rate process for flow i is defined as

γB
i (t) � Ai(t)− ci(t)−Ẇi(t), (2.3)

and its expected loss rate is equal to ΓB
i = EγB

i (t). Note that the buffer management
policy implies

{
Ai(t)− ci(t) > Ẇi(t)

}
⊆

{
Wi(t) ≥ B/N,

N∑
i=1

Wi(t) = B

}
. (2.4)

This inclusion is a simple consequence of the fact that if the buffer is full andWi(t) < B/N ,
then there exists a flow j with higher workload than that of flow i, which contradicts the
fact that flow i is experiencing losses. It is worth mentioning that the described queueing
system is work- and buffer-conserving. Work-conservation follows from the properties of
GPS; buffer-conservation means that no flow will experience loss of fluid unless the buffer
is full.

3. PRELIMINARY RESULTS

This section contains preliminary sample path bounds and some of the existing results
from the literature on fluid queues with heavy-tailed On-Off flows that will be used in
deriving our main results.

3.1. Sample path bounds
We start with an introduction of a finite buffer queuing process that will be used

to bound the workload processes in the GPS system with buffer sharing that we have
described in Section 2. Consider a fluid queue with constant capacity c, finite buffer B
and arrival process A(t). Informally, at time t, fluid arrives to this system at rate A(t)
and is leaving the system at rate c. When the queue level reaches the buffer limit B fluid
arriving in excess of the draining rate c is lost. We use QB,c

A (t) ∈ [0, B] to denote the
queue content at time t.
In this paper we only consider arrival processes A(t) that are piece-wise constant and

right continuous with a.s. increasing jump times {T0 = 0 < T1 < T2 < · · · }. In this case,
for any initial value QB,c

A (0) and t ∈ (Tn, Tn+1], n ≥ 0, the evolution of QB,c
A (t) is given by

QB,c
A (t) = min

(
(QB,c

A (Tn) + (t− Tn)(A(Tn)− c))+, B
)
, (3.1)

where (x)+ = max(0, x). When A(t), i.e. {(Tn+1 −Tn), A(Tn)}, is stationary and ergodic,
and EA(t) < c, by using Loynes’ construction [17], one can show that recursion (3.1) has
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a unique stationary and ergodic solution. Furthermore, for all initial conditions QB,c
A (0),

the distribution of QB,c
A (t) converges to that stationary solution as t → ∞. Let QB,c

A and
A be random variables that are equal in distribution to QB,c

A (t) and A(t), respectively.
The loss rate for the described system, ΛB,c

A , is defined as

ΛB,c
A � E[(A− c)1{QB,c

A = B}].

Proposition 3.1 If Wi(t) ≤ QB,φic
Ai

(t) for t = 0, then the inequality holds for all t ≥ 0.

Proof: Follows from inequality (2.1) and the fact that the portion of the buffer available
to Wi(t) is not greater than B. ✸

In order to simplify the notation we set A(t) =
∑N

i=1 Ai(t), r =
∑N

i=1 ri, A−i(t) =∑
j �=i Aj(t) and ρ−i =

∑
j �=i ρj. The second sample path bound formalizes an intuitively

expected notion that multiplexing reduces the aggregate queueing workload. The proof
of the following proposition can be found in [11].

Proposition 3.2 If Q
B,

∑N
n=1cn

A (t)≤∑N
n=1Q

B,cn

An
(t) for t=0, then the inequality holds for

all t ≥ 0.

Here, we state another sample path bound from [11]. This bound will be used to limit
the amount of free buffer space in a finite buffer queue. Let quantity Q∞,A

c (t) represent
the workload in an infinite buffer fluid queue with constant arrival rate c and variable
service rate A(t).

Proposition 3.3 If B−QB,c
A (t)≤Q∞,A

c (t) for t=0, then the inequality holds for all t≥0.

3.2. Queueing results
This subsection consists of the known results on fluid queues with heavy-tailed On-Off

flows that will be used in proving our main result. In the analysis of renewal processes
residual (or excess) random variables and distribution functions play an important role.
For a non-negative random variable X with distribution F and finite mean EX, the
residual distribution Fr is defined by Fr(x) = (EX)−1

∫ x

0
(1− F (u))du, x ≥ 0. A random

variable Xr with d.f. Fr is called the residual variable of X. Throughout the paper, for
any two real functions f(x) and g(x), we use the frequently used notation f(x) ∼ g(x) as
x→∞ to denote limx→∞ f(x)/g(x)=1 or equivalently f(x) = g(x)(1 + o(1)) as x → ∞.
The theorem below summarizes the results from [14,13] in the case when the arrival

process is a single On-Off flow. Common heuristic explanation of this theorem comes
from identifying the most likely buffer overflow scenario, which, in this system, is due to
an isolated very long On period. Classes of heavy-tailed distributions IR, S (IR ⊂ S)
are defined in Appendix.

