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Abstract

We consider a set of N fluid On–Off flows that share a common server of capacity c and a finite buffer B. The server

capacity is allocated using the generalized processor sharing scheduling discipline. Each flow has a minimum service

rate guarantee that exceeds its long-term average demand qi. The buffer sharing is unrestricted as long as there is

available space. If the buffer is full, the necessary amount of fluid from the most demanding flows is discarded. When

On periods are heavy-tailed, we show that the loss rate of a particular flow i is asymptotically equal to the loss rate in a

reduced system with capacity c�
P

j6¼i qj and buffer B, where this flow is served in isolation. In particular, the system

behaves as if it had N times bigger buffer. This new insight on buffer multiplexing gain offers an additional tradeoff in

distributing buffers between core and edge switching elements.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Modern communication networks are engi-
neered to carry a diverse spectrum of multimedia
services, ranging from real-time traffic, such as
voice and video, to various data- and Web-related
applications. These services have different quality
of service (QoS) requirements, e.g., real-time ser-
vices have stringent delay requirements, but can
tolerate relatively high losses. On the other hand,
data-related services typically could tolerate larger

delays, but need minimal or no losses. Providing
the QoS differentiation in integrated multimedia
networks is usually achieved through priority
scheduling mechanisms. The most popular sched-
uling schemes, e.g., weighted fair queueing, are
based on the generalized processor sharing (GPS)
algorithm. These algorithms offer the flexibility for
providing a high degree of service differentiation,
extracting statistical multiplexing gains as well as
protecting individual flows from the ones with
high service demands.
Rigorous investigation of stochastic systems

with GPS dates back to [9]; see also [9] for some
earlier references. This work was centered around
the problem of time-shared computer systems.
Recent results for traffic models with exponential
characteristics can be found in [1,18,20,21]. How-
ever, comprehensive statistical measurements in
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currently deployed networks have found repeated
evidence of the presence of a high degree of sta-
tistical dependency and variability, often referred
to as self-similarity, in network traffic streams, e.g.,
see [7,10,15,16,19]. The most common approaches
to modelling these intricate statistical phenomena
are through long-range dependent Gaussian pro-
cesses, such as fractional Brownian motion, and
heavy-tailed semi-Markov type processes, e.g.,
On–Off processes. In this paper we focus on the
latter.
Motivated by these empirical findings, a series

of research studies that develop new analytical
techniques for evaluating stochastic heavy-tailed
queueing systems have appeared. In particular,
very recent investigations of the behavior of GPS
in the presence of heavy-tailed arrival streams can
be found in [2–6]. The reader may consult the same
papers for additional references on GPS and heavy
tails. These papers consider a system with a finite
number of heavy-tailed sessions each of which is
queued in an infinite buffer queue; the content of
the queues is served by a single server that is
scheduled using GPS. When the GPS weights are
appropriately chosen, these studies show that each
session experiences the same queueing behavior as
if it were served in isolation with an appropriate
constant capacity. However, if the weights are not
properly engineered, the flows may experience in-
duced burstiness [3,6]; these results stress the im-
portance of properly selecting the GPS weights.
In this paper we investigate a queueing system

in which the heavy-tailed On–Off sessions share a
single finite buffer B. The buffer sharing is unre-
stricted as long as there is available space; if the
buffer is full, the necessary amount of fluid from
the most demanding flows is discarded. The flows
share a common server according to the GPS
scheduling discipline. A formal description of our
model and some preliminary results are presented
in Sections 2 and 3, respectively. When each flow
receives the minimum service rate guarantee that
exceeds its long-term average demand qi, our main
result, stated in Theorem 4.1 of Section 4, shows
that the loss rate of a particular flow i is asymp-
totically equal to the loss rate in a reduced system
with capacity c�

P
j 6¼i qj and buffer B, where this

flow is served in isolation. In other words, each

flow perceives having the entire buffer to itself.
This finding complements the result derived in [2]
by quantifying the benefits of having a shared
buffer. The new qualitative insight may prove
useful in deciding on whether to engineer buffers at
the periphery or in the core of the network. Section
5 contains numerical examples that illustrate an
excellent agreement between the analytical and
simulation results. It is worth observing that the
derived asymptotic approximation yields accurate
results even for relatively large probabilities in the
range of 10�2–10�3. Concluding remarks and a
brief discussion of engineering implications are
presented in Section 6.

2. Model description

Consider N independent On–Off flows AiðtÞ,
16 i6N . An On–Off flow consists of an alternat-
ing sequence of independent activity and silence
periods. Activity and silence periods of the ith flow
are equal in distribution to si and gi, respectively.
Assume that si and gi are almost surely (a.s.)
positive and that their expectations Esi and Egi are
finite. During an activity period flow i generates
fluid at constant rate AiðtÞ ¼ ri and for a period of
silence AiðtÞ ¼ 0. Suppose that AiðtÞ is right con-
tinuous and stationary; for a precise construction
see [11]. Then, the stationary probability that flow
i is active and its long-term average rate are equal
to pi ¼ P½AiðtÞ ¼ ri� ¼ Esi=ðEsi þ EgiÞ and qi ¼
EAiðtÞ ¼ piri, respectively.
These On–Off flows share a common server of

capacity c and a buffer space of size B. Let WiðtÞ
be the unfinished work of flow i at time t,P

WiðtÞ6B. The server capacity is distributed
among flows according to the GPS scheme. Each
flow i is assigned a weight /i > 0 such thatPN

i¼1 /i ¼ 1. Weight /i represents the guaranteed
share of the server capacity for flow i. Available
excess capacity is redistributed among flows ac-
cording to the GPS weights /i. Service rates ciðtÞ
for each flow i at time t can be computed by using
a recursive algorithm described in [8, pp. 4–5]. Let
EðtÞ be the set of flows with WiðtÞ ¼ 0, that are
receiving service at rate ciðtÞ ¼ AiðtÞ, i.e., EðtÞ,
fi : WiðtÞ ¼ 0; ciðtÞ ¼ AiðtÞg. Then, it is not difficult
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to see that EðtÞ ¼ fi : WiðtÞ ¼ 0g almost everywhere
(a.e.) Lebesgue. Therefore, using this property and
the characteristics of GPS for any flow i 62 EðtÞ,
rate ciðtÞ satisfies

ciðtÞ ¼
/i c�

P
j2EðtÞ AjðtÞ

� �
P

j 62EðtÞ /j
P c/i a:e: ð2:1Þ

Buffer sharing is unrestricted as long as there is
available space, i.e., the workloads evolve as if
they were in the infinite buffer system. When the
buffer fills up, the flows with the maximum amount
of fluid WiðtÞ in the buffer are subject to penalty.
They will experience the minimum necessary loss
of fluid such that the flows with smaller workloads
can be accommodated. We exemplify this policy
for two On–Off flows with equal GPS weights in
Fig. 1. Possible extensions to more general buffer
sharing policies will be briefly discussed at the end
of Section 4.
More formally, following the approach from

[8], the evolution of Wi-s can be described with a
set of differential equations. In order to account
for the finiteness of the buffer space we define

DðtÞ ¼ i : WiðtÞ
(

¼ max
16 j6N

WjðtÞ;
XN
j¼1

WjðtÞ ¼ B

)

with jDðtÞj denoting the cardinality of DðtÞ; note
that DðtÞ is nonempty only if the buffer is full. The
elements of DðtÞ are flows that could potentially
experience losses at time t. Let MðtÞ be the largest
subset of DðtÞ such that for all i 2 MðtÞ the fol-
lowing inequality holds:

AiðtÞ � ciðtÞ > �jMðtÞj�1
X
j 62MðtÞ

ðAjðtÞ � cjðtÞÞ:

The workloads of the flows in MðtÞ are regulated
according to

_WWiðtÞ ¼ �jMðtÞj�1
X
j 62MðtÞ

AjðtÞ
�

� cjðtÞ
�
;

this adjustment is necessary to ensure
P

Wi ¼ B.
Note that _WWiðtÞ can be both positive and negative.
For example, consider a system of three processes
with equal GPS weights. Let W1ð0Þ ¼ W2ð0Þ ¼ 2B=
5, W3ð0Þ ¼ B=5, A1ð0Þ ¼ A2ð0Þ ¼ c and A3ð0Þ ¼ 0.
Then, M ¼ f1; 2g and, hence, _WW1ð0Þ ¼ _WW2ð0Þ ¼
c=6, i.e., the workloads of the first two processes

are increasing at rate c=6. However, without any
adjustment the workloads would increase at rate
2c=3.
Next, similarly as for the set EðtÞ, we observe

that MðtÞ ¼ DðtÞ a.e. (Lebesgue). Thus, the evo-
lution of the individual workloads is a.e. described
by the following set of differential equations:

_WWiðtÞ ¼
0 if i 2 EðtÞ;
�jDðtÞj�1

P
j62DðtÞ ðAjðtÞ � cjðtÞÞ if i 2 DðtÞ;

AiðtÞ � ciðtÞ otherwise:

8<
:

ð2:2Þ
The functions WiðtÞ are absolutely continuous and
therefore sets of Lebesgue measure zero can be
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Fig. 1. An illustration of the buffer management policy. Two

On–Off flows with peak rate r share a server of capacity c ¼ r=2
and buffer of size B. The GPS weights of the two flows are

equal, /1 ¼ /2 ¼ 0:5.