Theorem 3.1 Let ri>c>ρi and τ on
i,r ∈ S. Then, as B → ∞

ΛB,c
Ai

(ri−c)−1 = P[QB,c
Ai

= B] ∼ KP[Q∞,c
Ai

> B] ∼ pon,iP

[
τ on
i,r >

B

ri − c

]
,
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where K < ∞. Furthermore, if τ on
i,r ∈ IR then

lim
ε↑1

lim
B→∞

P[QB,c
Ai

≥ εB]

P[QB,c
Ai

= B]
= 1.

The next theorem provides the asymptotic characterization of the aggregate loss rate in
a finite buffer queue with work-conserving scheduling discipline and, therefore, it applies
to the total workload

∑
Wi in our GPS model. Here, the most likely buffer overflow

arises when several very long On periods overlap. Typically, there is more than one way
to overflow, which is accounted for with a summation in the theorem. For a detailed proof
and experimental investigation of its accuracy see [11] and [12], respectively.

Theorem 3.2 Let rQ �
∑

j∈Q rj +
∑

j �∈Q ρj for all Q ⊆ {1, . . . , N} and

O � {Q : rQ − (rj−ρj) < c ≤ rQ,∀j ∈ Q} .
If τ on

i,r ∈ IR for 1 ≤ i ≤ N and rQ �= c for all Q ∈ O, then as B → ∞

ΛB,c
A ∼

∑
Q∈O

(rQ−c)
∏
j∈Q

pon,jP

[
τ on
j,r >

B

rQ − c

]
.

4. MAIN RESULT

Finally, we are ready to state our main result.

Theorem 4.1 Let φjc > ρj for all flows. If τ on
i ∈ IR and ri > c− ρ−i for some flow i,

then as B → ∞
ΓB

i ∼ Λ
B,c−ρ−i

Ai
.

Proof: Upper bound. Assume that all queueing processes below are equal to zero at time
t = 0. Based on definition (2.3) of the instantaneous loss rate and its non-negativity, the
following expression holds

γB
i (t) = (Ai(t)− ci(t)− Ẇi(t))1{Ai(t)− ci(t) > Ẇi(t)}

≤ (ri + A−i(t)− c)1{Ai(t)− ci(t) > Ẇi(t)}, (4.1)

where the last inequality follows from the fact that the buffer is full on event {Ai(t) −
ci(t) > Ẇi(t)} and the instantaneous loss rate of a single flow is upper bounded by the
total loss rate in the system. Inequality (4.1), inclusion (2.4), Propositions 3.1, and the
work-conserving property of the GPS scheduling scheme yield for all t ≥ 0

γB
i (t) ≤ (ri + A−i(t)− c)1

{
Wi(t) ≥ B/N,

N∑
i=1

Wi(t) ≥ B

}

≤ (ri + A−i(t)− c)1
{
QB,φic

Ai
(t) ≥ B/N, QB,c

A (t) ≥ B
}
.
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Next, the preceding inequality and Proposition 3.2 result in

γB
i (t) ≤(ri + A−i(t)− c)1

{
Q

B,c−ρ−i−δ
Ai

(t)≥εB
}

+ (r − c)1
{
Q∞,φic

Ai
(t)≥B/N

}
1
{
Q

∞,ρ−i+δ
A−i

(t)≥(1−ε)B
}

where we select ε ∈ (0, 1) and δ ∈ (0, c−ρi−ρ−i). Note that for any choice of ε and δ in
the given intervals all queueing processes in the last inequality are stable and converge
in distribution to proper random variables as t → ∞. Now, by independence of arrival
processes, the last inequality renders

ΓB
i ≤ (ri+ρ−i−c)P[Q

B,c−ρ−i−δ
Ai

≥εB]+(r−c)P[Q∞,φic
Ai

≥B/N ]P[Q
∞,ρ−i+δ
A−i

≥(1−ε)B].

Then, Theorem 3.1 and Lemma A.1 imply

lim
B→∞

ΓB
i

Λ
B,c−ρ−i

Ai

≤ lim
B→∞

P

[
Q

B,c−ρ−i−δ
Ai

≥ εB
]

P

[
Q

B,c−ρ−i

Ai
= B

] .