P. Jelenkovi�cc, P. Mom�ccilovi�cc / Computer Networks 40 (2002) 433–443 435



ignored for purpose of their characterization [8].
Hence, Eq. (2.2) completely define the behavior of
the system. We assume that this system of equa-
tions has a unique stationary solution and, unless
otherwise specified, WiðtÞ will be used to denote
this solution. Let Ai, ci, Wi be random variables
equal in distribution to AiðtÞ, ciðtÞ, WiðtÞ in sta-
tionarity, respectively.
The main objective of this paper is the asymp-

totic computation of the long-term average loss
rate for a given flow. We say that flow i is over-
flowing at time t if AiðtÞ � ciðtÞ > _WWiðtÞ. The in-
stantaneous loss rate process for flow i is defined as

cBi ðtÞ,AiðtÞ � ciðtÞ � _WWiðtÞ; ð2:3Þ
and its expected loss rate is equal to CB

i ¼ EcBi ðtÞ.
Note that the buffer management policy implies

fAiðtÞ � ciðtÞ > _WWiðtÞg


 WiðtÞ
(

P B=N ;
XN
i¼1

WiðtÞ ¼ B

)
: ð2:4Þ

This inclusion is a simple consequence of the fact
that if the buffer is full and WiðtÞ < B=N , then there
exists a flow j with higher workload than that of
flow i, and, therefore, flow i cannot experience
losses. It is worth mentioning that the described
queueing system is work- and buffer-conserving.
Work-conservation follows from the properties of
GPS; buffer-conservation means that no flow will
experience loss of fluid unless the buffer is full.

3. Preliminary results

This section contains preliminary sample path
bounds and some of the existing results from the
literature on fluid queues with heavy-tailed On–Off
flows that will be used in deriving our main results.

3.1. Sample path bounds

We start with an introduction of a finite buffer
queuing process that will be used to bound the
workload processes in the GPS system with buffer
sharing that we have described in Section 2.
Consider a fluid queue with constant capacity c,
finite buffer B and arrival process AðtÞ. Informally,

at time t, fluid arrives to this system at rate AðtÞ
and is leaving the system at rate c. When the queue
level reaches the buffer limit B fluid arriving in
excess of the draining rate c is lost. We use
QB;c

A ðtÞ 2 ½0;B� to denote the queue content at time t.
In this paper we only consider arrival processes

AðtÞ that are right continuous piece-wise with a.s.
increasing jump times fT0 ¼ 0 < T1 < T2 < � � �g. In
this case, for any initial value QB;c

A ð0Þ and
t 2 ðTn; Tnþ1�, nP 0, the evolution of QB;c

A ðtÞ is
given by

QB;c
A ðtÞ ¼ min QB;c

A ðTnÞ
��

þ ðt � TnÞðAðTnÞ � cÞ
�þ

;B
�
;

ð3:1Þ

where ðxÞþ ¼ maxð0; xÞ. When AðtÞ, i.e., fðTnþ1 �
TnÞ;AðTnÞg, is stationary and ergodic, and
EAðtÞ < c, recursion (3.1) has a unique stationary
and ergodic solution, see [17]. Let QB;c

A and A be
random variables that are equal in distribution to
QB;c

A ðtÞ and AðtÞ in stationarity, respectively. The
loss rate for the described system, KB;c

A is defined
as

KB;c
A , E ðA

�
� cÞ1 QB;c

A



¼ B
��
:

The first sample path bound relates the amount of
unfinished work of flow i in the GPS system and
the workload of a queue in which flow i is served in
isolation.

Proposition 3.1. If WiðtÞ6QB;/ic
Ai

ðtÞ for t ¼ 0, then
the inequality holds for all tP 0.