To complete the proof of the upper bound pass ε ↑ 1, δ ↓ 0 and use Theorem 3.1.
Lower bound. Assume that all processes are in their stationary regimes unless otherwise

specified. Let Gi(0, T ) be the amount of fluid lost from flow i in time interval (0, T ). Recall
that the loss rate is defined as EγB

i (t), where γB
i (t) is the instantaneous loss rate process

of flow i. Clearly, for all 0<T <∞

ΓB
i = EγB

i (0) = T−1
E

∫ T

0

γB
i (t)dt = T−1

EGi(0, T ). (4.2)

Next, define quantity ti � (1 + ε)B/(ri + ρ−i − c) and two families of events

αi
j � {Aj(0) = rj, inf{t > 0 : Aj(−t)=0} > ti},

ξi �
⋂
j �=i

{
αi,c

j ,
1

ti

∫ 0

−ti

Aj(t)dt > ρj − ε(ri+ρ−i−c)

(1 + ε)N
, Wj(0) ≤ B

2N

}
,

where (·)c represents the set complement operation. On event {Aj(0) = rj}, the sta-

tionarity of arrival process Aj(t) implies inf{t > 0 : Aj(−t) = 0} d
= τ on

i,r . Then, from
identity (4.2), the loss rate for flow i can be lower bounded by

ΓB
i ≥ T−1

E

[
Gi(0, T )1

{
αi

i, ξi,

N∑
k=1

Wk(0) ≥ B −K

}]
. (4.3)

Now, by using Proposition 3.3 and recalling that the considered system is work- and
buffer-conserving we obtain{
αi

i, ξi, K≥B−
N∑

k=1

Wk(0)

}
=

{
αi

i, ξi, K≥B−QB,c
A (0)

}

⊇
{
αi

i, ξi, K ≥ Q
∞,A−i

c−ri
(0)

}
, (4.4)
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where process Q
∞,A−i

c−ri
(t) denotes the workload of an infinite buffer queue with constant

arrival rate c− ri, service rate A−i and the initial condition Q
∞,A−i

c−ri
(−ti) = B. Using the

standard queueing reflection mapping argument quantity Q
∞,A−i

c−ri
(0) can be represented as

Q
∞,A−i

c−ri
(0) = max

(
sup

−ti≤s≤0

{
|s|(c− ri)−

∫ 0

s

A−idu

}
, B + (c− ri)ti −

∫ 0

−ti

A−idu

)
.

By noting that B + ti(c − ri) −
∫ 0

−ti
A−idu < 0 on event ξi, and ρ−i > c − ri we conclude

that on event ξi

Q
∞,A−i

c−ri
(0) ≤ sup

s≤0

{
|s|(c− ri)−

∫ 0

s

A−idu

}
d
= Q

∞,A−i

c−ri
(0) < ∞ a.s. (4.5)

Next, inequality (4.3) and inclusion (4.4) yield for all B > 2NTr

ΓB
i ≥ E

[(
−KT−1 + T−1

∫ T

0

A(u)du− c

)
1

{
Q

∞,A−i

c−ri
(0) ≤ K, αi

i, ξi

}]
,

due to the fact that on event ξi for large enough B the workloads of all flows other than i
are smaller than B/N for all t ∈ (0, T ) and, therefore, those flows do not experience loss
of fluid.
Now, let t∗i be the first time after t = 0 that flow i is not generating fluid, i.e. t∗i �

inf{t>0 : Ai(t)=0}. Then,

ΓB
i ≥− (KT−1 + c)P[Q

∞,A−i

c−ri
(0) ≤ K, αi

i, ξi]

+ T−1
E

[∫ T

0

A−i(u)du 1{Q∞,A−i

c−ri
(0) ≤ K, αi

i, ξi}
]

+ riT
−1

E

[
min(T, t∗i )1{Q∞,A−i

c−ri
(0) ≤ K, αi

i, ξi}
]
, (4.6)

where in the last term we used
∫ T

0
Ai(u)du ≥ ri min(T, t∗i ) on event αi

i. Next, we explore
asymptotic behavior of the three terms in the preceding equation. By the independence
of A−i(t) and Ai(t), the fact that limB→∞ P[ξi] = 1 and expression (4.5)

lim
B→∞

P[Q
∞,A−i

c−ri
(0)≤K, αi

i, ξi]

P[αi
i]

≥ P[Q
∞,A−i

c−ri
(0)≤K] (4.7)

and

lim
B→∞

E

[∫ T

0
A−i(u)du 1{Q∞,A−i

c−ri
(0)≤ K, αi

i, ξi}
]

P[αi
i]

≥ E

[∫ T

0

A−i(u)du 1{Q∞,A−i

c−ri
(0)≤K}

]

≥ E

[∫ T

0

A−i(u)du

]
− rTP[Q

∞,A−i

c−ri
(0)> K].