Proof. Follows from inequality (2.1) and the fact
that the portion of the buffer available to WiðtÞ is
not greater than B. �

In order to simplify the notation we set AðtÞ ¼PN
i¼1 AiðtÞ, r ¼

PN
i¼1 ri, A�iðtÞ ¼

P
j 6¼i AjðtÞ and

q�i ¼
P

j 6¼i qj. The second sample path bound
formalizes an intuitively expected notion that
multiplexing reduces the aggregate queueing
workload. The proof of the following proposition
can be found in [11].

Proposition 3.2. If Q
B;
PN

n¼1
cn

A ðtÞ6
PN

n¼1 Q
B;cn
An

ðtÞ for
t ¼ 0, cn > 0, then the inequality holds for all tP 0.
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Here, we state another sample path bound from
[11]. This bound will be used to limit the amount
of free buffer space in a finite buffer queue. Let
quantity Q1;A

c ðtÞ represent the workload in an in-
finite buffer fluid queue with constant arrival rate c
and variable service rate AðtÞ.

Proposition 3.3. If B� QB;c
A ðtÞ6Q1;A

c ðtÞ for t ¼ 0,
then the inequality holds for all tP 0.

3.2. Queueing results

This subsection consists of the known results on
fluid queues with heavy-tailed On–Off flows that
will be used in proving our main result. In the
analysis of renewal processes excess (or residual)
random variables and distribution functions play
an important role. For a non-negative random
variable X with distribution F and finite mean EX ,
the excess distribution F e is defined by F eðxÞ ¼
ðEX Þ�1

R x
0
ð1� F ðuÞÞdu, xP 0. A random variable

X e with d.f. F e is called the excess variable of X.
Throughout the paper, for any two real functions
f ðxÞ and gðxÞ, we use the frequently used notation
f ðxÞ � gðxÞ as x ! 1 to denote limx!1 f ðxÞ=
gðxÞ ¼ 1.
The theorem below summarizes the results from

[13,14] in the case when the arrival process is a
single On–Off flow. The common heuristic expla-
nation of this theorem comes from identifying the
most likely buffer overflow scenario, which, in this
system, is due to an isolated very long On period,
see Fig. 2. Hence, in stationarity, the overflow of a
large buffer occurs when the source is in its active
state, fAi ¼ rig, and the current On period has
lasted long enough to fill up the buffer, i.e.,
fsei > B=ðri � cÞg.
Classes of heavy-tailed distributions IR, S

(IR � S) are defined in Appendix. Class IR

includes the Pareto family, P½X > x� ¼ ðx �
b þ 1Þ�a

, xP b P 0, a > 0. In addition class S
includes the Weibull distribution, P½X > x� ¼
expð�xbÞ for 0 < b < 1, and the lognormal distri-
bution P½X 6 x� ¼ Uððlog x� lÞ=rÞ, where l 2 R,
r > 0, U is the standard normal distribution.

Theorem 3.1. Let ri > c > qi and sei 2 S. Then,
KB;c

Ai
¼ ðri � cÞP½QB;c

Ai
¼ B� and as B ! 1

P½QB;c
Ai

¼ B� � c� qi

qi

pi
1� pi

P½Q1;c
Ai

> B�

� piP sei

�
>

B
ri � c

�
:

Furthermore, if sei 2 IR then

lim
�"1
limB!1

P½QB;c
Ai

P �B�
P½QB;c

Ai
¼ B�

¼ 1:

The next theorem provides the asymptotic
characterization of the aggregate loss rate in a fi-
nite buffer queue fed by N independent On–Off
flows. Due to the work-conservation the result
applies to the total workload

P
Wi in our GPS

model. Here, the most likely buffer overflow arises
when several very long On periods overlap. Typi-
cally, there is more than one way to overflow,
which is accounted for with a summation in the
theorem. For a detailed proof and experimental
investigation of its accuracy see [11] and [12], re-
spectively.

Theorem 3.2. Let rQ,
P

j2Q rj þ
P

j 62Q qj for all
Q 
 f1; . . . ;Ng and

O, Q : rQ



� ðrj � qjÞ < c6 rQ; 8j 2 Q
�
:

If sei 2 IR for 16 i6N and rQ 6¼ c for all Q 2 O,
then as B ! 1

KB;c
A �

X
Q2O

ðrQ � cÞ
Y
j2Q

pjP sej

�
>

B
rQ � c

�
:

In order to illustrate the preceding theorem we
consider the following example. Let a server of
capacity c ¼ 7 be shared by three On–Off flows

Fig. 2. The most likely overflow scenario in a finite buffer fluid

queue with a single On–Off process. The long On period causing

the overflow is shown with the dash line.
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with peak rate r ¼ 3 and average rate q ¼ 0:3.
Then set O consists of a single element, O ¼
f1; 2; 3g. If for all three flows the excess On peri-
ods are equal in distribution to se 2 IR, then the
loss rate is asymptotically equal to 0.002 P3½se >
0:5B�.

4. Main result

Finally, we are ready to state our main result. It
establishes the buffer equivalence between the GPS
system and a finite buffer queue in which a flow is
served in isolation.

Theorem 4.1. Let /jc > qj for all flows. If sei 2
IR and ri > c� q�i for some flow i, then as B ! 1

CB
i � KB;c�q�i

Ai
:

Heuristic explanation. Since there is a strict sta-
bility /jc > qj for all flows, this ensures that the
workload build-up of process i is unlikely to be
caused by other flows. This fact and the heavy
tailed nature of On periods of process i result in
the most likely overflow scenario being due to a
single long On period of process i. Therefore,
during an overflow, with very high probability all
other flows exhibit average behavior, while flow i
transmits at its peak rate ri. This implies that the
buffer fills up at rate ri þ q�i � c. In addition, the
average behavior of processes j 6¼ i yields Wj ¼
Oð1Þ, and, thus, process i can potentially occupy
up to B�Oð1Þ buffer space. This heuristic is made
rigorous in the following proof that consists of an
upper and lower bound. The proof of the upper
bound is based on the fact that during the de-
scribed events the only process that experiences
losses is i. Equivalently, the total losses in the
system are equal to the losses of process i

cBi ðtÞ � ðri þ A�i � cÞ1foverflow due to ig:

The lower bound is conceptually easier, yet more
tedious. The event of having flow i experiencing
losses is intersected with events that process i has a
long On period and all other processes exhibit its
average behavior and have Oð1Þ workloads.

Proof. Upper bound: Assume that all queueing
processes below are equal to zero at time t ¼ 0.
Based on definition (2.3) of the instantaneous loss
rate and its non-negativity, the following holds:

cBi ðtÞ

¼ AiðtÞ
�

� ciðtÞ� _WWiðtÞ
�
1 AiðtÞ
n

� ciðtÞ> _WWiðtÞ
o

6 ðriþA�iðtÞ� cÞ1 AiðtÞ
n

� ciðtÞ> _WWiðtÞ
o
; ð4:1Þ

where the last inequality follows from the fact that
the buffer is full on event fAiðtÞ � ciðtÞ > _WWiðtÞg
and the instantaneous loss rate of a single flow is
upper bounded by the total loss rate in the system
AðtÞ � c that is further bounded by AðtÞ � c6
ri þ A�iðtÞ � c. Inequality (4.1), inclusion (2.4),
Proposition 3.1 and the work-conserving property
of the GPS scheduling scheme yield for all tP 0

cBi ðtÞ6ðriþA�iðtÞ� cÞ1
(
WiðtÞPB=N ;

XN
i¼1

WiðtÞPB

)

6ðriþA�iðtÞ� cÞ1 QB;/ic
Ai

ðtÞ
n

PB=N ;QB;c
A ðtÞPB

o
:

Next, the preceding inequality and Proposition 3.2
result in

cBi ðtÞ6 ðri þ A�iðtÞ � cÞ1 QB;c�q�i�d
Ai

ðtÞ
n

P �B
o

þ ðr � cÞ1 Q1;/ic
Ai

ðtÞ
n

P B=N
o

� 1 Q1;q�iþd
A�i

ðtÞ
n

P ð1� �ÞB
o
;

where we select � 2 ð0; 1Þ and d 2 ð0; c� qÞ. Note
that for any choice of � and d in the given intervals,
all queueing processes in the last inequality are
stable and converge in distribution to proper ran-
dom variables as t ! 1. Now, by independence of
arrival processes, the last inequality renders

CB
i 6 ðri þ q�i � cÞP QB;c�q�i�d

Ai

h
P �B

i
þ ðr � cÞP Q1;/ic

Ai

h
P B=N

i
� P Q1;q�iþd

A�i

h
P ð1� �ÞB

i
:

Then, Theorem 3.1 and Lemma A.1 of Appendix
A imply

lim
B!1

CB
i

KB;c�q�i
Ai

6 lim
B!1

P QB;c�q�i�d
Ai

P �B
h i
P QB;c�q�i

Ai
¼ B

� � :
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To complete the proof of the upper bound pass
first � " 1, then d # 0 and use Theorem 3.1.