(4.8)
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Next, for all finite T , due to τ on
i,r ∈ IR ⊂ L and the independence of arrival processes, it

follows that

lim
B→∞

E

[
min(T, t∗i )1{Q∞,A−i

c−ri
(0)≤K, αi

i, ξi}
]

P[αi
i]

≥ TP[Q
∞,A−i

c−ri
(0)≤K] lim

B→∞
P[t∗i > T |αi

i]

= TP[Q
∞,A−i

c−ri
(0)≤K]. (4.9)

Inequality (4.6), together with (4.7), (4.8) and (4.9), implies

lim
B→∞

ΓB
i

P[αi
i]
≥

(
−K

T
+ ri − c+ E

[
1

T

∫ T

0

A−i(u)du

])
P[Q

∞,A−i

c−ri
(0)≤ K]−rP[Q

∞,A−i

c−ri
(0)> K].

The preceding inequality holds for all T > 0 and, therefore, passing T → ∞ renders

lim
B→∞

ΓB
i

Λ
B,c−ρ−i

Ai

≥
(
P[Q

∞,A−i

c−ri
(0)≤ K]− r

ri+ρ−i−c
P[Q

∞,A−i

c−ri
(0)> K]

)
lim

B→∞

P[τ on
i,r > (1+ε)B

ri+ρ−i−c
]

P[τ on
i,r > B

ri+ρ−i−c
]
.

Finally, by setting ε ↓ 0, recalling from (4.5) that Q
∞,A−i

c−ri
(0) is almost surely finite and

letting K → ∞ the proof of the lower bound follows. This completes the proof of the
theorem. ✸

Possible generalizations At this point we would like to discuss possible generalizations
of the preceding theorem. The strict stability condition cφi > ρi for all i represents a
natural engineering condition. However, from a theoretical perspective the behavior of
the system remains unclear if one or more flows have higher average demands than their
minimum guaranteed rates. The following corollary represents an easy extension of this
type. It states that a flow with guaranteed service rate lower than its expected rate will
not be asymptotically affected by other flows if the tail of that flow is sufficiently heavy.
In general, the problems of this kind are difficult and remain open.

Corollary 4.1 Let τ on
j ∈ IR for 1 ≤ j ≤ N and ri + ρ−i > c > ρ for some flow i. If

φjc > ρj for all j �= i and
∏

j∈Q P[τ on
j,r > x] = o

(
P[τ on

i,r > x]
)

for all sets Q ⊆ {1, . . . , N}
that satisfy

∑
j∈Q rj +

∑
j �∈Q ρj ≥ c, then as B → ∞

ΓB
i ∼ Λ

B,c−ρ−i

Ai
.

Proof: The upper bound is a direct consequence of inclusion (2.4) and Theorem 3.2. The
proof of the lower bound is the same as in Theorem 4.1. ✸

Careful examining of the proof of Theorem 4.1 shows that it holds for much more general
buffer management policies. In particular, this includes the GPS-like rules for buffer
management, which can be utilized to improve the behavior of the system for small queue
sizes.
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5. NUMERICAL EXAMPLES

In this section we present numerical validations of the obtained asymptotic results.
Consider a fluid queue with capacity c = 2.5 and finite buffer B shared by five On-Off
flows. Since the asymptotic results are insensitive to the distribution of Off periods, we
choose their distribution to be exponential, i.e. P[τ off > x] = e−µx, x ≥ 0. On periods
are selected from the Pareto family, P[τ on > x] = x−α, x ≥ 1, α > 1. The peak rates of
On-Off flows are defined by vector (4, 2, 2, 3, 1) and the On probabilities are chosen to be
pon,i = 0.1 for all five flows. The length of the simulated sample path in both examples is
set to 109.