Lower bound: Assume that all processes are in
their stationary regimes unless otherwise specified.
Recall that the loss rate is defined as EcBi ðtÞ, where
cBi ðtÞ is the instantaneous loss rate process of flow
i. Clearly, for all 0 < T < 1

CB
i ¼ EcBi ð0Þ ¼ T�1E

Z T

0

cBi ðtÞdt: ð4:2Þ

Next, for � > 0 define quantity ti , ð1þ �ÞB=
ðri þ q�i � cÞ and two families of events

fi , fAið0Þ ¼ ri; infft > 0: Aið�tÞ ¼ 0g > tig;

ni ,

\
j 6¼i

fAjð0Þ ¼ rj; infft > 0: Ajð�tÞ ¼ 0g > Bg

\ Wjð0Þ



6 B=ð2NÞ
�
:

Event fi indicates that the ith flow is in On state at
time t ¼ 0 and that the current On period lasted
more than ti. On event fAið0Þ ¼ rig, the stationa-
rity of arrival process AiðtÞ implies infft >
0: Aið�tÞ ¼ 0g¼d sei . On the other hand, ni indicates
that all flows j 6¼ i do not have long On periods at
time t ¼ 0 and the amount of their unfinished
work is less than B=ð2NÞ. Then, from (4.2), the loss
rate for flow i can be lower bounded by

CB
i PT�1E

Z T

0

cBi ðtÞdt 1 fi;ni;
XN
k¼1

Wkð0Þ
("

PB� K

)#
:

ð4:3Þ

Now, by using Proposition 3.3 and recalling that
the considered system is work- and buffer-con-
serving we obtain

fi; ni;K

(
P B�

XN
k¼1

Wkð0Þ
)

¼ ffi; ni;K PB� QB;c
A ð0Þg

� ffi; ni;K PQ1;A�i
c�ri

ð0Þg; ð4:4Þ

where Q1;A�i
c�ri

ðtÞ denotes the workload of an infinite
buffer queue with constant arrival rate c� ri, ser-
vice rate A�i and the initial condition Q1;A�i

c�ri

ð�tiÞ ¼ B. Next, for all B > 2NTr on event ni

the workloads of all flows other than i are smaller
than B=N for all t 2 ð0; T Þ and, therefore,
those flows do not experience loss of fluid. This
leads toZ T

0

ciðtÞdt ¼
Z T

0

XN
j¼1

cjðtÞdtP
Z T

0

AðtÞdt � cT � K;

where the last summand is due to the fact that at
time t ¼ 0 the buffer can accommodate an addi-
tional K units of fluid (see (4.3)). Hence, the pre-
ceding inequality, (4.3) and (4.4) yield for all
B > 2NTr

CB
i P E

��
� KT�1 þ T�1

Z T

0

AðuÞdu� c
�

� 1fQ1;A�i
c�ri

ð0Þ6K; fi; nig
�
:

Let t�i be the first time after t ¼ 0 that flow i is
not generating fluid, i.e. t�i , infft > 0 : AiðtÞ ¼ 0g.
Then, by the independence of flows

CB
i P �ðKT�1þ cÞP½Q1;A�i

c�ri
ð0Þ6K;ni� P½fi�

þ T�1E

Z T

0

A�iðuÞdu 1fQ1;A�i
c�ri

ð0Þ
�

6K;nig
�
P½fi�

þ riT�1E minðT ; t�i Þ1ffig
� �

P½Q1;A�i
c�ri

ð0Þ6K;ni�;

ð4:5Þ

where in the last term we used
R T
0
AiðuÞduP

riminðT ; t�i Þ on event fi. Observe that since
sei 2 IR � L one obtains E½minðT ; t�i Þ1ffig� �
TP½fi� as B ! 1. This, in conjunction with the
independence of the arrival processes and the fact
that limB!1 P½ni� ¼ 1, implies

limB!1
CB

i

P½fi�
P
�
� KT�1 þ ri � cþ q�i

�
� limB!1P½Q1;A�i

c�ri
ð0Þ6K�

� rlimB!1P½Q1;A�i
c�ri

ð0Þ > K�:

The preceding inequality holds for all T > 0 and,
therefore, passing T ! 1 and using Theorem 3.1
render
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limB!1
CB

i

KB;c�q�i
Ai

P 1

�
� 2r
ri þ q�i � c

limB!1P½Q1;A�i
c�ri

ð0Þ > K�
�

� limB!1

P sei >
ð1þ�ÞB

riþq�i�c

h i
P sei >

B
riþq�i�c

h i : ð4:6Þ

Next, the standard queueing reflection mapping
argument provides a representation for

Q1;A�i
c�ri

ð0Þ ¼ max sup
�ti 6 s60

jsjðc
��

� riÞ �
Z 0
s

A�idu
�
;

Bþ ðc� riÞti �
Z 0
�ti

A�idu
�

and, hence, by the Strong Law of Large numbers
and c� ri < q�i one obtains for all � > 0

lim
K!1
limB!1P½Q1;A�i

c�ri
ð0Þ > K� ¼ 0:

Finally, by setting � # 0 and then K ! 1 in (4.6)
the lower bound follows by the preceding limit.
This completes the proof of the theorem. �

At this point we would like to discuss possible
generalizations of the preceding theorem. The
strict stability condition c/i > qi for all i repre-
sents a natural engineering condition. However,
from a theoretical perspective the behavior of the
system remains unclear if one or more flows have
higher average demands than their minimum
guaranteed rates. The following corollary repre-
sents an easy extension of this type. It states that a
flow with guaranteed service rate lower than its
expected rate will not be asymptotically affected by
other flows if the tail of that flow is sufficiently
heavy. In general, the problems of this kind are
difficult and remain open.

Corollary 4.1. Let sej 2 IR for 16 j6N and
ri þ q�i > c > q for some flow i. If /jc > qj for all
j 6¼ i and

Q
j2Q P½sej > x� ¼ oðP½sej > x�Þ for all sets

Q 
 f1; . . . ;Ng that satisfy
P

j2Q rj þ
P

j 62Q qj P c,
then as B ! 1

CB
i � KB;c�q�i

Ai
:

Proof. The upper bound is a direct consequence of
inclusion (2.4) and Theorem 3.2. The proof of the
lower bound is the same as in Theorem 4.1. �

Careful examination of the proof of Theorem
4.1 shows that it holds for much more general
buffer management policies. In particular, this in-
cludes the GPS-like rules for buffer management,
which can be utilized to improve the behavior of
the system for small queue sizes. More generally,
Theorem 4.1 appears to hold for a large class of
buffer-conserving policies under which the guar-
anteed buffer space for each process is an in-
creasing function of the total buffer size.
It is worth mentioning that when condition

ri þ q�i > c fails, the most likely overflow for
process i may be caused jointly by flow i and a
subset of other flows. Unfortunately, it appears
that the expression for the loss rate in the general
case depends on the buffer management policy as
well as the parameters of other processes. Hence,
the answers and analysis under these assumptions
are expected to be more involved.

5. Numerical examples

In this section we demonstrate that our ana-
lytical formulas match well the simulation experi-
ments. Consider a fluid queue with capacity c ¼
2:5 and finite buffer B shared by five On–Off flows.
Since the asymptotic results are insensitive to the
distribution of Off periods, we choose their distri-
bution to be exponential, i.e., P½g > x� ¼
e�lx, xP 0. On periods are selected from the
Pareto family, P½s > x� ¼ x�a, xP 1, a > 1. The
peak rates of On–Off flows are defined by vector
ð4; 2; 2; 3; 1Þ and the On probabilities are chosen to
be pi ¼ 0:1 for all five flows. The length of the
simulated sample path in both examples is set to
109.

Example 5.1. Let the distributions of On periods
be defined by a ¼ ð1:6; 1:5; 1:6; 1:5; 1:6Þ. The work
of the GPS mechanism is fully determined by the
weight vector / ¼ ð0:3; 0:1; 0:3; 0:2; 0:1Þ. Clearly,
the conditions of Theorem 4.1 are satisfied for the
first flow. For this flow we simulated the loss rates
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for buffer sizes B ¼ 100; 200; . . . ; 1000. The results
of the simulation are presented in Fig. 3 with ‘‘o’’
symbols. The approximation of the loss rate is
plotted in the same figure with a solid line.

Example 5.2. Here, consider the system from the
previous example with a ¼ ð1:6; 3:0; 3:0; 3:4; 1:9Þ
and / ¼ ð0:1; 0:2; 0:3; 0:3; 0:1Þ. In this example it is
easy to verify that the conditions of Corollary 4.1
are satisfied for the first flow. The simulation re-
sults (‘‘o’’ symbols) and the approximation (solid
line) for the loss rate are plotted on Fig. 4.