Example 1 Let the distributions of On periods be defined by α = (1.6, 1.5, 1.6, 1.5, 1.6).
The work of the GPS mechanism is fully determined by the weight vector φ =(0.3, 0.1,
0.3, 0.2, 0.1). Clearly, the conditions of Theorem 4.1 are satisfied for the first flow. For
this flow we simulated the loss rates for buffer sizes B = 100, 200, . . . , 1000. The results
of the simulation are presented in Figure 1 with “o” symbols. The approximation of the
loss rate is plotted in the same figure with a solid line.

Example 2 Here, consider the system from the previous example with α =(1.6, 3.0,
3.0, 3.4, 1.9) and φ = (0.1, 0.2, 0.3, 0.3, 0.1). In this example it is easy to verify that the
conditions of Corollary 4.1 are satisfied for the first flow. The simulation results (”o”
symbols) and the approximation (solid line) for the loss rate are plotted on Figure 2.

It is apparent from both figures that the derived approximations are in excellent agree-
ment with the simulated results. Furthermore, we would like to point out that the asymp-
totic formulas are very precise even though the estimated probabilities are relatively high,
in range of 10−2 − 10−3.
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Figure 1. Illustration for Example 1.
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Figure 2. Illustration for Example 2.
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6. CONCLUDING REMARKS

In this paper we analyzed a system of N independent heavy-tailed On-Off flows that
share a server and a common buffer of size B. The server capacity is divided according to
the GPS scheduling discipline and the buffer sharing is unrestricted, unless the buffer is
full. When the buffer is full, we introduce a low complexity workload management policy
that discards the necessary amount of fluid from the most demanding flows. Each flow is
assumed to have its minimum rate guarantee larger than its long-time average rate. Our
main result shows that asymptotically each flow experiences the same loss rate as if it
were served in isolation with constant capacity and the whole buffer space B exclusively
dedicated to it.
The main novelty of our result is that the analyzed system behaves as if it had N

times larger buffer than it actually did. This new insight provides additional guideline
for deciding on the buffer distribution between the access and core network switching
elements. Finally, we observe that the result raises an interesting problem of socially fair
buffer pricing. Everybody gets a full share of the resource, but it is not quite clear who
and by how much one should pay for it.

APPENDIX: HEAVY-TAILED DISTRIBUTIONS

Definition A.1 A non-negative random variable X (or its d.f. F ) is called long-tailed
X ∈ L (F ∈ L) if

lim
x→∞

1− F (x− y)

1− F (x)
= 1, ∀y ∈ R.

Definition A.2 A non-negative random variable X (or its d.f. F ) is called subexponen-
tial X∈S ⊂ L (F ∈S ⊂ L) if

lim
x→∞

1− F 2∗(x)
1− F (x)

= 2,

where F 2∗ denotes the 2-fold convolution of F with itself, i.e., F 2∗(x)=
∫
[0,∞)

F (x−y)F (dy).

Definition A.3 A non-negative random variable X (or its d.f. F ) is called intermediately
regularly varying X ∈ IR ⊂ S ⊂ L (F ∈ IR ⊂ S ⊂ L) if

lim
η↑1

lim
x→∞

1− F (ηx)

1− F (x)
= 1.

Lemma A.1 Let F ∈ IR, η ∈ (0, 1), then

sup
x∈[0,∞)

1− F (ηx)

1− F (x)
< ∞.

Proof: Follows immediately from the definition. ✸
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6. S. Borst, O. Boxma, and P. Jelenković. Reduced-load equivalence and induced burstiness in
GPS queues with long-tailed traffic flows. preprint, 2000.

7. M. Crovella and A. Bestavros. Self-similarity in world wide web traffic: Evidence and
possible causes. IEEE/ACM Transactions on Networking, 5(6):835–846, 1997.

8. P. Dupuis and K. Ramanan. A Skorohod problem formulation and large deviation analysis
of a processor sharing model. Queueing Systems, 28(1-3):109–124, 1998.

9. G. Fayolle, I. Mitrani, and R. Iasnogorodski. Sharing a processor among many job classes.
Journal of ACM, 27(3):519–532, July 1980.

10. D. P. Heyman and T. V. Lakshman. Source models for VBR broadcast-video traffic.
IEEE/ACM Transactions on Networking, 4:40–48, February 1996.
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12. P. Jelenković and P. Momčilović. Capacity regions for network multiplexers with heavy-
tailed fluid on-off sources. In INFOCOM 2001, Anchorage, Alaska, April 2001.
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14. P. R. Jelenković and A. A. Lazar. Asymptotic results for multiplexing subexponential on-off
processes. Advances in Applied Probability, 31(2), June 1999.
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