It is apparent from both figures that the derived
approximations are in agreement with the simu-
lated results. Furthermore, we would like to point
out that the asymptotic formulas are quite precise
even though the estimated probabilities are rela-
tively high, in the range of 10�2–10�3.

6. Concluding remarks

In this paper we analyzed a system of N inde-
pendent heavy-tailed On–Off flows that share a
server and a common buffer. The server capacity is
divided according to the GPS scheduling discipline
and the buffer sharing is unrestricted, unless the
buffer is full. When the buffer is full, we introduce
a low complexity workload management policy
that discards the necessary amount of fluid from
the most demanding flows. Each flow is assumed
to have its minimum rate guarantee larger than its
long-time average rate. Our main result shows that
asymptotically each flow experiences the same loss
rate as if it were served in isolation with constant
capacity and the whole buffer space B exclusively
dedicated to it.
The main novelty of our result is that the ana-

lyzed system behaves as if it had N times larger
buffer than it actually did. The result indicates that
the buffer sharing can be very beneficial in the case
of heavy-tailed traffic. The new insight provides an
additional guideline for deciding on the buffer
distribution between the access and core network
switching elements. Furthermore, we observe that
the result raises an interesting problem of socially
fair buffer pricing. Everybody gets a full share of
the resource, but it is not quite clear who and how
much one should pay for it.
The analyzed system represents a baseline model

of providing GPS-based, such as weighted fair
queueing, differentiated services using an open loop
control mechanism, e.g. UDP. The analysis of our
model with the addition of TCP-like closed loop
flow control appears at the moment out of reach.
However, even in the closed loop peak rate limited
systems, the time and behavior of the buffer content
until an overflow occurs is very similar to the one
using an open loop control. The two systems will
behave differently during the overflow period and

Fig. 3. Illustration for Example 5.1.

Fig. 4. Illustration for Example 5.2.
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then, assuming stability, both buffers will drain to
zero. Then, until the next overflow, the systems will
behave almost the same, etc. Thus, one can expect
the same number of overflow episodes in both
systems, but with a different dynamics of losses.
Hence, one is tempted to conjecture, that the loss
probabilities in a system similar to ours with a
TCP-like flow control, will be of the same order as
in Theorem 4.1, but with a different constant of
proportionality. Therefore, one may expect ana-
logous multiplexing gains of having larger buffers
in core routers that are carrying peak rate limited
closed loop controlled traffic. However, the posi-
tive economics of the buffer multiplexing gains has
to be balanced with a potential increase in cost for
high speed buffers that are necessary for core rou-
ters, and, possibly other switch design tradeoffs.

Appendix A. Heavy-tailed distributions

Definition A.1. A non-negative random variable X
is called long-tailed, X 2 L, if P½X > x� y� �
P½X > x� as x ! 1, 8y 2 R.

Definition A.2. A non-negative random variable X
is called subexponential, X 2 S � L, if P½X þ
Y > x� � P½X > x� as x ! 1, where Y is an inde-
pendent copy of X .

Definition A.3. A non-negative random variable X
is called intermediately regularly varying, X 2
IR � S � L, if

lim
g"1
limx!1

P½X > gx�
P½X > x� ¼ 1:

Lemma A.1. Let X 2 IR, g 2 ð0; 1Þ, then

sup
x2½0;1Þ

P½X > gx�
P½X > x� < 1:

Proof. Follows immediately from the defini-
tion. �
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Predrag R. Jelenković was born in Kraljevo, Serbia, in 1966. He
received the B.S. degree from the University of Belgrade, Ser-
bia, in 1991, and the M.S., M.Ph., and Ph.D. degrees from
Columbia University, New York, in 1993, 1995, and 1996, re-
spectively, all in Electrical Engineering.
Immediately after his graduation in 1996 he joined the

Mathematics of Networks and Systems Department, at Bell
Labs, Lucent Technologies, where he worked for two years. In

1998 he became the faculty of the Department of Electrical
Engineering at Columbia University, where he is currently an
Associate Professor.
Dr. Jelenkovi�cc was a recipient of the Best Student Paper

award at the International Teletraffic Congress in 1997 and the
NSF Presidential Early Career Award for Scientists and Engi-
neers in 2000. His research focuses on mathematical founda-
tions of communication networks under emerging traffic
paradigms. http://www.comet.columbia.edu/�predrag.
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